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Using Correlation Matrix 

Memories for Inferencing 

in Expert Systems 

J. Austin, R. Filer 

16.1 Introduction 

Rulebased reasoning has been the subject of a great deal of work in AI, and 

the work has resulted in a number of expert systems. Some expert systems 

have proved very useful, e.g. PROSPECTOR [7] and DENDRAL [loll but it 

is clear that the usefulness of an expert system is not necessarily the result 

of a particular architecture. Usefulness is much more likely to be related to 

the ability of an expert system to access relevant information, indeed a sys- 

tem that appears intelligent may simply be one that is able to access a great 

deal of information that is relevant to solving a particular problem. Although 

systems l i e  PROSPECTOR and DENDRAL are useful, the nature of real 

world problems is such that systems tend to be brittle (brittleness is an in- 

ability to deal with partial or uncertain information, or to generalize). Despite 

having a knowledge base representing 15 person-years work, INTERNIST-I 

[ll], an expert system for medical diagnosis, was "unable to synthesize a gen- 

eral overview in complicated multi-system disordersn (by the authors' own 

admission). 

Touretsky and Hinton were the first to emulate a symbolic, rulebased 
system in a connectionist architecture [18]. A connectionist approach held 

the promise of better performance with partial information and being gen- 



erally less brittle. Whether or not this is the case, Touretsky and Hinton 

usefully demonstrated that connectionist networks are capable of symbolic 

reasoning. The systems due to Lange and Dyer (ROBIN: [g]) and Shastri and 

Ajjanagadde (SHRUTI: [15]) came later, and have knowledge bases more rem- 

iniscent of the real world. ROBIN uses "signatures", while SHRUTI relies on 

a more elegant, "temporal synchrony" to propagate variable bindings. These 

later models can loosely be described as "connectionist", but both are highly 

constrained networks. In both systems, knowledge is basically hand-encoded 

and no learning is possible. Knowledge is not distributed in any sense, in 

either model, which means that properties that might otherwise result from 

a distributed representation are lost ( e . g .  an ability to deal with partial in- 

formation). Implementation in the software or hardware of a conventional 

computer would also be difficult. 

Sun [l71 devised a dual representational scheme, with both localist rep- 

resentation (of concepts) and distributed representation of what amount to 

sub-concepts. The localist level also uses a fuzzy evidential logic. The sys- 

tem is consequently better able to  deal with partial information and in-exact 

matching. What is still needed is a connectionist solution that maintains a 

truly distributed knowledge representation. This chapter describes Correla- 

tion Matrix Memory (CMM) and the use of CMM as an infdrence engine (21. 

This chapter is concerned with particular aspects of using- CMM in an ex- 

pert system, and shows that CMM is a valuable tool with some very useful 

properties. 

Outline of The Chapter 

Section 16.2 describes CMM and the Dynamic Variable Binding Problem. 

Section 16.3 deals with how CMM is used as part of an inferencing engine (21. 

Section 16.4 details the important performance characteristics of CMM. 

16.2 Correlation Matrix Memory 

CMM is a binary associative memory. For the purposes of our work, the remit 

of CMM is the fast, parallel matching of rules following predicate calculus, 

e.g.:  

The system can deal with multiple arity rules ( i . e .  rules with multiple 

variables in the antecedent and consequent), with value inheritance and mul- 

tiple occurrences of variables, and with the exclusive-OR problem. CMM is 



Figure 16.1: CMM Binary Associative Memory. 

not a new idea (see [19]), which allows the association of binary vectors using 

a matrix of binary weights. Pairs of binary vectors are associated by setting 

weights as shown in Figure 16.1. As such, CMM can be seen as a single layer 

neural network with binary weights, which uses a Hebbian learning rule. 

Figure 16.1 is an example of training, in which the vectors 0101 and 0011 

have become associated. The subsequent presentation of 0101 to the network 

will retrieve 0011 if set weights in rows identified by set bits in the input vector 

contribute to column sums. The result is 0022, which is then thresholded 

appropriately to give 0011. For similar work, see Austin and Jackson [3]. 

Here, CMM is augmented by the use of Tensor Products (TP: [16]) to solve 

the dynamic variable binding problem. 
1 

The Dynamic Variable Binding Problem 

This is a problem in connectionist implementations of rule-based systems. It 

is best explained using an example: If a rule has the form A h B + C, it may 
be important to be able attribute values thus: 

When a distributed rule representation is to be used, it is important that both 

the A:z and the B: k bindings can be represented unambiguously. It is clearly 

useless if, having trained such a rule, the system is subsequently unable to 

"remember" which variable had the value z. Furthermore, a rule may also 

specify inheritance: 

(A= 2) A (B = k) 3 (C = k). 

The binding representation used therefore has to  be stable to propagation 

in the network. The problem of representing and propagating these bindings 

is what has become known as the "Dynamic Variable Binding Problem". 



16.3 CMM Inference Engine 

The system, proposed by Austin (21, consists of units that fall into two sub- 
categories: 

1. CMM units (associative memory units); 

2. Support units (not associative memory). 

The support units perform the relatively simple processing necessary to 

support the CMM units, and exploit the technology to the full. This simple 

processing is all that is necessary to achieve a powerful reasoning capability. 

Figure 16.2 illustrates the system. Processing occurs both at  the input to 

the CMM units and at the output; processing fulfils the following functions, 

a description of which will serve to introduce the system. 

16.3.1 Lexical Token Converter 

Each lexical input item is converted to a binary token for manipulation by 

the system. Tokens are generated that consist of randomly allocated patterns 

of N set bits out of a total of M bits (there is an optimal ratio of N : M that 

gives best error rate vs. storage). Random patterns may be allocated easily 

using a random number generator. Each token should be unique, however, 

which means a method of ensuring uniqueness is required. For few tokens 

it may be feasible to check a list of tokens each time a token is allocated; 

for many tokens there are better methods available, like "Test-and-Train" [4j. 

This method involves using the system itself to identify whether a pattern is 

already known. The values of M and N depend upon the overall size of the 

CMM units and the usual arity of rules being stored (see Section 16.3.3). 

16.3.2 Binding Variable and Value Tokens 

Binary tensor products (TP, [16]) are used to bind variables to values, T P  

vectors being obtained from a pair of tokens in two stages. The first stage is 

in fact analogous to storing a pair of tokens in a binary associative memory: 

with reference to Figure 16.1, the T P  of 0101 and 001 l is the matrix of binary 

weights. The T P  vector is obtained by concatenating rows, hence: 

This is a binary vector of length M Z  containing N2 set bits. It begs the 

question, whether to allow both tokens and TP vectors as representations in 

the CMM units. Clearly, if N is chosen such that NZ is optimal for error rate 

us. storage in the CMM unit, N itself cannot at the same time be optimal 

(see also Section 16.3.3). This is one reason why allowing both representations 

may be disadvantageous, which leaves us with the problem of what to do with 
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Figure 16.2: The CMM Inference Engine. 

variables not assigned a value. Such variables can be assigned either a "null" 

value or a "true* value to allow conversion to TP vector form. 



16.3.3 Superimposing Inputs 

The T P  vector(s) are superimposed (OR-ed on top of one another) prior to 

being applied to the CMM units. This makes dealing with commutativity of 

rule antecedents an automatic feature of ihe sys tem,  and is a key factor in 

providing an efficient partial match. Superimposing k vectors with N 2  set 

bits gives rise to a vector with up to  kN2 set bits. It might therefore be more 

appropriate to  optimize sN2  for error rate us. storage rather than N2,  where s 

is chosen depending on the predominant arity of rules in the knowledge base. 

16.3.4 Identifying CMM Units of Appropriate Arity 

This is necessary to enable the appropriate processing of rules with mixed 

arity antecedents. For example, if the system has learned these two rules: 

If the antecedents were trained in a single CMM unit, subsequent ap- 

plication of the token for A and thresholding appropriate for a single arity 

rule would allow both rules to fire (incorrectly). To avoid this, the first layer 

of CMM units must consist of a CMM unit for  each ari ty  rule that will be 

encountered. Input can then be targeted to the appropriate arity CMM unit. 

16.3.5 Occurrence Checking 

Very simple rules, such as the example in Section 16.3.6 (see Section 16.3.6), 

may involve repeated variables. For the correct processing of such rules, it is 

insufficient for the input simply to  be superimposed and sent to the appro- 

priate arity CMM unit, because the fact that a variable is repeated cannot 

be represented in this way. The solution is to extend further the first CMM 

layer, such that each arity CMM unit is duplicated, or triplicated even, de- 

pending on the application and the likely number of occurrences of the same 

variable in rules. This allows multiple occurrences of the same variable to be 

represented and, if summed appropriately, to  count in thresholding. 

16.3.6 Providing Separator Tokens (Training) 

A single layer neural network cannot resolve the exclusiveOR problem. To do 

so requires a two layer network, and this approach has also been used in our 

system. For example, if separator tokens are represented here by {i, j ,k,l): 



The support units provide a unique, randomly allocated separator token 

for each rule (the generation of tokens may be done off-line). The separator 

token is an M2-bit word with a pattern of set bits, the number of set bits 

being optimized as before. 

16.3.7 Thresholding (Retrieval) 

Two sorts of thresholding are used: L-max [l, 51 and Willshaw [19]. L-max 

thresholding selects a specified number of columns in the output to represent 

set bits, columns being selected in order of decreasing sum magnitude; Will- 

shaw thresholding takes any column sums in the output above a specified value 

as being set bits. It can be useful to apply both thresholds simultaneously. 

16.3.8 Decoding the Output 

The output of the system consists of all rule consequent(s) which match the 

given input, in the form of overlapped TPs. Decoding the output involves 

identifying explicitly which tokens may be present in the output in T P  vector 

form. It is then possible to extract these TP(s) and use each token that has 

been identified to retrieve the other half of the pair of tokens represented in 

each TP. To th% end, the T P  is used itself like a binary associative memory 

(input retrieving output). With few rules matching, it is usually a simple task 

to identify unambiguously each component of the output. The more complex 

the output is, however, the more likely it is that spurious identifications are 

made. It is conceivable that a network approach will ultimately be used to 

decode the output. However, as this step of the processing is quite straight- 

forward, the nature of the implementation is not crucial. An example of an 

ambiguous output is: 

Assume the T P  vectors: 

A 1000000001000001100000001000000000000100 

B 0000010100000000001000000100000000001100 

C 0000000000010000011000010000010000000001 

D 1000001000000000010000000001000000000101 

E 0000000110000000010000010000000100000010 

F 0000000000110000000000100100110000000000 

It can be seen that the 1s present in {B,C,F} are represented in the output, 

whilst the patterns {A,D,E) contain Is  that do not correspond to the output. 



The system would deduce that the thresholded output is due to three rules 

matching. Suppose that this output was obtained after training only two 

rules, however. One of the identifications would therefore have been spurious. 

16.4 System Characteristics 

The next section describes how the CMM compares with a conventional stor- 

age method when used in a rule matching context. Some new work on storage 

and partial matching is presented (taken from Filer, [6]). 

16.4.1 Storage 

The storage of sparsely coded associative networks was investigated by Nadal 

and Toulouse [12]. In this paper, Information Theory was applied to the 

problem of predicting the maximumnumber of associations (TP vector pairs) 

that can be trained before a certain error rate is reached. The error rate is 

expressed in terms of the likely number of bits that are retriped in error fol- 

lowing a Willshaw threshold. With a single layer, square, binary associative 

network, Nadal and Toulouse showed that the maximum number of associk 

tions, for an error rate of 1.0 bits per retrieval, can be expressed in terms of 

the dimensions of the network alone: 

s t ~ r a g e , , ~  = (ln 2 ) = ~ ~ / ( l n  M ) ~  

It is also possible to predict storage for specific error rates ([6]; see graph, 

Figure 16.3), and the results are encouraging. For instance, if an error rate of 

one erroneous set bit per output is accepted (which is the same as saying a 

100% 1-bit error rate), a lOOObit X lOOObit CMM can store 7000 associations1. 

With a 50% l-bit error rate, 86% of this storage can still be used (6000 

associations); with a 10% l-bit error rate, 63% of the storage can still be 

used. Perhaps the most important point is that storage in the network is 

greater ihan would be expected of a list storage sysiem using ihe same amouni 

of memory. 

The storage obtained is a compromise between the number of associations 

stored and the error rate, and depends on a certain coding rate, with optimal 

storage arising when there are logz M set bits out of M bits. A lower coding 

rate gives rise to a greater error rate (but greater storage), whilst a higher 

coding rate leads to reduced storage (but less errors). In the current system, 

which supports multi-arity rules, the optimal value of N is required (see also 

Section 16.3.3). If there is a choice, the largest N should be chosen, as it is 

better to sacrifice storage than to incur a greater error rate. 

'An optimal coding rate is assumed here. 
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Figure 16.3: Storage capacity vs. CMM size (M) for various l-bit error rates. 

This graph shows the fact that M need increase by only a small amount, to 

lessen the error rate dramatically. 

16.4.2 ~ d t i a l  Matching Capability 

CMM can perform partial matching. The ability to perform inferencing based 

on partial information is a significant feature of human intelligence and, in 

many applications, the usefulness of an expert system might depend upon 

emulating this ability. Partial match is already implemented in standard 

database systems, and so a comparison between CMM and a database access 

method is possibly valid. In particular, the Superimposed Coding method 

(SIC; [a]), which is used in databases for partial matching, is very similar 

to the methods used here. Sacks-Davis and Ramarnohanarao (SkR; [14]) 

suggested a superimposed coding scheme, called T w o  Level Superimposed 

Coding", which I will now describe. 

In brief, SIC is a way of indexing a store of records, which may be held on 

a slow storage device, where each record is given a code, a "record descrip- 

tor code", computed based on the particular attribute values of each record. 

Every possible attribute-value instance is allocated a unique binary vector to- 

ken. Each record descriptor code is generated by superimposing all the tokens 

which are appropriate for that record. A query descriptor code can be com- 

puted in an analogous manner from one or more specified attribute values, 

and can then be used to search the file of record descriptor codes. If a bit 



that is set in the query descriptor code is also set in a record descriptor code, 

then it is likely that there is a match. The system accept a false positive rate, 

which is also a feature of CMM. Importantly, however, no true matches are 

missed (which would clearly be unacceptable in a database retrieval system). 

Two Level SIC is an improvement (rather like two level memory hierarchies 

in conventional computer systems), whereby a primary file and a secondary 

file are stored. The additional file stores sc-called "segment descriptor codes". 

The file of record descriptor codes is subdivided into segments, and each seg- 

ment is characterized by a segment descriptor code. Each segment descriptor 

code is computed from the records represented by that segment, but using a 

different hash function. The segment descriptor codes are then used to  nar- 

row down the search of record descriptor codes. Depending on the choice of 

segment size and how well similar record descriptor codes can be grouped to- 

gether in the same segment, Two Level SIC performs well. Even in the worst 

case, which would be when all segments have to  be examined, this scheme 

performs no worse than the one level scheme described by Knuth [a]. Usually 

with Two Level SIC though, the number of disk accesses (and hence speed of 

matching) is related more to  the actual number of records that match than to 

the total number of records. 

The above property is extremely desirable, and is not found with other 

techniques. Rivest [l31 looked at  several approaches: hash coding methods 

and tree search algorithms. Performance was considered in terms of retrieving 

nk-bit words that match a query specifying s bits, and it was found that 

the best these approaches could offer was a performance= O ( n ' ~ g ( ~ - ~ / ~ ) ) .  

CMM is capable of more efficient partial match, similar to Two Level SIC. 

To demonstrate this fact, the remainder of this subsection is devoted to a 

consideration of the theoretical performance of CMM. CMM can be used to 

associate a SIC-type coding of attribute values with a separator code fulfilling 

a pointer function. This is analogous to the role of the first CMM layer in the 

inference engiie already described. 

16.4.2.1 Attribute Value Coding 

Input to the CMM would represent records to be found, with attribute values 

processed into a form of record descriptor code. An M-bit descriptor code 

should contain about N set bits, where N = logz M for optimal performance 

(see Section 16.4.1). Consequently the mapping of attribute values should be 

onto an M-bit vector with N / s  set bits, where s is the number of attributes 

in each record. This is analogous to  the processing of inputs in the inference 

engine, omitting TP binding. A query descriptor code would be computed in 

an analogous manner to the descriptor code. 



16.4.2.2 Separa tor  Coding 

The output of the CMM may well contain overlapped separator codes. The 

separator codes must therefore be held in a separate structure, such that the 

individual separator codes represented can be identified in the output (as in 

Section 16.3.8). It is only necessary to store the N numbers that describe the 

positions of the set bits, however, allowing a considerable memory saving. For 

the fastest possible access, a method is needed to process the output efficiently. 

To this end, the file of separator codes is subdivided and organized into buckets 

according to where the middle 1 appears in the code. To decode the output, 

i t  is then only necessary to download all codes that could be represented in 

the output, starting with the bucket corresponding to the position of the first 

i that could be the middle l of a separator code; the next area downloaded 

corresponds to the position of the second possible middle 1, etc.. 

16.4.2.3 Thresholding 

It  is appropriate to perform a Willshaw threshold (191, and at  a level equal 

to the number of set bits in the query descriptor code. Such a threshold will 

not exclude false matches, but equally does not exclude any true matches 

(this being the desirable compromise). False matches arise from two sources: 

from false matches due to error bits; also from false matches due to spurious 

separator codes in the output. The number of false matches therefore depends 

upon the saturation of the memory and on the number of set bits in the query 

descriptor code. 

16.4.2.4 ~ h b o r e t i c a l  Performance 

We now calculate the amount of data that would need to be retrieved from a 

secondary store, directly related to the speed of the proposed partial matching 

system. There are two components: 

1. The amount of data needed to compute the CMM output ( i .e .  that 

constitutes the CMM): 
1 
-zM bytes 
8 

(16.1) 

(z =no. of set bits in-the query descriptor code). 

2. The amount of data constituting all separator codes that could be rep- 

resented in the output: 

This depends upon being able to specify the number of true matches, 

A. If there are AM-bit patterns, then the likely number of bits not 

set will be set bits will therefore number (l - (v)A)~. 
Subtracting (N - 1) gives the number of separator code buckets (see 

Section 16.4.2.2). Assuming a 100% l-bit error rate, each separator 

code bucket will contain an average of s t ~ r a g e , , ~ / M  separator codes, 



Table 16.1: This table gives the amount of data to be retrieved for various 

values of A and z. Having chosen A and z, read off the two associated amounts 

of data, then sum to give the total amount of data which a CMM database 

index would require to answer a particular partial match query. 

each requiring 2N bytes storage2. Note that separator code buckets will 

not be uniform in size (although i t  is possible to make them uniform). 

It is therefore necessary to have some form of look-up table. 

Error bits in the output also occur due to interactions in the CMM. 

These number (M - N ) q Z ,  where q  is the proportion of weights set in 

the CMM (see [IQ]) and storagel,o e (p = 0.5). In summary: 

s t ~ r a g e ~ , ~  [ (M; N )  A 

M 
2N (1- - )M - ( N  - 1) + (M - N)p2 bytes l 

(16.2) . , 
The total amount of data ((1) + (2)), given M and g, depends only upon 

A and z. To enable a comparison between the two methods, Table 16.1 

summarizes CMM performance on an example case given in S&R, the example 

case being: 

Total number of records = 219 

Number of segments = 64 

Number of records per segment = 8192 

Number of error bits a t  the segment level = 1/4 (per retrieval) 

Number of error bits at  the descriptor level = 1 (per retrieval) 

Disk Page Size = 1 KB 

From Table 16.1, it can be seen that with a medium-highly specified query 

(i.e. 6 < z < 141, the amount of datais closely related to A, the number of true 

22M bytur to allow up to 3 X ld records, i.e. 15bits to encode the position of each set 

bit. 



matches (our desirable property). In comparison with SIC, CMM performs 

well: the worst case performance of SIC (when every segment is examined) is 

bettered by CMM (4MB for CMM vs. lOMB for SIC); in the unlikely event 

that only one segment descriptor matches, SIC does do better (CMM 800KB 

vs. SIC 80KB). The storage that would be required to implement this CMM 

database index is 28MB, compared with 15MB for Two Level SIC (as the size 

of the database increases, however, the relative storage for the two methods 

becomes less disparate, e.g. 1.6GB vs. 1.4GB for records). 

16.4.3 Implementing a Predicate Calculus 

Thresholding the output of the first CMM layer, coupled with the appropriate 

use of arity- and occurrence CMM units in this layer, can achieve a power- 

ful reasoning behaviour. Both L-max and Willshaw thresholds (see Section 

16.3.7) are used simultaneously: first, column sums are selected using an L- 

max criterion; next, a Willshaw threshold is applied to the selected column 

sums. The L-max criterion would normally be chosen to be the same as the 

number of bits in a separator token, but it may be the case that there are 

many more high column sums than expected. This would suggest that the 

output contained overlapped separator tokens (and it would then be possible 

to check a list of separator tokens and pass each in turn through the second 

layer). 

16.4.3.1 AND,  OR and part ia l-AND 

The level of ~ i l l s h a w  thresholding allows any of the operators AND, OR and 

p a r t i a l - A m  (see below) to  be enforced in rule retrieval. For example, if the 

system has learned two rules: 

And the tokens are as follows: 

The superimposed input to the first CMM layer for rule 1 would be 

011001i0, and the rule would be trained in the arity 2 CMM unit (because 

there are two variables in the antecedent of the rule). For rule 2, the input 



would be 0 i i i i i l 0 ,  and the rule trained in the arity 3 CMM unit. In re- 

trieving an output from the first layer, O i l l l l l O  (6 set bits) would retrieve 

00600060 from the arity 3 unit. If this is thresholded at  6 then the result is 

00100010, the token for j. Thresholding a t  6 therefore achieves an AND. Ap- 

plying instead just O i l O O O O O  would retrieve 00200020, which gives 00000000, 

thresholding at  6; thresholding a t  2, however, does result in the token for j. 

Using such a threshold is equivalent in this case to selecting any arity 3 rules 

that have A in one variable position, and this is an OR. Thresholding a t  an 

intermediate level (in this case 4) would allow inputs that represent any two 

of { A ,  B, C) to retrieve j, a function that we call p a r t i a l - A N D .  Importantly, 

all these functions are completed in a single pass through the system. 

16.4.3.2 Rules with Disjunctions 

For example: 

A V (B Ac)  + D .  

To achieve training such a rule (as opposed to enforcing the OR function 
in retrieval), it is necessary to process the rule into two components before 

teaching: 

Each component is trained appropriately for for its new arity, the whole 

training process therefore possibly requiring as many passes as there are 

disjunctions. The application of O i i O O O O O  (which is only the token for A) 

to the arity l CMM unit, with appropriate thresholding, can now retrieve D 

(ignoring the separator stage for the sake of this example); similarly, applying 

O O O i i l i O  (our representation of B h C) to the arity 2 unit also retrieves the 

correct output. 

16.4.3.3 Additional Features 

The system can, in addition, support many other features that there is not 

space to  detail here (such as negation and deletion, also detailed examples of 

dynamic variable binding). 

16.5 Conclusions 

CMM is a tool that has great potential for use in expert systems: a t  a basic 

level, i t  has very desirable storage characteristics, as well as some useful emer- 

gent properties (e.g. p a r t i a l - A M )  can be evaluated in a single pass through 

the system); a t  a more sophisticated level, our CMM-based inference engine 



supports predicate calculus. A realistic goal with the present system archi- 

tecture, is to achieve massively parallel processing. In addition, the present 

system architecture is being extended to enable soft rule processing (by using 
the dimension of time in our representation). 
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