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Abstract—This paper considers the fixed-interval smoothing
for jump Markov systems. An optimal backward-time recursive
equation for computing the joint posterior of the state vector
and model index is established first. A suboptimal algorithm is
then developed to approximate the new Bayesian smoother under
nonlinear state-space models with additive Gaussian noise. The
proposed method utilizes the well-known assumed density filter-
ing with Gaussian assumption and the expression for the quotient
of two Gaussian densities to compute the smoothing posterior. It
eliminates the need for finding the inverse of the state dynamics
and can handle singular process noise covariance, compared with
several existing multiple model smoothers. Promising results are
obtained in simulations using a maneuvering target tracking task.

I. INTRODUCTION

Fixed-interval smoothing estimates the system states in a

time interval using all the measurements collected within that

interval [1], [2]. It provides better state estimates at the cost

of some delay over filtering that utilizes only the measure-

ments received before and up to the sampling time of the

state [3]. For linear Gaussian state-space models, the Rauch-

Tung-Striebel (RTS) smoother [4] gives the optimal solution.

For nonlinear state-space models, Gaussian smoothing [5] or

optimization-based methods [6] may be used.

The multiple model approach can be integrated into fixed-

interval smoothing to improve performance, when abrupt

changes are present in the system state due to load distur-

bances, additive faults [7], [8] and target maneuvering [9]. In

this way, a bank of state-space models is used and the system

switches among them according to a Markov chain at each

sampling time. The considered system now becomes a jump

Markov system. Fixed-interval smoothing for jump Markov

systems has been applied in track extraction for multi-target

tracking [10], maneuvering target tracking [11]–[14], sensor

registration in radar networks [15], articulatory inversion [16]

and air traffic control trajectory reconstruction [17].

A few algorithms are available for the fixed-interval smooth-

ing for jump Markov systems. The two-filter approach [18],

which is based on the optimal Frazer-Potter linear smoother

[19], [20], combines the output of a forward-time interacting

multiple model (IMM) filter and a backward-time IMM filter

to find the smoothed states. Besides requiring the calculation

of the inverse of the state dynamics, this technique assumes

that the measurement likelihood can be well approximated

using the state posterior computed by the backward-time IMM

filter, which may not be satisfied in practice [2], [21].

In [10], a generalized pseudo-Bayesian of order 2 (GPB2)-

type smoother was developed. It computes the joint posterior

of the state vector and model index through assuming that the

smoothed state is accurate enough so that its posterior can be

approximated using the Dirac delta function. This degrades

the performance when the noise becomes large. In [22], a

IMM-type smoother was developed based on several strong

assumptions on the state-space models [23]. The method from

[23]–[25] combines the output of the forward-time IMM filter

and RTS smoothers to produce the smoothed states. Evaluating

the measurement likelihood is still needed when calculating

the posterior probability of the model index. This is done

by the backward-time IMM filter, similar to the two-filter

approach. In [26], the algorithm in [23] was generalized to

the case where the process and measurement noises are both

non-Gaussian. In [27], we developed a closed-form algorithm

for fixed-interval smoothing under linear Gaussian state-space

models. It approximates directly the backward-time Bayesian

recursive equation for calculating the joint posterior of the

state vector and model index for enhanced performance. This

method requires linear state dynamics and the process noise

covariance being invertible, which limits its applications.

This paper significantly extends the algorithm in [27] so that

we can handle nonlinear state dynamics and singular process

noise covariance matrix. For this purpose, we first derive a

new optimal backward-time recursive equation for calculating

the joint posterior of the state vector and model index. Next,

a suboptimal algorithm that approximates, using the assumed

density filtering (ADF) with Gaussian assumption [5], the new

Bayesian smoother is developed under nonlinear state-space

models with additive Gaussian noise. The expression for the

quotient of two Gaussian densities [28], [29] is utilized to

obtain a closed-form solution. In the theoretical development,

comparisons between the proposed method and the smoothers

developed in [10], [23] and [27] is performed. Simulation

experiments using a maneuvering target tracking task demon-

strate the good performance of the proposed algorithm.



The rest of this paper is organized as follows. Section

II presents the optimal backward-time recursive equation for

computing the joint posterior of the state vector and model

index. Section III gives the proposed smoothing algorithm

under nonlinear state-space models. Section IV shows the

simulation results. Section V concludes the paper.

II. OPTIMAL BACKWARD-TIME RECURSIVE SMOOTHING

A. Problem Formulation

Let M j
t denote that the jth state-space model of the jump

Markov system in consideration is in effect during the sam-

pling period (t− 1, t]. Under model M j
t , the system state xt

and measurements zt at time instant t are sampled from the

following model-matched state prediction probability density

function (PDF) and measurement likelihood:

xt ∼ p(xt|xt−1,M
j
t ) and zt ∼ p(zt|xt,M

j
t ). (1)

Here, j = 1, 2, ..., r and r is the number of models that

the jump Markov system admits. M j
t evolves according to

a homogeneous Markov chain with transition probabilities

p(M j
t |M

i
t−1) = pij , (2)

where i, j = 1, 2, ..., r and
∑M

j=1
pij = 1. The model

switching is assumed to be independent of the state dynamics.

We need to obtain the state posterior p(xt|z1:k) to achieve

fixed-interval smoothing, where t = 1, 2, ..., k − 1, k is the

interval length and z1:k = {z1, z2, ..., zk} represents the set

of measurements collected within the time interval. For this

purpose, we first find the joint posterior of xt and M j
t ,

p(xt,M
j
t |z1:k), and then marginalize out M j

t using

p(xt|z1:k) =
r

∑

j=1

p(xt,M
j
t |z1:k). (3)

B. Optimal Recursive Equation for Computing p(xt,M
j
t |z1:k)

We shall derive an optimal backward-time recursive equa-

tion for computing the joint posterior p(xt,M
j
t |z1:k), j =

1, 2, ..., r, to enable the evaluation of (3). To begin, we assume

that the joint posterior of the state xt+1 and model index

M i
t+1 at time instant t + 1, which is p(xt+1,M

i
t+1|z1:k),

i = 1, 2, ..., r, is already available. As a result, the joint

posterior p(xt,M
j
t |z1:k) can be found via [10], [27]

p(xt,M
j
t |z1:k) =

r
∑

i=1

∫

p(xt,M
j
t ,xt+1,M

i
t+1|z1:k)dxt+1 =

r
∑

i=1

∫

p(xt,M
j
t |xt+1,M

i
t+1, z1:t)p(xt+1,M

i
t+1|z1:k)dxt+1.

(4)

To obtain the second equality in (4), we utilized the fact that

due to the Markov property, [xT
t ,M

j
t ]

T is independent of the

measurements in {zt+1, zt+2, ..., zk} given [xT
t+1,M

i
t+1]

T .

To evaluate the summands in (4), we note that

p(xt,M
j
t |xt+1,M

i
t+1, z1:t)

= p(M j
t |xt+1,M

i
t+1,xt, z1:t)p(xt|xt+1,M

i
t+1, z1:t)

= p(M j
t |M

i
t+1,xt, z1:t)p(xt|xt+1,M

i
t+1, z1:t).

(5)

Here, the second equality again comes from the Markov

property that the model index in effect during (t− 1, t], M t
j ,

becomes independent of the system state at time t+ 1, xt+1,

when M i
t+1 and xt are both given.

Putting (5) into (4) reveals that to find the summands in (4),

we actually need to compute the integral
∫

p(xt|xt+1,M
i
t+1, z1:t)p(xt+1,M

i
t+1|z1:k)dxt+1. (6)

Following the way leading to the second equality in (4) yields

p(xt|xt+1,M
i
t+1, z1:t) = p(xt|xt+1,M

i
t+1, z1:k). (7)

After applying (7) and substituting p(xt+1,M
i
t+1|z1:k) =

p(xt+1|M
i
t+1, z1:k)p(M

i
t+1|z1:k), we can re-write (6) as

∫

p(xt|xt+1,M
i
t+1,z1:t)p(xt+1,M

i
t+1|z1:k)dxt+1

= p(xt|M
i
t+1, z1:k)p(M

i
t+1|z1:k).

(8)

The expression for p(xt|M
i
t+1, z1:k) is given in (9) shown

at the bottom of this page, where the Bayes theorem is

used to obtain the equality. Specifically, p(xt+1|xt,M
i
t+1)

is the prediction PDF of the state vector xt+1 under model

M i
t+1. Besides, p(xt|M

i
t+1, z1:t) is the model-matched fil-

tering posterior of xt after the model mixing [3], which

is indeed computed during the forward-time multiple model

filtering process. The denominator p(xt+1|M
i
t+1, z1:t) =

∫

p(xt+1|xt,M
i
t+1)p(xt|M

i
t+1, z1:t)dxt is the normalization

factor. Therefore, (9) has the same functional form as the

single model optimal Bayesian smoothing equation [2], [30].

This enables using e.g., the computationally efficient nonlinear

RTS smoother [5] to compute p(xt|M
i
t+1, z1:k), which will be

utilized in this work for smoothing algorithm development and

has been used in the smoother in [23].

We proceed to write p(M j
t |M

i
t+1,xt, z1:t) in (5) as

p(M j
t |M

i
t+1,xt, z1:t) =

p(xt|M
j
t , z1:t)p(M

j
t |M

i
t+1, z1:t)

p(xt|M i
t+1, z1:t)

,

(10)

where p(xt|M
i
t+1,M

j
t , z1:t) = p(xt|M

j
t , z1:t) has been ap-

plied. p(xt|M
j
t , z1:t) is the model-matched filtering posterior

of the state xt, and p(M j
t |M

i
t+1, z1:t) is the mixing probability

[3]. These two terms, as well as p(xt|M
i
t+1, z1:t) in the de-

nominator, are all computed during the forward-time multiple

p(xt|M
i
t+1, z1:k) =

∫

p(xt+1|xt,M
i
t+1)p(xt|M

i
t+1, z1:t)

p(xt+1|M i
t+1, z1:t)

p(xt+1|M
i
t+1, z1:k)dxt+1. (9)



model filtering process and can be considered known when

the fixed-interval smoothing is performed.

Using the results in (5)-(10), we can express (4) as

p(xt,M
j
t |z1:k) =

r
∑

i=1

p(xt|M
j
t , z1:t)p(xt|M

i
t+1, z1:k)

p(xt|M i
t+1, z1:t)

· hji

t|k,

(11)

where j = 1, 2, ..., r, and

hji

t|k = p(M j
t |M

i
t+1, z1:t) · p(M

i
t+1|z1:k). (12)

Note that the above theoretical development that leads to

(11) is exact. This completes the derivation of the new optimal

backward-time recursive equation for computing the joint

posterior p(xt,M
j
t |z1:k).

C. Comparison with the Optimal Smoother in [10] and [27]

The optimal fixed-interval smoother, based on which the

smoothing algorithms in [10] and [27] are developed, stems

from (4) as well. It has a functional form different from that

in (11) because when evaluating p(xt,M
j
t |xt+1,M

i
t+1, z1:t)

in (5), it applies the Bayes theorem directly to arrive at

p(xt,M
j
t |xt+1,M

i
t+1, z1:t)

=
p(xt+1,M

i
t+1|xt,M

j
t )p(xt,M

j
t |z1:t)

p(xt+1,M i
t+1|z1:t)

∝
p(xt+1|M

i
t+1,xt)p(xt|M

j
t , z1:t)

p(xt+1|M i
t+1, z1:t)

.

(13)

The term in the third row of the above equation, however, is

not a posterior of the state xt. This can be verified by noting

that the denominator can be expressed as

p(xt+1|M
i
t+1, z1:t) =

r
∑

j=1

p(xt+1,M
j
t |M

i
t+1, z1:t)

=

r
∑

j=1

p(xt+1|M
i
t+1,M

j
t , z1:t)p(M

j
t |M

i
t+1, z1:t),

(14)

which is not equal to
∫

p(xt+1|M
i
t+1,xt)p(xt|M

j
t , z1:t)dxt =

p(xt+1|M
i
t+1,M

j
t , z1:t). As a result, the integral in (4) cannot

be evaluated using e.g, the nonlinear RTS smoother from [5].

To bypass the aforementioned difficulty, [10] introduces

p(xt,M
j
t |xt+1,M

i
t+1, z1:t)

∝
p(xt+1|M

i
t+1,xt)p(xt|M

j
t , z1:t)

p(xt+1|M i
t+1,M

j
t , z1:t)

p(xt+1|M
i
t+1,M

j
t , z1:t)

p(xt+1|M i
t+1, z1:t)

.

(15)

The first term on the right hand side of (15) is now a posterior

of xt. [10] further simplifies (15) through replacing xt+1 in

the second term on its right hand side with the mode of

the smoothing posterior p(xt+1|M
i
t+1, z1:k). As expected, the

associated approximation error would increase when the noise

level becomes larger. On the other hand, in [27], we put (13)

into (4) and evaluated the result using the expression for the

quotient of two Gaussian densities for linear Gaussian state-

space models. But the application of the developed algorithm

is limited to the scenario with linear state transition models

and non-singular process noise covariance.

III. PROPOSED SMOOTHING ALGORITHM

A. Algorithm Development

This subsection gives a suboptimal fixed-interval smoothing

algorithm that approximates the optimal Bayesian smoother

in (11) when the state-space models the jump Markov system

admits are nonlinear with additive Gaussian noise. In this case,

the model-matched state prediction PDF and measurement

likelihood in (1) would become

p(xt|xt−1,M
j
t ) = N (xt; fj(xt−1),Q

j
t−1), (16a)

p(zt|xt,M
j
t ) = N (zt;hj(xt),R

j
t ), (16b)

where fj(·) and hj(·) are the nonlinear state transition function

and measurement function under model M j
t . N (y;µ,Σ)

denotes a multivariate Gaussian PDF with mean µ and co-

variance Σ on the random vector y.

Assume that the forward-time filtering is carried out first

using the IMM filter [3]. It employs the ADF with Gaussian

assumption (i.e., Gaussian filtering [1], [2], [5], [31]) in place

of the linear Kalman filter (KF) to handle the nonlinearity

in the state-space models. Let the model-matched filtering

posterior of the state and posterior probability of the model

index obtained in the update stage of the IMM filter be

p(xt|M
j
t , z1:t) = N (xt;µ

j

t|t,P
j

t|t), (17a)

p(M j
t |z1:t) = wj

t|t, (17b)

where t = 1, 2, ..., k and j = 1, 2, ..., r. In the prediction

stage of the IMM filter, the filtering posterior of xt after

model mixing, the mixing probability, and the model-matched

prediction PDF of xt+1 are calculated. We denote them as

p(xt|M
i
t+1, z1:t) = N (xt; µ̄

i
t|t, P̄

i
t|t), (18a)

p(M j
t |M

i
t+1, z1:t) = w̄ji

t|t, (18b)

p(xt+1|M
i
t+1, z1:t) = N (xt+1;µ

i
t+1|t,P

i
t+1|t). (18c)

The forward-time IMM filter stops at time instant k. The

proposed algorithm then starts the backward-time smoothing

with evaluating (11) using t = k−1 and p(xt+1,M
i
t+1|z1:k) =

p(xk|M
i
k, z1:k)p(M

i
k|z1:k) = N (xk;µ

i
k|k,P

i
k|k) · w

i
k|k (see

(17)). The obtained result is substituted back into (11) to find

p(xk−2,M
j
k−2
|z1:k), j = 1, 2, ..., r. This process continues

until p(x1,M
j
1 |z1:k) is found and the desired fixed-interval

multiple model smoothing is accomplished.

We are ready to present the steps for evaluating (11). As the

joint posterior p(xt+1,M
i
t+1|z1:k) is a scaled Gaussian PDF

at t = k − 1, we express it using the following general form:

p(xt+1,M
i
t+1|z1:k) = p(xt+1|M

i
t+1, z1:k)p(M

i
t+1|z1:k)

= N (xt+1;µ
i
t+1|k,P

i
t+1|k) · w

i
t+1|k,

(19)

where t = 1, 2, ..., k − 1.

Step-1: We evaluate p(xt|M
i
t+1, z1:k) in (11) first. As

pointed out below (8), its definition (9) has the same functional

form as the single model optimal Bayesian smoother. From



(17), (18a), (18c) and (19), all the terms in the integrand in

(9) are Gaussian densities. We can follow [5] to arrive at [23]

p(xt|M
i
t+1, z1:k) = N (xt; µ̄

i
t|k, P̄

i
t|k), (20)

where

µ̄
i
t|k = µ̄

i
t|t +Gi

t(µ
i
t+1|k − µ

i
t+1|t), (21a)

P̄i
t|k = P̄i

t|t +Gi
t(P

i
t+1|k −Pi

t+1|t)(G
i
t)

T . (21b)

µ̄
i
t|t and P̄i

t|t are the mean and covariance of the filtering

posterior of the state xt after model mixing (see (18a)),

while µ
i
t+1|t and Pi

t+1|t are the mean and covariance of the

prediction PDF of xt+1 given in (18c). The gain matrix Gi
t is

Gi
t = Ci

t(P
i
t+1|t)

−1, (22)

where Ci
t is the cross covariance equal to

Ci
t =

∫

(xt − µ̄
i
t|t)(fi(xt)− µ

i
t+1|t)

TN (xt; µ̄
i
t|t, P̄

i
t|t)dxt.

(23)

Step-2: Substituting (17), (18a) and (20) into (11) yields

p(xt,M
j
t |z1:k) =

r
∑

i=1

N (xt;µ
j

t|t,P
j

t|t)N (xt; µ̄
i
t|k, P̄

i
t|k)

N (xt; µ̄i
t|t, P̄

i
t|t)

·hji

t|k.

(24)

We proceed to evaluate the summands in (24). Specifically, by

the product rule for two Gaussian densities, we have that

N (xt;µ
j

t|t,P
j

t|t)N (xt; µ̄
i
t|k, P̄

i
t|k)

= N (µj

t|t; µ̄
i
t|k,P

j

t|t + P̄i
t|k)N (xt; µ̄

ji

t|k, P̄
ji

t|k),
(25)

where

µ̄
ji

t|k = µ̄
i
t|k + P̄i

t|k(P
j

t|t + P̄i
t|k)

−1(µj

t|t − µ̄
i
t|k), (26a)

P̄
ji

t|k =
(

(Pj

t|t)
−1 + (P̄i

t|k)
−1

)−1

. (26b)

Next, applying the expression for the quotient of two Gaussian

densities [27]–[29]

N (y;µc,Σc)

N (y;µa,Σa)
=

|Σa|

|Σa −Σc|
·

N (y;µb,Σb)

N (µa;µc,Σa −Σc)
,

where Σb = (Σ−1

c −Σ
−1

a )−1 and µb = Σb(Σ
−1

c µc−Σ
−1

a µa),
we arrive at

N (xt; µ̄
ji

t|k, P̄
ji

t|k)

N (xt; µ̄i
t|t, P̄

i
t|t)

=
|P̄i

t|t|

|P̄i
t|t − P̄

ji

t|k|

N (xt;µ
ji

t|k,P
ji

t|k)

N (µ̄i
t|t; µ̄

ji

t|k, P̄
i
t|t − P̄

ji

t|k)
.

(27)

Here, µ
ji

t|k and P
ji

t|k are equal to

P
ji

t|k =
(

(P̄ji

t|k)
−1 − (P̄i

t|t)
−1

)−1

, (28a)

µ
ji

t|k = P
ji

t|k

(

(P̄ji

t|k)
−1

µ̄
ji

t|k − (P̄i
t|t)

−1
µ̄

i
t|t

)

. (28b)

Step-3: Putting (25) and (27) into (24) yields

p(xt,M
j
t |z1:k) =

r
∑

i=1

dji
t|k · N (xt;µ

ji

t|k,P
ji

t|k), (29)

where the weights dji
t|k are defined as

dji
t|k = hji

t|k ·
|P̄i

t|t|

|P̄i
t|t − P̄

ji

t|k|
·
N (µj

t|t; µ̄
i
t|k,P

j

t|t + P̄i
t|k)

N (µ̄i
t|t; µ̄

ji

t|k, P̄
i
t|t − P̄

ji

t|k)
, (30)

and hji

t|k = w̄ji

t|t · w
i
t+1|k according to (12), (18b) and (19).

It is clear from (29) that the joint smoothing posterior at time

t would be a Gaussian mixture with r components, although

the joint smoothing posterior at time t+1 is a scaled Gaussian

density (see (19)). To maintain the computational tractability,

we approximate p(xt,M
j
t |z1:k) in (29) using

p(xt,M
j
t |z1:k) ≈ N (xt;µ

j

t|k,P
j

t|k) · w
j

t|k. (31)

such that it has the same functional form as (19). Invoking the

method of moment matching [32], µ
j

t|k and P
j

t|k are found via

µ
j

t|k =

r
∑

i=1

dji
t|k

∑r

l=1
djl
t|k

· µji

t|k, (32a)

P
j

t|k =
r

∑

i=1

dji
t|k

∑r

l=1
djl
t|k

(

P
ji

t|k + (µji

t|k − µ
j

t|k)(µ
ji

t|k − µ
j

t|k)
T
)

.

(32b)

The smoothing posterior probability wj

t|k is equal to

wj

t|k =

∑r

i=1
dji
t|k

∑r

l=1

∑r

i=1
dli
t|k

. (33)

This completes the development of the suboptimal fixed-

interval algorithm under nonlinear state-space models with

Gaussian noise. We can see that different from the smoother

in [27], the proposed method does not require the inverse of

the process noise covariance Qi
t−1 and the state transition can

be nonlinear.

B. Algorithm Implementation

The validity of (29) requires that P
ji

t|k is positive definite.

We can show that this is true when t = k − 1. Specifically,

from the definition of P
ji

t|k in (28a), we need to prove that

P̄i
t|t− P̄

ji

t|k is positive definite. Putting (26b) and (21b) yields

P̄i
t|t − P̄

ji

t|k = P̄i
t|t −

(

(Pj

t|t)
−1 + (P̄i

t|k)
−1

)−1

= P̄i
t|t − P̄i

t|k + P̄i
t|k(P

j

t|t + P̄i
t|k)

−1P̄i
t|k

= Gi
t(P

i
t+1|t −Pi

t+1|k)(G
i
t)

T + P̄i
t|k(P

j

t|t + P̄i
t|k)

−1P̄i
t|k.

(34)

The second equality in (34) is obtained via invoking the matrix

inversion lemma. We can see that in the third equality of (34),

the second term is positive definite. The first term, on the other

hand, is at least positive semidefinite when t = k − 1. This

is because in this case, Pi
t+1|t −Pi

t+1|k = Pi
k|k−1

−Pi
k|k is

the difference between the covariances of the prediction PDF

and filtering posterior of the state xk. It is at least positive

semidefinite under Gaussian filtering, which completes the



proof that P̄i
t|t − P̄

ji

t|k in (34) and as a result, P
ji

t|k in (28a)

are both positive definite when t = k − 1.

Nevertheless, the above observation may not hold for t <
k − 1, as observed in the simulation experiments. To address

this aspect, the uncertainty-injection (UI) technique [33], [34]

is employed to scale up the covariance P̄i
t|t using

P̄i
t|t ← λ · P̄i

t|t, (35)

where λ > 1 is determined by increasing its value until P
ji

t|k

in (28a) becomes positive definite. In this case, we set dji
t|k in

(30) to be dji
t|k = hji

t|k = w̄ji

t|t · w
i
t+1|k (see the definition of

hji

t|k in (12) and the discussion under (30)).

The computation steps that the proposed fixed-interval

smoother performs at each time instant t < k are summarized

in Algorithm 1 shown below. It can be seen that to find the

joint posterior for each model index M j
t , we need to evaluate

r smoothers in closed form. Thus, the proposed fixed-interval

smoother indeed has a computational complexity close to that

of the GPB2-type algorithms from [10], [27] and the method

given in Algorithm 1 of [23].

Algorithm 1: One Step of the Proposed Smoother

Input: {µj

t|t,P
j

t|t, w
j

t|t}j=1,2,...,r, {w̄
ji

t|t}i=1,2,...,r, j=1,2,...,r

{µi
t+1|t,P

i
t+1|t}i=1,2,...,r, {µ̄

i
t|t, P̄

i
t|t}i=1,2,...,r

{µi
t+1|k,P

i
t+1|k, w

i
t+1|k}i=1,2,...,r

Output: {µj

t|k,P
j

t|k, w
j

t|k}j=1,2,...,r

1 for i = 1, 2, ..., r do

2 Calculate Ci
t and Gi

t using (23) and (22);

3 Compute µ̄
i
t|k and P̄i

t|k using (21);

4 end

5 for j = 1, 2, ..., r do

6 for i = 1, 2, ..., r do

7 Compute µ̄
ji

t|k and P̄
ji

t|k using (26);

8 λ← 1;

9 Increase λ until λ · P̄i
t|t− P̄

ji

t|k is positive definite;

10 Evaluate, with P̄i
t|t replaced by λ · P̄i

t|t, (28) and

(30) to find µ
ji

t|k, P
ji

t|k and dji
t|k ;

11 if λ > 1 then dji
t|k = w̄ji

t|t · w
i
t+1|k;

12 end

13 Calculate µ
j

t|k and P
j

t|k using (32);

14 Find wj

t|k using (33);

15 end

C. Comparison with the Smoother from Algorithm 1 of [23]

The smoother presented in Algorithm 1 of [23] is closely

related to the technique developed in Section III.A in the sense

that it also uses N (xt;µ
ji

t|k,P
ji

t|k) given in (27) to evaluate the

model-matched state smoothing posterior p(xt|M
j
t , z1:k). But

it computes p(xt|M
j
t , z1:k) and the posterior probability of

the model index, p(M j
t |z1:k), sequentially, instead of finding

them jointly as in (29). Sepcifically, the Algorithm 1 from [23]

finds p(xt|M
j
t , z1:k) via

p(xt|M
j
t , z1:k) =

r
∑

i=1

N (xt;µ
ji

t|k,P
ji

t|k)p(M
i
t+1|M

j
t , z1:k),

(36)

where p(M i
t+1|M

j
t , z1:k) is approximated using

p(M i
t+1|M

j
t , z1:k) ∝ pji · N (µj

t|t;µ
b,i

t|k,P
j

t|t +P
b,i

t|k). (37)

Here, pji is the model transition probability defined in (2),

and µ
j

t|t and P
j

t|t are the mean and covariance of the model-

matched filtering posterior of xt (see (17)). µ
b,i

t|k and P
b,i

t|k are

the mean and covariance of the maximum likelihood estimate

argmaxxt
p(zt+1:k|xt,M

i
t+1). They are equal to [18], [23]

P
b,i

t|k =
(

(P̄i
t|k)

−1 − (P̄i
t|t)

−1

)−1

, (38a)

µ
b,i

t|k = P
b,i

t|k

(

(P̄i
t|k)

−1
µ̄

i
t|k − (P̄i

t|t)
−1

µ̄
i
t|t

)

, (38b)

where µ̄
i
t|t and P̄i

t|t are defined in (18a), while µ̄
i
t|k and P̄i

t|k

are given in (21).

P
b,i

t|k in (38a) may not always be positive definite1. In fact,

we can show by following the same approach leading to (34)

that substituting (21b) yields

P̄i
t|t − P̄i

t|k = Gi
t(P

i
t+1|t −Pi

t+1|k)(G
i
t)

T . (39)

In other words, the inverse of P
b,i

t|k would only be posi-

tive semidefinite when t = k − 1, if the number of mea-

surements in zk is smaller than the dimensionality of the

state xk. In this case, [23] considers the Gaussian density

N (µj

t|t;µ
b,i

t|k,P
j

t|t +P
b,i

t|k) in (37) to be a flat prior such that

p(M i
t+1|M

j
t , z1:k) ≈ pji. At the same time, the posterior

probability for the model index is set to be p(M j
t |z1:k) = wj

t|t,

j = 1, 2, ...r, which are just the model posterior probabilities

computed by the forward-time IMM filter. This approximation

may lead to the performance degradation if P
b,i

t|k being singular

occurs frequently (see the Simulation Results section).

IV. SIMULATION RESULTS

A. Simulation Setup

We adopt a simulation scenario very similar to the one

employed in [27], [35]. A stationary sensor at the origin

measures the range and bearing of a target to estimate its

trajectory. At sampling instant t, the measurements are related

to the target state vector xt = [xt, yt, ẋt, ẏt]
T through

yt =

[ √

x2
t + y2t

tan−1(xt/yt)

]

+wt, (40)

where [xt, yt]
T is the target position, [ẋt, ẏt]

T is the target ve-

locity, and tan−1(·) denotes the four-quadrant inverse tangent

function. wt is the zero-mean Gaussian measurement noise

vector with covariance R = diag(σ2
r , σ

2
θ), where σr = 100m

and σθ = 0.5o.

1Compared with P
b,i

t|k
, P

ji

t|k
is less likely to be singular, due to the presence

of P
j

t|t
(see (34) and the discussion below).



To realize the fixed-interval smoothing of the target state

xt, we collect k = 200 measurements with a sampling period

of T = 3s over an interval of 600s. At the beginning of this

time interval, the target is located at [234.92km, 85.50km]T

and moving with an initial velocity [−141.4m/s,−141.4m/s]T .

Within the interval, the target motion follows the constant

velocity (CV) model most of the time. Mathematically, in this

case, the target state xt evolves according to [9]

xt = Fxt−1 + vt−1, (41)

where the state transition matrix F is

F =

[

I2 T · I2
O I2

]

. (42)

The target makes two turns within the time interval, accord-

ing to the following constant turn (CT) model [9]

xt = F(ω) · xt−1 + vt−1, (43)

where the state transition matrix F(w) is

F(ω) =









1 0 sin(ωT )/ω −(1− cos(ωT ))/ω
0 1 (1− cos(ωT ))/ω sin(ωT )/ω
0 0 cos(ωT ) − sin(ωT )
0 0 sin(ωT ) cos(ωT )









.

(44)

The first turn lasts for 18 seconds from 200s to 218s, and it has

an acceleration of 1g with a turn rate of ω = −0.05rad/s. The

second turn lasts for two minutes from 480s to 600s, and it

has an acceleration of 0.5g with a turn rate of ω = 0.022rad/s.

Fig. 1 shows a sample target motion trajectory.
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Fig. 1. A sample target trajectory. The triangle denotes the sensor. The circle
gives the initial position of the target. The blue curve is the target trajectory.

In (41) and (43), vt−1 is the Gaussian process noise with

zero mean and covariance Q = σ2
vGGT , where G =

[

1

2
T 2 · I2, T · I2

]T
and σv = 1m/s.

We compare the estimation accuracy of the fixed-interval

smoother proposed in Section III.A with that of five bench-

mark methods. They include the forward-time IMM filter [3],

two-filter approach [18], GPB2-type technique from [10], the

smoother from Algorithm 1 of [23] and the method from [27]2.

2The process noise covariance Q = σ2
vGGT is singular, which renders

the smoother proposed in [27] inapplicable here. To allow the performance
comparison, diagonal loading is applied such that the smoother from [27] in
fact uses Q+ blkdiag(T 2

· I2,O2) as the process noise covariance.

All the algorithms employ the same bank of r = 7 state-

space models. These models share the measurement equation

in (40), but their process equations are different. Specifically,

one state-space model adopts the CV model in (41) while

the other six state-space models use the CT models in (43)

with turn rates set to ±0.02rad/s, ±0.033rad/s and ±0.1rad/s.

The model switching is assumed to follow a Markov chain

with a known transition probability matrix P whose diagonal

elements are 0.8 and off-diagonal elements are 0.0333.

The output of the forward-time IMM filter is utilized by

the five simulated smoothers to achieve fixed-interval state

smoothing. We initialize the IMM filter using the target range

and bearing measurements obtained at the first sampling time.

The initialization process is the same as the one used in [27],

[35] and thus, it is omitted here for brevity.

To handle the nonlinearity in the measurement equation

in (40), the Gaussian filtering framework using the cubature

rules-based numerical integration [36] is applied. Note that

in the current simulation setup, the state dynamics are still

linear. The purpose of this setting is to enable the perfor-

mance comparison between the proposed technique and the

smoother from [27], as well as the two-filter approach that

requires finding the inverse of the state dynamics. When the

state dynamics become nonlinear, to implement the proposed

smoother in Section III.A, the cross covariance Ci
t defined in

(23) may need to be evaluated numerically as well. In this

case, again, the cubature rules could be used to compute Ci
t.

B. Results and Analysis

We quantify the performance of the six algorithms in

consideration in terms of their target position estimation root

mean square errors (RMSEs) and target velocity estimation

RMSEs. The results are shown in Figs. 2 and 3, and they are

obtained through averaging over 2000 Monte Carlo ensemble

runs. In the figures, three vertical lines are added to indicate

the starting time (200s) and ending time (218s) of the first

turn, as well as the starting time (480s) of the second turn.

According to Figs. 2 and 3, the five smoothers all provide

evident performance gain over the forward-time IMM filter

(‘IMM Filter’), which is expected because more measurements

are explored in smoothing. Besides, the smoothers offer similar

target velocity RMSEs but the GPB2-type smoother from [10]

(‘GPB2 Smoother’) yields the largest target position RMSEs.

This may come from the use of the approximation that the

smoothing state posterior is concentrated around its mode (see

the discussion below (15)), which may become invalid under

the relatively large noise level used in the simulation. The

performance of the fixed-interval smoother proposed in this

paper (‘Proposed’) is close to that of the two-filter approach

[18] (‘Two-Filter’) and the smoother from [27] (‘Method from

[27]’). But the new algorithm eliminates the need to find

the inverse of the state dynamics and no longer requires the

process noise covariance being invertible. Besides, they are

superior to the smoother from Algorithm 1 of [23] (‘Method

from [23]’) in terms of greatly reduced target position RMSEs.
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Fig. 2. Comparison of target position RMSEs.
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Fig. 3. Comparison of target velocity RMSEs.

The observed performance improvement over the smoother

from [23] may be explained by examining the average poste-

rior probabilities of the model indexes. For this purpose, we

plot in Figs. 4, 5 and 6 the posterior probabilities for the CV

model, CT model with turn rate w = −0.033rad/s and CT

model with w = 0.02rad/s. The two CT models are selected

because they have turn rates close to those of the first turn

(w = −0.05rad/s) and the second turn (w = 0.022rad/s).
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Fig. 4. Comparison of the CV model probabilities.

We can see from Figs. 4-6 that the posterior model proba-

bility found by the smoother from [23] is very close to that of
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Fig. 5. Comparison of the CT model probabilities (ω = −0.033rad/s).
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Fig. 6. Comparison of the CT model probabilities (ω = 0.02rad/s).

the forward-time IMM filter. This indicates that the covariance

matrices of the maximum likelihood estimates, which are

P
b,i

t|k given in (38a), become non-invertible frequently (see

Section III.C). The underlying reason is possibly that we

use a relatively large bank of r = 7 state-space models,

which increases the chance that there is at least one singular

covariance matrix P
b,i

t|k.

On the other hand, the proposed smoother, as well as the

one from [27] and the two-filter approach, better identifies

the target motion mode. Specifically, from 1s to 200s and

from 218s to 480s when the target motion follows the CV

model, the posterior CV model probabilities calculated by

the proposed smoother are significantly bigger than that of

the method from [23] (see Fig. 4). The observations from

Figs. 5 and 6 are similar. They demonstrate, respectively,

that the proposed smoother performs better in finding the

correct target motion mode during the first turn from 200s

to 218s and the second turn from 480s to 600s. The improved

performance may be owing to two factors. First, the covariance

of the model-matched smoothing posterior computed by the

proposed smoother, which is P
ji

t|k in (28a), is less likely to be

singular (see the analysis in Section III.B). Second, even when

P
ji

t|k is singular, thanks to the optimal smoother (11) it is based



on, the proposed smoother uses dji
t|k = w̄ji

t|t·w
i
t+1|k to calculate

the model probability (see (33) and the discussion under (35)).

This still enables the utilization of the information from the

forward-time IMM filter contained in the mixing probability

w̄ji

t|t and the information from smoothing included in wi
t+1|k.

In contrast, the method of [23] explores the model probability

obtained during the forward-time IMM filtering only when

one covariance P
b,i

t|k is not invertible. This may lead to the

degraded estimation performance observed in Fig. 2.

V. CONCLUSIONS

For the problem of fixed-interval state smoothing for jump

Markov systems, this paper first derived a new optimal

backward-time recursive equation that can calculate the pos-

terior of the state vector and model index jointly. We then

developed a closed-form algorithm that uses Gaussian filter-

ing techniques to approximate the newly obtained Bayesian

smoother under nonlinear state-space models with additive

Gaussian noise. The proposed optimal smoother and the sub-

optimal smoothing algorithm were contrasted against several

existing approaches to highlight their underlying differences.

The good performance of the proposed smoothing algorithm

in a maneuvering target tracking task in terms of improved

estimation accuracy over multiple benchmark methods was

illustrated using simulations.

REFERENCES

[1] S. Challa, M. R. Morelande, D. Mušicki, and R. J. Evans, Fundamentals
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[5] S. Särkkä and J. Hartikainen, “On Gaussian optimal smoothing of non-
linear state space models,” IEEE Trans. Autom. Control, vol. 55, no. 8,
pp. 1938–1941, Aug. 2010.

[6] A. Aravkin, J. Burke, and G. Pillonetto, “Optimization viewpoint on
Kalman smoothing with applications to robust and sparse estimation,”
in Compressed Sensing & Sparse Filtering, A. Carmi, L. S. Mihaylova,
and S. Godsill, Eds. Springer, 2014, pp. 237–280.

[7] H. Ohlsson, F. Gustafsson, L. Ljung, and S. Boyd, “State smoothing by
sum-of-norms regularization,” in Proc. IEEE Conf. Decision and Control

(CDC), Atlanta, GA, USA, Dec. 2010, pp. 2880–2885.

[8] ——, “Smoothed state estimates under abrupt changes using sum-of-
norms regularization,” Automatica, vol. 48, pp. 595–605, Aug. 2012.

[9] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking. Part
I. Dynamic models,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4,
pp. 1333–1364, Oct. 2003.

[10] W. Koch, “Fixed interval retrodiction approach to Bayesian IMM-MHT
for maneuvering multiple targets,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 36, pp. 2–14, Jan. 2000.

[11] V. P. Jilkov, X. R. Li, and L. Lu, “Performance enhancement of the IMM
estimation by smoothing,” in Proc. Int. Conf. Inf. Fusion (FUSION),
Annapolis, MD, USA, Jul. 2002, pp. 713–720.

[12] M. Morelande and B. Ristic, “Smoothed state estimation for nonlinear
Markovian switching systems,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 44, pp. 1309–1325, Oct. 2008.

[13] M. Malleswaran, V. Vaidehi, S. Irwin, and B. Robin, “IMM-UKF-
TFS model-based approach for intelligent navigation,” The Journal of

Navigation, vol. 66, pp. 859–877, Nov. 2013.

[14] W. Ali, Y. Li, M. Raja, and N. Ahmed, “Generalized pseudo Bayesian
algorithms for tracking of multiple model underwater maneuvering
target,” Applied Acoustics, vol. 166, pp. 1–12, Sept. 2020.

[15] Z. Li and H. Leung, “An expectation maximization-based simultaneous
registration and fusion algorithm for radar networks,” in Proc. Canadian

Conf. on Electrical and Computer Engineering (CCECE), Ottawa, ON,
Canada, May 2006, pp. 31–35.
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