
This is a repository copy of Using correlation matrix memories for inferencing in expert
systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/1875/

Book Section:

Austin, J orcid.org/0000-0001-5762-8614 and Filer, R (1996) Using correlation matrix
memories for inferencing in expert systems. In: Taylor, JG, (ed.) NEURAL NETWORKS
AND THEIR APPLICATIONS. Wiley-Blackwell , UXBRIDGE , pp. 229-244.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

White Rose Consortium ePrints Repository
http://eprints.whiterose.ac.uk/

This is an author produced version of a chapter published in Neural Networks
and their Applications.

White Rose Repository URL for this paper:
http://eprints.whiterose.ac.uk/1875/

Published chapter
Austin, J. and Filer, R. (1996) Using correlation matrix memories for inferencing
in expert systems. In: Taylor, J.G. (ed), Neural Networks and their Applications.
John Wiley and Sons Ltd., Chichester, UK, 229-244. ISBN 0471962821

White Rose Consortium ePrints Repository
eprints@whiterose.ac.uk

Using Correlation Matrix

Memories for Inferencing

in Expert Systems

J. Austin, R. Filer

16.1 Introduction

Rulebased reasoning has been the subject of a great deal of work in AI, and

the work has resulted in a number of expert systems. Some expert systems

have proved very useful, e.g. PROSPECTOR [7] and DENDRAL [loll but it

is clear that the usefulness of an expert system is not necessarily the result

of a particular architecture. Usefulness is much more likely to be related to

the ability of an expert system to access relevant information, indeed a sys-

tem that appears intelligent may simply be one that is able to access a great

deal of information that is relevant to solving a particular problem. Although

systems l i e PROSPECTOR and DENDRAL are useful, the nature of real

world problems is such that systems tend to be brittle (brittleness is an in-

ability to deal with partial or uncertain information, or to generalize). Despite

having a knowledge base representing 15 person-years work, INTERNIST-I

[ll], an expert system for medical diagnosis, was "unable to synthesize a gen-

eral overview in complicated multi-system disordersn (by the authors' own

admission).

Touretsky and Hinton were the first to emulate a symbolic, rulebased
system in a connectionist architecture [18]. A connectionist approach held

the promise of better performance with partial information and being gen-

erally less brittle. Whether or not this is the case, Touretsky and Hinton

usefully demonstrated that connectionist networks are capable of symbolic

reasoning. The systems due to Lange and Dyer (ROBIN: [g]) and Shastri and

Ajjanagadde (SHRUTI: [15]) came later, and have knowledge bases more rem-

iniscent of the real world. ROBIN uses "signatures", while SHRUTI relies on

a more elegant, "temporal synchrony" to propagate variable bindings. These

later models can loosely be described as "connectionist", but both are highly

constrained networks. In both systems, knowledge is basically hand-encoded

and no learning is possible. Knowledge is not distributed in any sense, in

either model, which means that properties that might otherwise result from

a distributed representation are lost (e . g . an ability to deal with partial in-

formation). Implementation in the software or hardware of a conventional

computer would also be difficult.

Sun [l71 devised a dual representational scheme, with both localist rep-

resentation (of concepts) and distributed representation of what amount to

sub-concepts. The localist level also uses a fuzzy evidential logic. The sys-

tem is consequently better able to deal with partial information and in-exact

matching. What is still needed is a connectionist solution that maintains a

truly distributed knowledge representation. This chapter describes Correla-

tion Matrix Memory (CMM) and the use of CMM as an infdrence engine (21.

This chapter is concerned with particular aspects of using- CMM in an ex-

pert system, and shows that CMM is a valuable tool with some very useful

properties.

Outline of The Chapter

Section 16.2 describes CMM and the Dynamic Variable Binding Problem.

Section 16.3 deals with how CMM is used as part of an inferencing engine (21.

Section 16.4 details the important performance characteristics of CMM.

16.2 Correlation Matrix Memory

CMM is a binary associative memory. For the purposes of our work, the remit

of CMM is the fast, parallel matching of rules following predicate calculus,

e.g.:

The system can deal with multiple arity rules (i . e . rules with multiple

variables in the antecedent and consequent), with value inheritance and mul-

tiple occurrences of variables, and with the exclusive-OR problem. CMM is

Figure 16.1: CMM Binary Associative Memory.

not a new idea (see [19]), which allows the association of binary vectors using

a matrix of binary weights. Pairs of binary vectors are associated by setting

weights as shown in Figure 16.1. As such, CMM can be seen as a single layer

neural network with binary weights, which uses a Hebbian learning rule.

Figure 16.1 is an example of training, in which the vectors 0101 and 0011

have become associated. The subsequent presentation of 0101 to the network

will retrieve 0011 if set weights in rows identified by set bits in the input vector

contribute to column sums. The result is 0022, which is then thresholded

appropriately to give 0011. For similar work, see Austin and Jackson [3].

Here, CMM is augmented by the use of Tensor Products (TP: [16]) to solve

the dynamic variable binding problem.
1

The Dynamic Variable Binding Problem

This is a problem in connectionist implementations of rule-based systems. It

is best explained using an example: If a rule has the form A h B + C, it may
be important to be able attribute values thus:

When a distributed rule representation is to be used, it is important that both

the A:z and the B: k bindings can be represented unambiguously. It is clearly

useless if, having trained such a rule, the system is subsequently unable to

"remember" which variable had the value z. Furthermore, a rule may also

specify inheritance:

(A= 2) A (B = k) 3 (C = k).

The binding representation used therefore has to be stable to propagation

in the network. The problem of representing and propagating these bindings

is what has become known as the "Dynamic Variable Binding Problem".

16.3 CMM Inference Engine

The system, proposed by Austin (21, consists of units that fall into two sub-
categories:

1. CMM units (associative memory units);

2. Support units (not associative memory).

The support units perform the relatively simple processing necessary to

support the CMM units, and exploit the technology to the full. This simple

processing is all that is necessary to achieve a powerful reasoning capability.

Figure 16.2 illustrates the system. Processing occurs both at the input to

the CMM units and at the output; processing fulfils the following functions,

a description of which will serve to introduce the system.

16.3.1 Lexical Token Converter

Each lexical input item is converted to a binary token for manipulation by

the system. Tokens are generated that consist of randomly allocated patterns

of N set bits out of a total of M bits (there is an optimal ratio of N : M that

gives best error rate vs. storage). Random patterns may be allocated easily

using a random number generator. Each token should be unique, however,

which means a method of ensuring uniqueness is required. For few tokens

it may be feasible to check a list of tokens each time a token is allocated;

for many tokens there are better methods available, like "Test-and-Train" [4j.

This method involves using the system itself to identify whether a pattern is

already known. The values of M and N depend upon the overall size of the

CMM units and the usual arity of rules being stored (see Section 16.3.3).

16.3.2 Binding Variable and Value Tokens

Binary tensor products (TP, [16]) are used to bind variables to values, T P

vectors being obtained from a pair of tokens in two stages. The first stage is

in fact analogous to storing a pair of tokens in a binary associative memory:

with reference to Figure 16.1, the T P of 0101 and 001 l is the matrix of binary

weights. The T P vector is obtained by concatenating rows, hence:

This is a binary vector of length M Z containing N2 set bits. It begs the

question, whether to allow both tokens and TP vectors as representations in

the CMM units. Clearly, if N is chosen such that NZ is optimal for error rate

us. storage in the CMM unit, N itself cannot at the same time be optimal

(see also Section 16.3.3). This is one reason why allowing both representations

may be disadvantageous, which leaves us with the problem of what to do with

CODED

r _ I l

J
- - - - - - - - - - vat L

V&. *.*a *.Lm

Figure 16.2: The CMM Inference Engine.

variables not assigned a value. Such variables can be assigned either a "null"

value or a "true* value to allow conversion to TP vector form.

16.3.3 Superimposing Inputs

The T P vector(s) are superimposed (OR-ed on top of one another) prior to

being applied to the CMM units. This makes dealing with commutativity of

rule antecedents an automatic feature of ihe sys tem, and is a key factor in

providing an efficient partial match. Superimposing k vectors with N 2 set

bits gives rise to a vector with up to kN2 set bits. It might therefore be more

appropriate to optimize sN2 for error rate us. storage rather than N2, where s

is chosen depending on the predominant arity of rules in the knowledge base.

16.3.4 Identifying CMM Units of Appropriate Arity

This is necessary to enable the appropriate processing of rules with mixed

arity antecedents. For example, if the system has learned these two rules:

If the antecedents were trained in a single CMM unit, subsequent ap-

plication of the token for A and thresholding appropriate for a single arity

rule would allow both rules to fire (incorrectly). To avoid this, the first layer

of CMM units must consist of a CMM unit for each ari ty rule that will be

encountered. Input can then be targeted to the appropriate arity CMM unit.

16.3.5 Occurrence Checking

Very simple rules, such as the example in Section 16.3.6 (see Section 16.3.6),

may involve repeated variables. For the correct processing of such rules, it is

insufficient for the input simply to be superimposed and sent to the appro-

priate arity CMM unit, because the fact that a variable is repeated cannot

be represented in this way. The solution is to extend further the first CMM

layer, such that each arity CMM unit is duplicated, or triplicated even, de-

pending on the application and the likely number of occurrences of the same

variable in rules. This allows multiple occurrences of the same variable to be

represented and, if summed appropriately, to count in thresholding.

16.3.6 Providing Separator Tokens (Training)

A single layer neural network cannot resolve the exclusiveOR problem. To do

so requires a two layer network, and this approach has also been used in our

system. For example, if separator tokens are represented here by {i, j ,k,l):

The support units provide a unique, randomly allocated separator token

for each rule (the generation of tokens may be done off-line). The separator

token is an M2-bit word with a pattern of set bits, the number of set bits

being optimized as before.

16.3.7 Thresholding (Retrieval)

Two sorts of thresholding are used: L-max [l, 51 and Willshaw [19]. L-max

thresholding selects a specified number of columns in the output to represent

set bits, columns being selected in order of decreasing sum magnitude; Will-

shaw thresholding takes any column sums in the output above a specified value

as being set bits. It can be useful to apply both thresholds simultaneously.

16.3.8 Decoding the Output

The output of the system consists of all rule consequent(s) which match the

given input, in the form of overlapped TPs. Decoding the output involves

identifying explicitly which tokens may be present in the output in T P vector

form. It is then possible to extract these TP(s) and use each token that has

been identified to retrieve the other half of the pair of tokens represented in

each TP. To th% end, the T P is used itself like a binary associative memory

(input retrieving output). With few rules matching, it is usually a simple task

to identify unambiguously each component of the output. The more complex

the output is, however, the more likely it is that spurious identifications are

made. It is conceivable that a network approach will ultimately be used to

decode the output. However, as this step of the processing is quite straight-

forward, the nature of the implementation is not crucial. An example of an

ambiguous output is:

Assume the T P vectors:

A 1000000001000001100000001000000000000100

B 0000010100000000001000000100000000001100

C 0000000000010000011000010000010000000001

D 1000001000000000010000000001000000000101

E 0000000110000000010000010000000100000010

F 0000000000110000000000100100110000000000

It can be seen that the 1s present in {B,C,F} are represented in the output,

whilst the patterns {A,D,E) contain Is that do not correspond to the output.

The system would deduce that the thresholded output is due to three rules

matching. Suppose that this output was obtained after training only two

rules, however. One of the identifications would therefore have been spurious.

16.4 System Characteristics

The next section describes how the CMM compares with a conventional stor-

age method when used in a rule matching context. Some new work on storage

and partial matching is presented (taken from Filer, [6]).

16.4.1 Storage

The storage of sparsely coded associative networks was investigated by Nadal

and Toulouse [12]. In this paper, Information Theory was applied to the

problem of predicting the maximumnumber of associations (TP vector pairs)

that can be trained before a certain error rate is reached. The error rate is

expressed in terms of the likely number of bits that are retriped in error fol-

lowing a Willshaw threshold. With a single layer, square, binary associative

network, Nadal and Toulouse showed that the maximum number of associk

tions, for an error rate of 1.0 bits per retrieval, can be expressed in terms of

the dimensions of the network alone:

s t ~ r a g e , , ~ = (ln 2) = ~ ~ / (l n M) ~

It is also possible to predict storage for specific error rates ([6]; see graph,

Figure 16.3), and the results are encouraging. For instance, if an error rate of

one erroneous set bit per output is accepted (which is the same as saying a

100% 1-bit error rate), a lOOObit X lOOObit CMM can store 7000 associations1.

With a 50% l-bit error rate, 86% of this storage can still be used (6000

associations); with a 10% l-bit error rate, 63% of the storage can still be

used. Perhaps the most important point is that storage in the network is

greater ihan would be expected of a list storage sysiem using ihe same amouni

of memory.

The storage obtained is a compromise between the number of associations

stored and the error rate, and depends on a certain coding rate, with optimal

storage arising when there are logz M set bits out of M bits. A lower coding

rate gives rise to a greater error rate (but greater storage), whilst a higher

coding rate leads to reduced storage (but less errors). In the current system,

which supports multi-arity rules, the optimal value of N is required (see also

Section 16.3.3). If there is a choice, the largest N should be chosen, as it is

better to sacrifice storage than to incur a greater error rate.

'An optimal coding rate is assumed here.

IOW0 -----
."W .-- "."

.
l-Bit Error Rate

top line 100%
. 2nd line 50%

3rd line 10%
bottom line 1 %

I:
I .. I

l00 200 300 400 500 600 700 800 900 IOW

Figure 16.3: Storage capacity vs. CMM size (M) for various l-bit error rates.

This graph shows the fact that M need increase by only a small amount, to

lessen the error rate dramatically.

16.4.2 ~ d t i a l Matching Capability

CMM can perform partial matching. The ability to perform inferencing based

on partial information is a significant feature of human intelligence and, in

many applications, the usefulness of an expert system might depend upon

emulating this ability. Partial match is already implemented in standard

database systems, and so a comparison between CMM and a database access

method is possibly valid. In particular, the Superimposed Coding method

(SIC; [a]), which is used in databases for partial matching, is very similar

to the methods used here. Sacks-Davis and Ramarnohanarao (SkR; [14])

suggested a superimposed coding scheme, called T w o Level Superimposed

Coding", which I will now describe.

In brief, SIC is a way of indexing a store of records, which may be held on

a slow storage device, where each record is given a code, a "record descrip-

tor code", computed based on the particular attribute values of each record.

Every possible attribute-value instance is allocated a unique binary vector to-

ken. Each record descriptor code is generated by superimposing all the tokens

which are appropriate for that record. A query descriptor code can be com-

puted in an analogous manner from one or more specified attribute values,

and can then be used to search the file of record descriptor codes. If a bit

that is set in the query descriptor code is also set in a record descriptor code,

then it is likely that there is a match. The system accept a false positive rate,

which is also a feature of CMM. Importantly, however, no true matches are

missed (which would clearly be unacceptable in a database retrieval system).

Two Level SIC is an improvement (rather like two level memory hierarchies

in conventional computer systems), whereby a primary file and a secondary

file are stored. The additional file stores sc-called "segment descriptor codes".

The file of record descriptor codes is subdivided into segments, and each seg-

ment is characterized by a segment descriptor code. Each segment descriptor

code is computed from the records represented by that segment, but using a

different hash function. The segment descriptor codes are then used to nar-

row down the search of record descriptor codes. Depending on the choice of

segment size and how well similar record descriptor codes can be grouped to-

gether in the same segment, Two Level SIC performs well. Even in the worst

case, which would be when all segments have to be examined, this scheme

performs no worse than the one level scheme described by Knuth [a]. Usually

with Two Level SIC though, the number of disk accesses (and hence speed of

matching) is related more to the actual number of records that match than to

the total number of records.

The above property is extremely desirable, and is not found with other

techniques. Rivest [l31 looked at several approaches: hash coding methods

and tree search algorithms. Performance was considered in terms of retrieving

nk-bit words that match a query specifying s bits, and it was found that

the best these approaches could offer was a performance= O (n ' ~ g (~ - ~ / ~)) .

CMM is capable of more efficient partial match, similar to Two Level SIC.

To demonstrate this fact, the remainder of this subsection is devoted to a

consideration of the theoretical performance of CMM. CMM can be used to

associate a SIC-type coding of attribute values with a separator code fulfilling

a pointer function. This is analogous to the role of the first CMM layer in the

inference engiie already described.

16.4.2.1 Attribute Value Coding

Input to the CMM would represent records to be found, with attribute values

processed into a form of record descriptor code. An M-bit descriptor code

should contain about N set bits, where N = logz M for optimal performance

(see Section 16.4.1). Consequently the mapping of attribute values should be

onto an M-bit vector with N / s set bits, where s is the number of attributes

in each record. This is analogous to the processing of inputs in the inference

engine, omitting TP binding. A query descriptor code would be computed in

an analogous manner to the descriptor code.

16.4.2.2 Separa tor Coding

The output of the CMM may well contain overlapped separator codes. The

separator codes must therefore be held in a separate structure, such that the

individual separator codes represented can be identified in the output (as in

Section 16.3.8). It is only necessary to store the N numbers that describe the

positions of the set bits, however, allowing a considerable memory saving. For

the fastest possible access, a method is needed to process the output efficiently.

To this end, the file of separator codes is subdivided and organized into buckets

according to where the middle 1 appears in the code. To decode the output,

i t is then only necessary to download all codes that could be represented in

the output, starting with the bucket corresponding to the position of the first

i that could be the middle l of a separator code; the next area downloaded

corresponds to the position of the second possible middle 1, etc..

16.4.2.3 Thresholding

It is appropriate to perform a Willshaw threshold (191, and at a level equal

to the number of set bits in the query descriptor code. Such a threshold will

not exclude false matches, but equally does not exclude any true matches

(this being the desirable compromise). False matches arise from two sources:

from false matches due to error bits; also from false matches due to spurious

separator codes in the output. The number of false matches therefore depends

upon the saturation of the memory and on the number of set bits in the query

descriptor code.

16.4.2.4 ~ h b o r e t i c a l Performance

We now calculate the amount of data that would need to be retrieved from a

secondary store, directly related to the speed of the proposed partial matching

system. There are two components:

1. The amount of data needed to compute the CMM output (i .e . that

constitutes the CMM):
1
-zM bytes
8

(16.1)

(z =no. of set bits in-the query descriptor code).

2. The amount of data constituting all separator codes that could be rep-

resented in the output:

This depends upon being able to specify the number of true matches,

A. If there are AM-bit patterns, then the likely number of bits not

set will be set bits will therefore number (l - (v)A)~.
Subtracting (N - 1) gives the number of separator code buckets (see

Section 16.4.2.2). Assuming a 100% l-bit error rate, each separator

code bucket will contain an average of s t ~ r a g e , , ~ / M separator codes,

Table 16.1: This table gives the amount of data to be retrieved for various

values of A and z. Having chosen A and z, read off the two associated amounts

of data, then sum to give the total amount of data which a CMM database

index would require to answer a particular partial match query.

each requiring 2N bytes storage2. Note that separator code buckets will

not be uniform in size (although i t is possible to make them uniform).

It is therefore necessary to have some form of look-up table.

Error bits in the output also occur due to interactions in the CMM.

These number (M - N) q Z , where q is the proportion of weights set in

the CMM (see [IQ]) and storagel,o e (p = 0.5). In summary:

s t ~ r a g e ~ , ~ [(M; N) A

M
2N (1- -)M - (N - 1) + (M - N)p2 bytes l

(16.2) . ,
The total amount of data ((1) + (2)), given M and g, depends only upon

A and z. To enable a comparison between the two methods, Table 16.1

summarizes CMM performance on an example case given in S&R, the example

case being:

Total number of records = 219

Number of segments = 64

Number of records per segment = 8192

Number of error bits a t the segment level = 1/4 (per retrieval)

Number of error bits at the descriptor level = 1 (per retrieval)

Disk Page Size = 1 KB

From Table 16.1, it can be seen that with a medium-highly specified query

(i.e. 6 < z < 141, the amount of datais closely related to A, the number of true

22M bytur to allow up to 3 X ld records, i.e. 15bits to encode the position of each set

bit.

matches (our desirable property). In comparison with SIC, CMM performs

well: the worst case performance of SIC (when every segment is examined) is

bettered by CMM (4MB for CMM vs. lOMB for SIC); in the unlikely event

that only one segment descriptor matches, SIC does do better (CMM 800KB

vs. SIC 80KB). The storage that would be required to implement this CMM

database index is 28MB, compared with 15MB for Two Level SIC (as the size

of the database increases, however, the relative storage for the two methods

becomes less disparate, e.g. 1.6GB vs. 1.4GB for records).

16.4.3 Implementing a Predicate Calculus

Thresholding the output of the first CMM layer, coupled with the appropriate

use of arity- and occurrence CMM units in this layer, can achieve a power-

ful reasoning behaviour. Both L-max and Willshaw thresholds (see Section

16.3.7) are used simultaneously: first, column sums are selected using an L-

max criterion; next, a Willshaw threshold is applied to the selected column

sums. The L-max criterion would normally be chosen to be the same as the

number of bits in a separator token, but it may be the case that there are

many more high column sums than expected. This would suggest that the

output contained overlapped separator tokens (and it would then be possible

to check a list of separator tokens and pass each in turn through the second

layer).

16.4.3.1 AND, OR and part ia l-AND

The level of ~ i l l s h a w thresholding allows any of the operators AND, OR and

p a r t i a l - A m (see below) to be enforced in rule retrieval. For example, if the

system has learned two rules:

And the tokens are as follows:

The superimposed input to the first CMM layer for rule 1 would be

011001i0, and the rule would be trained in the arity 2 CMM unit (because

there are two variables in the antecedent of the rule). For rule 2, the input

would be 0 i i i i i l 0 , and the rule trained in the arity 3 CMM unit. In re-

trieving an output from the first layer, O i l l l l l O (6 set bits) would retrieve

00600060 from the arity 3 unit. If this is thresholded at 6 then the result is

00100010, the token for j. Thresholding a t 6 therefore achieves an AND. Ap-

plying instead just O i l O O O O O would retrieve 00200020, which gives 00000000,

thresholding at 6; thresholding a t 2, however, does result in the token for j.

Using such a threshold is equivalent in this case to selecting any arity 3 rules

that have A in one variable position, and this is an OR. Thresholding a t an

intermediate level (in this case 4) would allow inputs that represent any two

of { A , B, C) to retrieve j, a function that we call p a r t i a l - A N D . Importantly,

all these functions are completed in a single pass through the system.

16.4.3.2 Rules with Disjunctions

For example:

A V (B Ac) + D .

To achieve training such a rule (as opposed to enforcing the OR function
in retrieval), it is necessary to process the rule into two components before

teaching:

Each component is trained appropriately for for its new arity, the whole

training process therefore possibly requiring as many passes as there are

disjunctions. The application of O i i O O O O O (which is only the token for A)

to the arity l CMM unit, with appropriate thresholding, can now retrieve D

(ignoring the separator stage for the sake of this example); similarly, applying

O O O i i l i O (our representation of B h C) to the arity 2 unit also retrieves the

correct output.

16.4.3.3 Additional Features

The system can, in addition, support many other features that there is not

space to detail here (such as negation and deletion, also detailed examples of

dynamic variable binding).

16.5 Conclusions

CMM is a tool that has great potential for use in expert systems: a t a basic

level, i t has very desirable storage characteristics, as well as some useful emer-

gent properties (e.g. p a r t i a l - A M) can be evaluated in a single pass through

the system); a t a more sophisticated level, our CMM-based inference engine

supports predicate calculus. A realistic goal with the present system archi-

tecture, is to achieve massively parallel processing. In addition, the present

system architecture is being extended to enable soft rule processing (by using
the dimension of time in our representation).

References

[l] Austin J. (1987) The Design and Application of Associative Memories for

Scene Analysis. Unpublished doctoral dissertation, Brunel University.

[2] Austin J. (1995) Distributed Associative Memories for High Speed Sym-

bolic Reasoning. Invited paper to the International Journal on Fuzzy Sets

and Systems.

[3] Austin J . and Jackson T. (1994) The Representation of Knowledge and
Rules in Hierarchical Neural Networks. In Neural Networks for Knowl-

edge Representation and Inference. Hillsdale, N.J.: Lawrence Erlbaum

Associates.

[4] Austin J. and Turner A. (1994) A Novel Method for Producing Near

Orthogonal Codes. ACAG Internal Research Report 2734. University of

York Computer Science Dept., York. Y 0 1 5DD.

[5] Casasent D. and Telfer B. (1992) High Capacity Pattern Recognition and

Associative Processors. Neural Neiworks (4) 5: 687-98.

[6] Filer R.J.H. (1994) ACAG Internal Research Report 2771. University of

York Computer Science Dept.

[7] Gaschnig J. (1980) An Application of The PROSPECTOR System to

The DOE'S National Uranium Resource Evaluation. AAA1 1, 295-97.

[B] Knuth D.E. (1973) The Ari of Computer Programming (3), Reading,

Massachusetts: Addison Wesley.

[g] Lange T.E. and Dyer M.G. (1989) High Level Inferencing in a Connec-

tionist Network. Connection Science (1) 2: 181-217.

[l01 Lindsay R.K., Buchanan B.G., Feigenbaum E.A. and Lederberg J. (1980)
Applications of Ariificial Intelligence for Organic Chemistry: The DEN-

DRAL Project. New York: McGraw-Hill.

[l11 Miller R.A., Pople H.E. and Myers J.D. (1982) INTERIST-I, an Ex-

perimental Computer-Based Diagnostic Consultant for General Internal

Medicine. N. Eng. J. Medicine (307) 8: 468-76.

[l21 Nadal J-P. and Toulouse G. (1990) Lnformation Storage in Sparsely

Coded Memory Networks. Neiwork 1: 61-74.

[l31 Rivest R.L. (1976) Partial Match Retrieval Algorithms. SIAM J. Com-

puting 5: 19-50.

[l41 Sacks-Davis R. and Ramarnohanarao K. (1983) A Two Level Superim-

posed Coding Scheme for Partial Match Retrieval. Information Systems

(8) 4: 273-80.

[l51 Shastri L. and Ajjanagadde V. (1993) From Simple Associations to Sys-

tematic Reasoning. Behaviourul d Brain Sciences (16) 3: 417-93.

[l61 Smolensky P. (1990) Tensor Product Variable Binding and The Rep-

resentation of Symbolic Structure in Connectionist Systems. Artificial

Intelligence 46: 159-216.

[l71 Sun R. (1994) Connectionist Models of Commonsense Reasoning. In Neu-

ral Networks for Knowldege Representation and Inference. Hillsdale, N.J.:

Lawrence Erlbaum Associates.

[l81 Touretsky D.S. and Hinton G.E. (1988) A Distributed Connectionist Pro-

duction System. Cognitive Science 12: 423466.

[l91 Willshaw D.J., Buneman O.P. and Longuet-Higgins H.C. (1969) Non-

Holographic Associative Memory. Nature 222: (June), 960-62.

