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Abstract—Unmanned aerial vehicles (UAVs) are useful devices
due to their great manoeuvrability for long-range outdoor target
tracking. However, these tracking tasks can lead to sub-optimal
performance due to high computation requirements and power
constraints. To cope with these challenges, we design a UAV-based
target tracking algorithm where computationally intensive tasks
are offloaded to Edge Computing (EC) servers. We perform joint
optimization by considering the trade-off between transmission
energy consumption and execution time to determine optimal
edge nodes for task processing and reliable tracking. The simu-
lation results demonstrate the superiority of the proposed UAV-
based target tracking on the predefined trajectory over several
existing techniques.

Index Terms—Edge computing (EC), task offloading, un-
manned aerial vehicle (UAV)

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been effectively

deployed in a variety of applications during the last decade,

including wireless communications for civilian, commercial,

and military services [1]. Target tracking is one of the activ-

ities performed by UAVs to track movable targets in order

to support a variety of military, surveillance, and mapping

applications. However, UAVs have a limited power supply

and limited computer capabilities. As a result, they tend to

fail to execute tasks that demand extensive processing, facing

significant problems in terms of computing capabilities, low

latency, and inference accuracy requirements. The edge com-

puting (EC) technique has emerged as a promising solution to

address those challenges imposed on UAVs [2].

The compute-intensive operations can be offloaded to edge

computing nodes by utilizing edge’s computational capacity.

EC has been recognised as a potential technique for reaping the

benefits of heterogeneous internet of things (IoT) applications,

as it can utilize diverse cloud resources such as storage and

computing capabilities closer to the UAVs [3]. EC is a novel

concept that places cloud servers near the mobile nodes [4].

A brief comparison of cloud computing and edge computing

indicates that cloud computing has high end-to-end latency

due to the distance between the edge and remote data centres,

whereas edge computing has a low end-to-end latency due to

its proximity to users. In cloud computing, data acquired by

sensors is uploaded to the cloud, and output is given back to

Figure 1: Network model

the desired devices, which may consume a lot of backbone

network bandwidth, and can result in a delay in response.

On the other hand, edge computing enables sensor data to be

stored and processed on edge devices rather than in the cloud,

thus it uses less bandwidth than cloud computing, fulfilling

requirements such as low latency, real-time response, and

reduced network traffic.

The quality of computing and the battery lifetime can both

be enhanced by offloading computation operations to the EC

server. However, the technology is infeasible in some sce-

narios with limited accessible infrastructure, such as disaster

response, military mobility, emergency assistance, or rural

locations. Therefore, unmanned aerial vehicle (UAV)-enabled

EC was envisioned and developed as a viable option to address

this drawback [5]. The previous studies [5], [6] have mainly

focused on the computation and communication offloading of

tasks, without the computation time at the UAVs. Nevertheless,

the computation time cannot be neglected in a real situation.

The UAV offloads computational tasks to an edge node (EN)

for cooperative processing and then collects data to adjust

its trajectories to follow the targets. There are two essential

challenges that must be addressed in order to offer fast and

efficient target tracking. The first is about dynamic tracking

trajectories and adaptive edge device selection. The second

issue is that a battery-powered UAV has limited resources,

especially for real-time computation.

Against this background, providing a suitable solution for

optimized task offloading during UAV-assisted target tracking



is critical. In this article, we present a novel UAV-aided target

tracking algorithm where edge nodes are selected to minimize

the total cost and UAV’s transmit power. We design an edge

node selection algorithm by considering the capability of edge

nodes for task processing and the distances between the edge

nodes and the UAV. The following are the key contributions

of this paper:

1) We propose an effective UAV task distribution algorithm

that adjusts transmission power and selects an optimal

edge node, to achieve efficient target tracking over the

predefined trajectory.

2) We propose three computing strategies: local, total of-

floading and partial offloading.

3) The simulations are conducted to evaluate our algorithm’s

performance and results show that our algorithm outper-

forms existing works while minimizing the total cost.

The remainder of the paper is organised as follows: Section

2 presents the recent research on computation offloading in

UAV-enabled EC networks. Section 3 presents our proposed

model and the core modelling procedure. In Section 4, we

describe the proposed algorithm. Section 5 presents a compar-

ison of our approach against state-of-the-art solutions. Finally,

concluding remarks are drawn in Section 6.

II. RELATED WORK

UAVs have attracted considerable attention from both

academia and industry due to their high flexibility in deploy-

ment. UAVs have been used in a variety of wireless communi-

cation applications, including non-orthogonal multiple access

networks [7], UAV-aided seamless coverage [8], mmWave

communications [9], and caching [10]. MmWave is a possible

approach for fulfilling the high data rate demands of 5G by

providing data rates at gigabit per second. Edge-caching is

an effective solution that can cope with the unprecedented

growth in data traffic and reduce delivery latency by bringing

content close to end-users. A previous study presented the

three-dimensional (3-D) coverage performance of the cellular

network-connected UAVs that function as aerial nodes [11].

UAV relaying was also reported as an important application

that can enhance the coverage for communications [12].

The target tracking network for UAVs integrated with

ground nodes is more efficient than the ground target track-

ing network. However, since the ground nodes have limited

computational capability, real-time target monitoring is chal-

lenging. As a result, when the UAV in an edge environment

can catch up with the target, the problem of weak process-

ing capabilities of ground nodes may be alleviated, and the

performance of the tracking system can be enhanced [13].

In comparison with cellular infrastructure-based networks,

UAV-enabled EC features dependency on line-of-sight (LoS)

connectivity and controlled mobility management. For exam-

ple, in a previous study [6], the researchers created a dispersed

deployment strategy for UAVs, which maximised the average

distance between the UAV and ground node. Nevertheless,

they assumed that the UAVs served all nodes with the same

data rate instead of introducing variable data rates for different

nodes [6]. A UAV can also be employed as a mobile cloud

computing system and a UAV-mounted cloudlet [14], which

provides offloading options to ground nodes. As a result,

UAVs can provide fog computing even in the absence of

a functioning wireless infrastructure [14]. There are limited

investigations exploring the usage of UAV in target tracking

process.

Some applications investigated the impact of energy con-

sumption in UAV communication systems. The study of

energy-efficient UAV communication considers throughput

and UAV energy consumption [15]. However, there have been

limited works in minimizing UAV energy consumption in

UAV-based target tracking settings. In [16], an energy-saving

technique is proposed for continuous target tracking, although

this study only examined the energy consumption of the UAV

during movement and ignored the energy consumption for data

transmission. To the best of our knowledge, in UAV-assisted

target tracking, no research has considered both the selection

of edge nodes and the adjustment of transmission power.

III. NETWORK MODEL AND PROBLEM FORMULATION

We propose a UAV-enabled EC system, as depicted in

Figure 1, whereby each edge node performs task computation

for the overlaying UAVs. The UAV can discover neighbouring

edge nodes and save information such as their location,

processing power, and other data. A UAV acquires data during

UAV-assisted target tracking that must be quickly analysed and

processed, and to guarantee successful tracking, the findings

must be delivered back to the UAV.

The UAV can offload the computing tasks to the edge

node, and subsequently the computing results can be sent

back to the UAV. The UAV adjusts its position to maintain

consistent tracking and to receive information of available edge

nodes and offload computational tasks to the edge nodes for

cooperative processing. A UAV that offloads tasks to an edge

node on a regular basis for a duration of T is considered. We

assume that the UAV flies at a constant altitude H > 0 above

the ground and lu,m is the position of UAV projected on the

ground at time slot m, {1 ≤ m ≤ M}. We also defined T as

the mission completion time, which can be divided into M
time slots with a slot length of τ , T = τM . The slot length

should be small enough to ensure an unchanged approximate

position of the UAV during each slot. The set of UAVs defined

as U ≜ {1, 2, ..., U} are used to track the targets. We assume

that there are Z edge nodes denoted as a set Z ≜ {1, 2, ..., Z}.

It is assumed that a UAV can offload the tasks to an edge

node xz,m for a duration of T and only one edge node can

be selected as best edge node for serving UAV. We defined

X = {xz,m, ∀z,m} as the set containing the schedules of the

edge nodes, where xz,m as a variable indicating whether edge

node z is selected at time slot m. If edge node z is selected

as the optimal edge node for task offloading, then xz,m = 1
otherwise xz,m = 0. The distance between selected edge node

and UAV is defined as [17]:

dmu,z =

√

H2 + ∥lu,m − lz,m∥
2

(1)



where lz,m ∈ R
2 is the location of edge node z selected in

time slot m, lu,m ∈ R
2 is the position of UAV u projected

on the ground at time slot m, and ∥·∥ is an l2 norm. For the

communication link between the UAV and an edge node, we

consider quasi-static fading model, where the channels may be

changed between time slots but remain fixed at each time slot.

Because the UAV flies relatively high and the probability of

the UAV dispersing is minimal, thus line-of-sight (LoS) links

can be established between edge nodes on the ground and the

UAV [18]. The quasi-static fading model is defined as:

hm
u,z = g0(d

m
u,z)

−2 =
g0

H2 + ∥lu,m − lz,m∥
2 (2)

where g0 refers to channel power gain at 1 meter away

from UAV. Assume pm,z is the transmission power of edge

node z at time slot m. The transmit power is a variable

relevant to the distance between the edge node and UAV

and is used to decrease the transmission energy consumption.

The transmission power can be modified to reduce transmit

energy consumption, however, it is dependent on the distance

between the UAV and the edge node as well as the edge node’s

processing capacity. The channel capacity in bits per second

is stated as:

Rm,z =
B

n
log2

(

1 +
pm,z

∣

∣hm
u,z

∣

∣

2

σ2

)

(3)

where B shows the the channel bandwidth between UAV and

edge node that can be divided into n subbands for the offload-

ing communication, σ2 is the variance of the white Gaussian

noise (WGN) channel at the edge node, and (
pm,z|hm

u,z|
2

σ2 ) is

the signal-to-noise ratio (SNR) at d0 = 1m, where d0 refers to

the distance between the UAV and the edge node at 1 meter.

The total transmission time and computing time of the edge

node which can serve the UAV are used to calculate the task

execution time as follows

ttotalm,z = ttransmission
m,z + tcomputation

m,z (4)

where the transmission time is calculated as:

ttransmission
m,z =

sm
B log2(1 +

g0pm,z

σ2.(dm
u,z)

2 )
(5)

where sm (bits) refers to the size of computation input data

in time slot m. The computing time tcomputation
m,z is calculated

as:

tcomputation
m,z =

sm
rm,z

(6)

where rm,z is the capacity of data processing (bytes per

second) of the z-th available edge node for each task at time

slot m, τ refers to the task delay tolerance, and ttotalm,z ≤ τ
guarantees that the UAV receives the data and adjusts time

on each task as needed. For the energy component, we

evaluate the energy consumed during transmission, i.e., the

transmission energy Em,z in Joule (J) as follows:

Em,z = ttransmission
m,z pm,z (7)

where pm,z is the transmit power of edge node z at time

slot m. According to equation (7), the key elements that

influence transmission energy usage are transmission time

and transmission power. The transmit power has a significant

impact on the transmission energy consumption of UAV and

Em,z is an increasing function of pm,z . In addition, the

distance between UAV and edge node can affect transmission

energy consumption. The transmission time is reduced when

the UAV is offloading the tasks to a close edge node, and

subsequently the energy consumption is decreased. Further-

more, the selected edge node needs to have sufficient data

processing capability. Based on the data processing capabilities

of edge nodes and the distance between UAV and edge nodes,

we divide UAVs into three groups: U1 ⊂ U, U2 ⊂ U and

U3 ⊂ U. The UAVs belonging to U1 can only carry out tasks

locally since they are not near the edge node or the edge node

has limited data processing capabilities. The UAVs belonging

to U2 can only offload tasks to edge nodes, because of the

limited computational resources. The UAVs belonging to U3

can compute the tasks locally and also they are able to offload

part of the tasks to available edge node according to offloading

ratio. The aim of a UAV is to minimize the total cost and it is

defined as a weighted sum of the time cost and energy cost. It

is measured by a total cost metric Cm,z for executing a task.

Cm,z = αEm,z + βttotalm,z (8)

where α and β are weighting parameters, set in different

situations accordingly (see Section V). A low cost value

indicates a low-energy and execution time target tracking

technique. We propose an algorithm to optimize the adjustment

between transmission energy and execution time. For this

purpose, the UAV’s transmission power is optimized and a

new adaptive scheme for edge node selection is derived based

on local computing and offloading computing strategies. The

problem can be formulated as

min
xm,z

M
∑

m=1

Z
∑

z=1

xm,zCm,z (9)

subject to the following constraints:

C1 : ttotalm,z ≤ τ, ∀z,m (10)

C2 :

Z
∑

z=1

xm,z = 1, ∀z,m (11)

where the constraint C1 indicates that the total execution

time should be equal or less than a delay tolerance τ for

task offloading. During normal target tracking, UAV needs to

receive the results from edge node and make adjustment in

time. The constraint C2 indicates xm,z = 1, it means that at

each time slot m only one edge node z ∈ Z can serve UAV

for task offloading.

A) Local Computing: The computing task is executed at the

UAV in the local computing scenario. Denote the UAV’s CPU

frequency as CPU cycles per second. The local computation



delay is calculated as

til =
ci
f i
l

(12)

where ci is the total number of CPU cycles required to

accomplish the computation for thee i-th task and si (bits)

denotes the size of the input data related to the i-th task; f i
l is

the CPU cycle frequency of UAV for local computing (denoted

as subscript "l") of the i-th task.

According to the widely adopted model [19], the energy

consumed for local processing on UAV can be calculated as

εil = k(f i
l )

2.ci (13)

where k is the energy efficiency parameter that mainly depends

on the chip architecture [20], and f i
l is the CPU clock speed.

The weighted cost for local computing is defined as

Oi
l = θtil + (1− θ)εil (14)

where θ and (1−θ), 0 ≤ θ ≤ 1, indicate the UAV’s preference

on processing delay and energy consumption, respectively.

B) Offloading Computing: The task offloading means that

the UAV can offload the computing tasks to near edge nodes.

In this case, delay and energy consumption at both the edge

node and via wireless link should be measured [21]. The delay

for offloading (denoted as a subscript "o" below) the task to

the edge node is given by

tio = (
ci
f i
l

+ γi(
si
Ri

+
ci
fi
)) (15)

where si (bits) denotes the size of computation input data for

task i, γi is the scale coefficient i.e. γi = siout/si, where

siout is the size of the data output from UAV, and Ri is

the available data rate for the data transmitted between the

UAV and edge node. The energy consumption of UAV using

offloading computing is calculated as [22],

εio = k(f i
l )

2ci + γi(P
m
i

si
Ri

+ Pm
i

ci
fi
) (16)

where Pm
i is the power consumption of UAV, when UAV

sending i-th task at time slot m to edge node and staying

idle while waiting for the execution results from edge node.

The weighted cost for offloading computing is defined as

Oi
o = θtio + (1− θ)εio (17)

where θ and (1−θ), 0 ≤ θ ≤ 1, indicate the UAV’s preference

on processing delay and energy consumption, respectively.

C) Partial Computing: In the partial offloading scheme, both

the UAV and edge nodes are used for computing the tasks. We

define ω as the ratio of data offloaded to edge node from UAV

and 1− ω shows the ratio of data to be computed locally on

UAV. We assume that the total data can be divided into two

portions, among which ωsi (bits) is offloaded to edge node

and (1−ω)si (bits) is computed locally at the UAV. The total

delay imposed by the partial offloading strategy (denoted with

subscript "p" below) is computed as:

tip = (
ci
f i
l

+ ω(γi(
si
Ri

+
ci
fi
))) (18)

It should be mentioned that the energy consumption introduced

by partial offloading is given by (εil + εio). Based on this

analysis, the overall cost of UAV utilising the partial offloading

strategy is calculated as:

Oi
p = θtip + (1− θ)(εil + εio) (19)

We analysed the offloading ratio ω of the partial offloading

to minimize the cost combining energy consumption and

execution time.

IV. PROPOSED ALGORITHM

In this section, we present the proposed algorithm for

minimizing the total cost by the optimal edge node selection

for task offloading based on task processing capability and the

distance between UAV and edge node. The pseudo-code for

the edge node selection (ENS) is summarized in Algorithm 1.

In Lines 1-9, we need to recognize local, total offloading,

or partial offloading computing. In the case of offloading, the

UAV needs to find the optimal edge node. In Line 16, the

distances between UAV and nearby edge nodes are calculated.

In Line 17, the edge nodes within 100 meters from UAV are

extracted. The edge nodes with the processing capability (PC)

equal to or more than 2 Mb/s are extracted in Line 18. The

total cost of available edge nodes is computed by calling the

procedure SELECT in Line 19. In Line 23, we set a value

of ω between 0 and 1 for partial offloading. In Line 24, the

best edge node is selected by calling the procedure SELECT

for partial offloading. Then, ωsi bits of data are offloaded

to the best edge node for computing. Note that we set the

maximum distance between UAV and edge node to 100 meters.

In addition, we set the minimum capacity for the edge node

to 2 Mb/s.

V. NUMERICAL EVALUATION

In this section, we present the simulation studies to evaluate

the performance of the proposed algorithm. We investigate

the scenario of straight flight, where the UAV flies at a

constant speed from an initial location to a final destination.

We consider a system with 10 edge nodes placed at various

locations randomly and within an area of 500 × 500 m2. At

each time slot m, the data generated by UAV is 120 Mb.

The relevant parameters for evaluating the performance of our

model are summarized in Table 1. The codes and results for

the experiments can be found from a GitHub link1.

Furthermore, we consider the effects of different relative

weights on task execution in terms of the cost of energy and

time. We set the weights of energy cost α and time cost β equal

to 0.9 and 0.1 respectively. Figure 2 shows the performance

when setting different values for the two weights. We found

that the cost of energy decreases when the weight on energy

1https://github.com/Sh-Goud/UAV-EDGE-Selection-Tracking.git



Table I: List of Simulation Parameters.

Description Parameter Value

System bandwidth B 1 MHz

UAV Altitude H 100 m

UAV transmission power Pt 100 dBm

Simulation area – 500m
2

Radio range of the UAVs R 500-800 m

Noise power spectral density at an edge node receiver N0 −170dBm/Hz

Corresponding noise channel σ2 -110 dBm

Maximum transmit power of the UAV 20 dBm (0.1W)

Number of time slots N 30

Duration of UAV flight tf 2 s

Total number of CPU cycles Ci 50

Effective switching capacitance ηc 10
−28

Channel power gain g0 -50 dB

Transmission constant Ct -11Db

Probabilistic SINR Threshold SINR Threshold -6 dB

Size of computation task input data for ith UAV (bit) D̄ 150 Mb

Receiving threshold Th 1.17557e-10 W

Constant speed of the UAV Vc 10 m/s

Energy efficiency k 10e-11

cost α increases. The same trend can be observed for β. If we

increase the value of β then the time cost reduces. We also vary

the weights in different situations and observe the performance

changes. Figure 3 shows that, when we use a bigger α, the

total cost is smaller than those in other cases. A task with

a longer execution time needs more energy consumption and

in turn, a bigger weight on energy consumption is needed to

meet this demand. Also, in target tracking process the latency

requirement is stringent and the UAV needs more time for its

status adjustment. As such, we need to set bigger weight on

α in target tracking process. The performance of the proposed

scheme is compared with the following benchmark schemes:

1) Our scheme (Optimized): The UAV is allowed to offload

the tasks to the best edge node if required. The selection of

the best edge node is based on distance between edge node

and UAV and processing capacity of the edge node.

2) Benchmark 1: The UAV is allowed to transmit at maxi-

mum power. The edge selection is based on the distance and

the edge node nearest to the UAV is chosen as a service node.

3) Benchmark 2: In this design, the UAV selects edge nodes

randomly under a fixed amount of transmit power.

Figure 4 shows a comparison between the benchmark

algorithms and the proposed algorithm in terms of cost of

energy and time. Since benchmark schemes do not take into

consideration on the processing capability of edge nodes, these

algorithms have great fluctuation on time cost. The proposed

algorithm has lower energy consumption in comparison with

other algorithms. Figure 5 shows that the optimized scheme

archives lower total cost in comparison with other methods.

The key reason behind this is that our algorithm performs

the optimal edge node selection to reduce energy costs while

maintaining an appropriate execution time. Figure 6 shows the

average total cost in local computing, offloading computing

and partial offloading. We found that the average total cost

decreases in partial offloading by increasing ω. It means that

with a large value of ω much data can be offloaded to the

edge node. It can be seen that it is a good solution to reduce

average total cost. This is due to the fact that offloading

data to the edge node can reduce UAV energy consumption

without incurring significant communication latency. Figure

7 and Figure 8 show the UAV’s trajectories in two separate

scenarios with different energy and time cost weights. Based

Algorithm 1 ENS

Input:
UAV’s trajectory
Location of edge nodes
Processing capability (PC) of edge nodes
Relative weights (α ≥ 0) and (β ≥ 0).
The input data size: si
Offloading ratio: ω ∈ [0, 1]
Output:
Best edge node (zbest)

1: if u ∈ U1 then
2: strategy = locally
3: end if
4: if u ∈ U2 then
5: strategy = total offloading
6: end if
7: if u ∈ U3 then
8: strategy = partial offloading
9: end if

10: switch strategy do
11: case locally:
12: Task locally performs on UAV
13: break;

14: case total offloading:
15: for each time slot m do
16: Calculate the distance between edge node and UAV
17: Extract ZI = {zi ∈ Z, dist(zi, u) ≤ 100m}
18: Extract ZA = {zi ∈ ZI, PC ≥ 2MB/s}
19: Call SELECT (ZA)
20: end for
21: break;

22: case partial offloading:
23: Adjust the ω
24: Call SELECT (ZA)
25: ωsi (bits) offload to zbest
26: break;

Select Best Edge Node

27: procedure SELECT(ZA)
28: for each zi ∈ ZA do
29: Calculate total cost Cm,zi according to (8)
30: if Cm,zi < min then
31: min = Cm,zi

32: zbest = zi
33: end if
34: end for
35: return zbest ▷ zbest is the best edge node
36: end procedure

on the proposed algorithm, the UAV selects the optimal edge

node for task offloading based on task processing capability

and the distance between UAV and edge node.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, an algorithm for optimal task distribution

during tracking was proposed to fully utilize of the computa-

tional capability across the system. The main idea is to use an

optimization technique to adjust the transmission energy con-

sumption of UAV and accelerate task execution during normal

tracking. Our simulation results demonstrate the effectiveness

of the proposed algorithm for selecting an appropriate edge

node during target tracking, where the UAV is used to follow
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the given trajectory of the target. Significant enhancement in

the performance was obtained using the proposed model in

comparison to the baseline schemes. In the future, we will

study the scenario where the target trajectory is not given to

the UAV during target tracking.
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