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ABSTRACT: Surface area estimation using the Brunauer−Emmett−Teller
(BET) analysis has been beset by difficulties. The BET model has been
applied routinely to systems that break its basic assumptions. Even though
unphysical results arising from force-fitting can be eliminated by the
consistency criteria, such a practice, in turn, complicates the simplicity of the
linearized BET plot. We have derived a general isotherm from the statistical
thermodynamic fluctuation theory, leading to facile isotherm fitting because
our isotherm is free of the BET assumptions. The reinterpretation of the
monolayer capacity and the BET constant has led to a statistical thermodynamic generalization of the BET analysis. The key is Point
M, which is defined as the activity at which the sorbate−sorbate excess number at the interface is at its minimum (i.e., the point of
strongest sorbate−sorbate exclusion). The straightforwardness of identifying Point M and the ease of fitting by the statistical
thermodynamic isotherm have been demonstrated using zeolite 13X and a Portland cement paste. The adsorption at Point M is an
alternative for the BET monolayer capacity, making the BET model and its consistency criteria unnecessary. The excess number (i)
replaces the BET constant as the measure of knee sharpness and monolayer coverage, (ii) links macroscopic (isotherms) to
microscopic (simulation), and (iii) serves as a measure of sorbate−sorbate interaction as a signature of sorption cooperativity in
porous materials. Thus, interpretive clarity and ease of analysis have been achieved by a statistical thermodynamic generalization of
the BET analysis.

■ INTRODUCTION

Specific surface area is one of the major characteristics of
materials as adsorbents.1−5 This quantity has been estimated
from the adsorption of probe gas sorbates with the help of
isotherm models, most commonly by the Brunauer−Emmett−
Teller (BET) model.6,7 (We use the term “estimation”
throughout, appreciating its approximate nature due to the
assumptions involved.) Here, the “BET surface area” is defined
as the BET monolayer capacity (i.e., “the amount needed to
cover the surface with a complete monolayer of atoms or
molecules in a close-packed array”8) multiplied by the molecular
cross-sectional area of the adsorbate.9,10 Despite its widespread
use,1−3,11,12 concerns persist about the validity and accuracy of
the BET surface area, which will be summarized below, followed
by our approach for clarification and resolution.
Calculated Surface Area Differs from Sorbate to

Sorbate. The BET surface areas are often different from one
probe sorbate to another, such as nitrogen and water.11,12

According to a systematic comparison for hardened Portland
cement pastes, the estimated surface area using nitrogen gas as a
sorbate is consistently lower than the one obtained from water
vapor.12 For food11 and microcrystalline cellulose,13 the BET
surface areas from water can be an order of magnitude larger
than their nitrogen-based counterparts. Such a difference has
been attributed to a larger molecular size of nitrogen,12 to the
penetration of water and different states of the sorbed water,13 or

used as a piece of evidence to question whether the water
monolayer really exists.11

Reality of the BET Model Has Been Questioned. The
BET model is based on a set of assumptions that include (1)
adsorption on a uniform surface, (2) each adsorbed molecule in
a layer is a potential adsorption site for the next layer, (3) no
steric limitation on the thickness of the multilayer, (4) no
interaction between the molecules in the same layer, and (5) the
energy of adsorption on the first layer is higher than the rest
(Figure 1a).3 However, as has been pointed out, “[t]he BET
model appears to be unrealistic in a number of respects. For
example, in addition to the Langmuir concept of an ideal
localized monolayer adsorption, it is assumed that all the
adsorption sites for multilayer adsorption are energetically
identical and that all layers after the first have liquid-like
properties.”2 Furthermore, Rouquerol et al. have even stated that
“the BET model does not provide a realistic description of any
known physisorption system.”2 Hence, the previous discussions
on the validity and foundation of the BET surface area have
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centered around the validity of these assumptions, especially for
porous and granular systems.3,11−13

Consistency Criteria are Needed to Remove Unphys-
ical Results from the BET Model. The BET model has a
simple mathematical form; hence, the monolayer capacity and
the BET constant can be determined graphically from the
linearized BET plot.3 However, the BET plot often exhibits
linearity over a limited range of sorbate activity (relative
pressure).3,10Moreover, identifying the linear region of the BET
plot can be subjective.3,10 Such long-standing difficulties in
fitting the BET model to experimental isotherms have led to the
following consistency criteria (Figure 2) that3,10,14,15

A. the BET constant CB must be positive (Figure 2b);
B. “the application of the BET equation should be restricted to

the range where the term n(1 − p/p0)continuously increases
with [the sorbate activity] p/p0”

10 (where n is the amount of
sorption, Figure 2c);
C. the value of the monolayer capacity “should correspond to

a relative pressure p/p0 falling within the selected linear region”
(Figure 2b);14 and

D. “[t]he relative pressure corresponding to the monolayer

loading calculated from BET theory [
+C

1

1B

] should be equal to

the pressure determined in criterion [C],”14 with the tolerance
of 20% (Figure 2a).3,14

These criteria have been introduced to eliminate unphysical
BET parameters, yet their intricacy has made the simple
linearized BET plot cumbersome to apply. In addition, the
applicability of the criteria has been a matter of debate
recently.14,15 We will show that such difficulty comes from the
restrictive BET model assumption, and its removal makes the
analysis of isotherms straightforward.

Measuring the Monolayer Capacity from the Knee. A
core idea of BET is that the monolayer coverage represents the
amount of sorption at the knee:1−3,6,11,12,16 “If the knee of the
isotherm is sharp, the uptake at Point Bthe beginning of the
middle quasilinear sectionis usually considered to represent
the completion of the monomolecular layer (monolayer) and
the beginning of the formation of the multimolecular layer
(multilayer).”2 However, because the knee is often ill-defined, it
has become usual to derive the capacity from the linearized BET
plot. For example, an IUPAC report suggests a method “to
obtain by visual inspection the uptake at Point B, which usually
agrees with [the monolayer capacity] derived from [the
linearized BET plot] within a few percent”,9 while admitting
that “Point B is not itself amenable to any precise mathematical
description, the theoretical significance of the amount adsorbed
at Point B is uncertain.”9 Even though “the relative pressure [...]
for the monolayer capacity can be recalculated from the value of
[the BET constant] through the BET equation”3 and has been
used as a criterion for consistency,3,15 its underlying significance
beyond its definition has remained unclear. As we will show
later, stepping away from the BET formalism allows the direct
and unambiguous method for identifying the knee point in a
mathematically precise manner with clear physical insights, even
for knees that are not sharp, thereby restoring the intuitive idea
of the knee to its proper place.

Applicability of the BET and GAB Models is Much
Wider than Their Original Assumptions. Non-planar,

Figure 1.Difference between the previous isothermmodels (a) and our
statistical thermodynamic approach (b,c). (a) Langmuir model
assumes monolayer adsorption on a uniform surface with a binding
constant (the Langmuir constant). The BET model assumes each
adsorbed molecule as a potential adsorption site for the next layer and
neglects interaction between the sorbates in the same layer. The BET
constant is related (exponentially) to the difference in binding energies
between the first and outer layers. (b) Our statistical thermodynamic
approach does not involve any assumptions on binding layers,
constants, or the mode of sorbate interaction. Instead, it is based on
the difference in sorbate numbers between the systemwith the interface
(left) and the gas and sorbent reference systems (right). (c) Statistical
thermodynamic isotherm (eq 7) can be derived by incorporating the
sorbate-interface (blue), sorbate−sorbate (green), and sorbate triplet
(orange) interactions in the Maclaurin expansion (eq 6). Note that the
sorbate−sorbate and sorbate triplet interactions captured using the pair
and triplet number correlations are influenced by the presence of the
interface (sorbents). Our theory is valid regardless of sorbate and
sorbent molecular size and shape. For the precise definitions of A0, B0,
and C0, see eqs 8 and 9 and ref 22.

Figure 2. Schematic diagram for a BET isotherm and the consistency
criteria. (a) Amount of sorption ⟨n2⟩ against the sorbate activity a2 (or
equivalently, the relative pressure p/po) for the BET model with CB =
80. Point B, or the knee of the isotherm, is hard to identify by visual
inspection. Hence, the consistency criterion D, that is, ⟨n2⟩ = nm at

= +a C1/( 1)2 B , is employed. (b) Linearized BET plot guarantees

that the BET constant is positive (criterion A), and the BET plot is
linear at the activity corresponding to the nm (criterion C). (c) Increase
in ⟨n2⟩(1− a2) at the a2 corresponding to nm (the red dotted line in (a))
satisfies the criterion B.
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granular, and powder systems with moisture absorption have
been modeled routinely by the BET model and by its extension,
the Guggenheim−Anderson−de Boer (GAB) model,17−19 even
though these models were originally derived exclusively for
adsorption, assuming planar surfaces with successive adsorption
onto multiple layers.20 This contradiction was resolved by the
current authors using statistical thermodynamics (Figure
1).21−25 A general isotherm, which contains the BET and
GAB models as its special cases,22 has been derived from a
Maclaurin expansion of the sorbate−sorbate interaction
(quantified via the Kirkwood−Buff integral) at the dilute limit,
incorporating up to sorbate pair and triplet contributions
(Figure 1b,c). This has fulfilled “the need to examine the
limitations of the BET method and in particular to attempt to
define the conditions which govern its application”;2 the wide
applicability of the BET or GAB comes from the sorbate pair and
triplet contribution instead of the planar multilayer assumption,
rationalizing why the BET and GAB models are widely
applicable beyond their original assumptions.22 In the current
paper, we build on those insights to address the problems with
surface area estimation.
Regional Isotherms. Crucial for BET surface area

estimation is the identification of the region of sorbate activity
(relative pressure) within which the BET plot is linear. As
pointed out by IUPAC, “the range of linearity of the BET plot is
always restricted to a limited part of the isotherm − usually not
above [a2] ∼ 0.3”,26 and typically the linear region is chosen
between 0.05 and 0.3.3,10However, ambiguity persists on how to
choose the range of linearity, leading to the multiplicity of the
BET parameters.3 Moreover, some regions of linearity yield
negative monolayer capacity.3 This highlights a contradiction:
while the BETmodel is agreed to be applicable to a limited range
of sorbate activity (relative pressure), extrapolation to zero
activity in the BET plot, beyond this limited range, is
indispensable for evaluating the BET parameters.
Our Strategy. The debate on the foundation and legitimacy

of the BET surface area was centered around the validity of the
BET model assumptions and the range of sorbate activity
(relative pressure) to which they are applicable. Based on our
recent clarification on the foundation of the BET model based
on statistical thermodynamics,22 a new and alternative approach,
consisting of the following three steps, is necessary:

I to start from the universal statistical thermodynamic
principles of sorption (Figure 1b),

II to translate what the BET monolayer capacity and the
BET surface area mean in the language of statistical
thermodynamics and molecular interaction (Figure 1c),
and

III to overcome the difficulties arising from applying the
equation for the entire isotherm to regional isotherm data,
namely, to eliminate the need for extrapolating to a zero
activity limit.

These steps will lead to a redefinition of interfacial coverage and
sorbate packing in the framework of the statistical thermody-
namic fluctuation theory. The new method to analyze isotherms
will be more straightforward because the restrictive BET model
assumption and the consistency criteria are no longer necessary.

■ THEORY

Overview. Here, we outline what will be achieved in this
section to address the particular issues of the BET model

identified in the Introduction. Each bullet point refers to a
subsection within the Theory section.

• A rigorous statistical thermodynamic fluctuation ap-
proach to sorption will be presented, linking the gradient
of an isotherm to sorbate number fluctuation. This is in
contrast to the existing isotherms, such as the BETmodel,
constructed on the assumptions of adsorption sites,
adsorption layers, and association constants (Figure 1a).
We derive the statistical thermodynamic isotherm via the
Maclaurin expansion, incorporating sorbate-interface,
sorbate−sorbate, and sorbate triplet interactions (Figure
1b,c).

• Re-interpreting the BET model from the statistical
thermodynamic fluctuation theory will be made possible
because the BETmodel is a restricted case of the statistical
thermodynamic isotherm. This enables us to attribute a
statistical thermodynamic reinterpretation of the BET
model constants.

• Fitting an isotherm regionally around an activity of
relevance is sufficient for linking an isotherm to
fluctuations, in contrast to the BET model, whose
parameters are defined down at the zero sorbate activity
limit (as will be shown in Results and Discussion).

• The interfacial capacity, as the statistical thermodynamic
generalization of the BET monolayer capacity, will be
introduced, such that the BET analysis, which has been
carried out for systems beyond the BET model
assumptions, can be generalized to wider classes of
sorption phenomena (in Results and Discussion).

Rigorous Statistical Thermodynamic Fluctuation Ap-
proach for Sorption. Fluctuation Theory Links an Isotherm
to the Underlying Molecular Interactions. A statistical
thermodynamic foundation is indispensable for overcoming
the difficulties of BET surface area estimation identified in the
Introduction (step I), instead of continuing to examine whether
the BET model applies to a particular class of materials. As will
be shown below, a statistical thermodynamic reinterpretation of
the monolayer capacity and BET constant involves a particularly
careful discussion on the low sorbate activity limit. Although our
previous theory22 is valid at this limit (Supporting Information),
a generalization is necessary to prove that we can focus safely on
the amount of sorption, instead of the surface excess, even at this
limit. Throughout this paper, we denote the sorbent as species 1
and the sorbate as species 2.We start from the generalized Gibbs
isotherm, which is valid for any geometry, porosity, or
granularity of the interface, regardless of molecular size and
shape.21 Restricting our consideration to vapor−solid interfaces,
we have shown previously that the difference between the
ensemble-averaged (denoted by ⟨ ⟩) number of sorbates within
the two subsystems of volume v, one at the interface, ⟨n2⟩, and
another in the vapor (gas) and solid reference phases, ⟨n2

g⟩ and
⟨n2

s⟩, is expressed as21

β−
∂

∂
= = ⟩ − ⟩ − ⟩

ikjjjjj y{zzzzzF

a
N n n n

ln
T

s
g s

2
2 2 2 2

(1)

where F is the free energy of the interface (Figure 1b). Equation
1 is applicable regardless of the interfacial geometry and porosity
and is valid for adsorption and absorption alike.21,22 How the
surface excess, Ns2 = ⟨n2⟩ − ⟨n2

g⟩ − ⟨n2
s⟩, depends on the sorbate

activity a2 can be characterized through its derivative
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δ δ δ δ δ δ

∂[ ⟩ − − ]

∂

= ⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩

ikjjjjj y{zzzzzn n n

a

n n n n n n

ln
T

2 2
g

2
s

2

2 2 2
g

2
g

2
s

2
s

(2)

in terms of the difference in sorbate−sorbate number
correlations between the interface, ⟨δn2δn2⟩, and the vapor
and solid reference systems, ⟨δn2

g
δn2

g⟩ and ⟨δn2
s
δn2

s⟩, with δn2 ≡
n2 − ⟨n2⟩, δn2

g ≡ n2
g − ⟨n2

g⟩, and δn2
s ≡ n2

s − ⟨n2
s⟩ defined as the

deviations from the mean sorbate numbers, respectively. (The
background material for the derivation of eq 2 from eq 1 can be
found, e.g., in p 129, eq 25.19 of ref 27). How the isotherm
depends on a2, according to eq 2, is governed by the excess
number fluctuation.
Statistical Thermodynamic Isotherm Can Be Derived from

Sorbate Number Fluctuations.Our next goal is to translate the
BET monolayer capacity (the key quantity from which the BET
surface area is calculated) into the language of rigorous statistical
thermodynamics (step II in Introduction). To do so, we start
from the following relationship which can be derived from eq 2
as the generalization of our previous paper,22 as

∂
∂ ⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩

= −
⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩

⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩

ikjjjjj y{zzzzza

a

n n n

n N n N n N

n n n( )

2

2

2 2
g

2
s

T

2 22 2
g

22
g

2
s

22
s

2 2
g

2
s 2

(3)

Here, the sorbate excess number around a probe sorbate, N22,
together with the corresponding quantities for the reference
states (N22

g and N22
s ) have been introduced and defined as21,22

δ δ
+ =

⟨ ⟩

⟨ ⟩
N

n n

n
122

2 2

2 (4)

(In deriving eq 3, the number−number correlations appearing
from differentiating the numbers using eq 2 are replaced via eq 4
by the excess numbers.) The excess number is used universally
in solutions,28−30 interfaces,21−23 surfactants,31 nanoparticles,32

and confined systems.33 The utility of eq 3 can best be seen in its
following integrated form

∫

⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩

=
− ⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩

⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩

n n n
a

A ad
a n N n N n N

n n n

2 2
g

2
s

2

0 0 ( ) 2
2 2 22 2

g
22
g

2
s

22
s

2 2
g

2
s 2 (5)

where A0 is a constant of integration (whose physical
interpretation will be clarified below). Introducing the
Maclaurin expansion of eq 3

⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩

⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩
= + +

n N n N n N

n n n
B C a

( )
...2 22 2

g
22
g

2
s

22
s

2 2
g

2
s 2 0 0 2

(6)

and combining it with eq 5 yields the following general isotherm
(Figure 1c)

⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩ =
− −

n n n
a

A B a a
C2 2

g
2
s 2

0 0 2 2 2
20

(7)

Equation 7 is our statistical thermodynamic isotherm. Our
previous theory21,22 results from ⟨n2⟩ − ⟨n2

g⟩ − ⟨n2
s⟩ ≃ ⟨n2⟩ as

shown in the Supporting Information. We will later demonstrate
that eq 7 contains the BET model as its special case. Here, we
show that the parameters have a clear physical meaning. First, we
will establish how A0 is related to sorbate−surface interaction at

the a2 → 0 limit (Figure 1c). This can be achieved by the
relationship between a2 and the gas-phase density, c2

g, via a2 = c2
g/

c2
o, with c2

o being the vapor concentration in the saturated vapor
through which A0

−1 can be related to the surface−sorbate (or
sorbent−sorbate) Kirkwood−Buff integral, Gs2, as

22

=
− −

=
− −

=

→

̵

→

̵
→

ikjjjjj y{zzzzzikjjjjj y{zzzzz
A

n n n

a

c
n n n

c
c G

1

( )

a

a

s a

0

2 2
g

2
s

2 0

2
o 2 2

g
2
s

2
g

0

2
o

2 0

2

2

2

(8)

with the subscript denoting the a2 → 0 limit. Here, a positive
surface−sorbate (or sorbent−sorbate) Kirkwood−Buff integral
signifies the accumulation of sorbates at the interface compared
to the vapor phase, whereas the negative value signifies their
depletion at the interface. (The convergence of A0 will be shown
by its correspondence to the BET parameters in the next
paragraph, as well as a careful discussion on the limiting behavior
in the Supporting Information.) Second, the parameter B0 is
linked to the excess sorbate−sorbate number fluctuation at the
a2 → 0 limit, as can be seen straightway from eq 6

=
⟨ − ⟨ − ⟨

⟨ − ⟨ − ⟨
→

ikjjjjj y{zzzzzB
n N n N n N

n n n( )
a

0
2 22 2

g
22
g

2
s

22
s

2 2
g

2
s 2

02 (9)

We emphasize that the sorbate−sorbate number fluctuation
here already incorporates the influence by the presence of the
interface (sorbent) because the sorbent has already been
incorporated in carrying out the ensemble averaging in
calculating ⟨n2⟩ and N22 (Figure 1c). In our discussion below,
the statistical thermodynamic interpretations of the coefficients
A0 and B0 will play a central role in clarifying the physical
meaning of the BET model (Figure 1c). Although C0 is
important for describing some limitations of the BETmodel, the
expression for the coefficient C0 is complex, involving the
sorbate triplet correlation as shown before22 and is not discussed
further in this paper.

Interpreting the BET Model from the Statistical
Thermodynamic Fluctuation Theory. Based on our
generalized theory of sorption which is capable of describing
the zero sorbate limit, here we show that the statistical
thermodynamic isotherm (eq 7) has the mathematical form
(i.e., the quadratic function of a2 in the denominator and a2 in
the numerator) that contains the Langmuir,34 BET,6 and
GAB17−19models as its special cases.22 This makes it possible to
translate the “monolayer capacity” nm and “the BET constant”
CB of the BET model (Figure 1a) into statistical thermody-
namics (Figure 1b,c, step II in Introduction). The BET model
has the following functional form:

⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩ =
− [ + − ]

n n n
C n a

a C a(1 ) 1 ( 1)
2 2

g
2
s B m 2

2 B 2 (10a)

Comparing eqs 7 and 10a leads to the following correspondence
between the BET parameters and statistical thermodynamics

= =
−

=
−

A
C n

B
C

C n

C
C

C n

1 2

2( 1)

0
B m

0
B

B m

0
B

B m (10b)

Or equivalently
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= −
−

= −

( )
n

B
C

B

A

1

1
2

A

B

m

0
2

B
0

00

0 (10c)

Thus, the BET model parameters have been given a statistical
thermodynamic interpretation by eq 10c, in combination with
eqs 8 and 9. Based on this new interpretation, we will later clarify
what the BET “monolayer capacity” signifies in the language of
statistical thermodynamics (see Results and Discussion).
Regional Isotherm Fitting Around an Activity of

Relevance is Sufficient for Linking an Isotherm to
Fluctuations. So far, we have compared the BET model (eq
10a) with the statistical thermodynamic isotherm (eq 7) over
the entire range of activity (a2). However, the protocol for the
BET surface area calculation involves the identification of the a2
range in which the BET model fits the experimental isotherm
data.9 Such a fitting region is to be found typically between a2 =
0.05 and 0.30, with the applicability of BET evidenced by the
linearity of the BET plot.9 Hence, it is necessary to adapt our
theory to regional isotherm fitting; that is, fitting over a small
region of a2 around a reference (a2 = ar) instead of the global fit
over all a2. To do so, theMaclaurin expansion in eq 6 is modified
as

⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩

⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩
= + − +

n N n N n N

n n n
B C a a

( )
( ) ...2 22 2

g
22
g

2
s

22
s

2 2
g

2
s 2 r r 2 r

(11a)

and the integration of eq 5 is changed to

∫

⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩

= −
⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩

⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩

= − − − −
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n n n

A
n N n N n N
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a

A B a a
C

a a

( )
d

( )
2
( )

a

a

2

2 2
g

2
s

r
2 22 2

g
22
g

2
s

22
s

2 2
g

2
s 2 2

r r 2 r
r

2 r
2

r

2

(11b)

with the constants Ar, Br, and Cr defined at a2 = ar. Ar is now
linked to the surface−sorbate Kirkwood−Buff integral at a2 = ar

=
⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩

=
⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩

=

=

̵

=

̵
=
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c
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r
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g
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2

2
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and Br is related to the sorbate number fluctuations at a2 = ar as
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Also, Cr involves ternary number correlations. Defining the
isotherm parameters regionally at a2 = ar will help overcome
some of the historical difficulties surrounding the BET analysis
of isotherms (Results and Discussion). The application of this
approach will be simplified in the next paragraph.
Interfacial Capacity as the Statistical Thermodynamic

Generalization of the BET Monolayer Capacity. The BET
monolayer capacity is a quantity defined under the assumptions
of the BET model. Our aim here is to define a statistical
thermodynamic quantity, the “interfacial capacity”, as a
generalization of the BET monolayer capacity and independent
of the BETmodel assumptions. The key to generalization comes

from the statistical thermodynamic translation of the BET
model parameters (eqs 10b and 10c) and the IUPAC technical
report (“[i]t is now generally agreed that the value of [CB] rather
gives a useful indication of the shape of the isotherm in the BET
range. Thus, if the value of [CB] is at least ∼80, the knee of the
isotherm is sharp”10), supported also by the NIST recom-
mendation which expresses that “[t]o obtain a reliable value of
nm, it is necessary that the knee of the isotherm be fairly sharp
(i.e., the BET constant [CB] is not less than about 100)”.35

Therefore, we can consider CB to be large. Under this condition,
a combination of eqs 9 and 10b leads to the following
relationship
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Equation 12a can be considered as a special case (ar→ 0) of the
“interfacial capacity” defined as

≡ − = −
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which is valid both for the regional isotherm around a2 = ar as
well as the global isotherm (ar → 0). Equation 12b is the
statistical thermodynamic generalization of the monolayer
capacity. Using eq 3, eq 12b can be rewritten as

=
∂
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Equation 12c allows nI to be calculated from any fitting equation.
A practical approach is to apply eq 6 instead of eq 11a to carry
out regional isotherm fitting within a range of finite a2.
Combining eq 6 with eq 12c, we obtain the following simple
expression

= −
+

n
B C a

1
I

0 0 r (12d)

In addition to our isotherm (eq 7), other isotherm models can
also be used with eq 12c. The physical meaning of nI will be
presented in the next section. Thus, we have introduced the
“interfacial capacity”, nI, as a statistical thermodynamic general-
ization of the BET monolayer capacity nm. As will be shown in
the next section, nI will play an important role in understanding
interfacial filling.

■ RESULTS AND DISCUSSION

Overview. The statistical thermodynamic isotherm will
replace the BET model as its model-free generalization.

• Complications due to the BET model assumptions
(Figure 1a) will be eliminated, leading to an easier fitting
of isotherm data using the statistical thermodynamic
isotherm (Figure 1c) without the need for the consistency
criteria.

• A new view of sorption will be established based on
sorbate−sorbate exclusion, which has been neglected by
the BET model.

Based on the demonstrated ease of fitting and interpretation of
the statistical thermodynamic isotherm, the BET analysis will be
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generalized in the framework of the statistical thermodynamic
fluctuation theory.

• Problems with the BET monolayer coverage will be
identified as being defined inadvertently at zero sorbate
activity rather than at full interfacial coverage.

• Interfacial coverage and filling will be redefined statistical
thermodynamically as the point of strongest sorbate−
sorbate exclusion (Point M).

• Probing interfacial coverage and sorbate packing at Point
M will lead to a statistical thermodynamic redefinition of
the monolayer−multilayer behavior in adsorption.

This section concludes with a practical summary, a statistical
thermodynamic guideline for surface area estimation.
Fitting Experimental Isotherms Can Be Facilitated by

Removing the Restrictive BET Model Assumptions. BET
Model is a Restricted Case of the Fluctuation Theory. The
BET surface area is defined as the product of the BETmonolayer
capacity (nm) and the cross-sectional surface (σ2).

9,10 We first
focus on the problems associated with the evaluation of nm from
the experimental isotherm using the BET model. As a first step,
we consider an idealized case scenario in which the adsorption
isotherm obeys the BET model for the entire a2 range. As the
first step, we show that the BET plot is a restricted case of our
statistical thermodynamic isotherm (eq 7), which can be
rewritten as

⟨ ⟩
= − −

a

n
A B a

C
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2
2

2
0 0 2

0
2
2

(13)

We emphasize that the three parameters (A0, B0, and C0 with a
statistical thermodynamic interpretation in the Theory section)
refer to the dilute sorbate limit, a2 → 0, and are related to the
BET parameters via eqs 10b and 10c. In the BET model, the
three parameters are not independent; eq 10b reveals the
following constraint for the BET model

= −C A B2( )0 0 0 (14a)

through which eq 13 can be rewritten as
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which is identical to the well-known BET plot shown indeed in
Figure 2b.9,10 To summarize, the BET plot (eq 14b) contains
only two independent parameters compared to three (eq 13)
due to the BET model assumption (eq 14a).
Force-Fitting the BET Model to Systems beyond the BET

Assumptions is the Cause of Difficulties. The BET and
Langmuir are highly idealized models. Experimental isotherms
often deviate from these models, which poses difficulties to the
BET analysis, as discussed in the Introduction. Such a deviation
can be captured insightfully by our statistical thermodynamic
isotherm (eq 7), which does not involve the constraints imposed
by the BET (eq 14a) or Langmuir (C0 = 0) models. To
demonstrate this systematically, we have chosen the following
systems as examples.

I The adsorption isotherms of water and nitrogen on a
Portland cement paste (Figure 3a) measured by
Maruyama et al.36,37

II The adsorption of argon and nitrogen on zeolite 13X
(Figures 4a and 5a) measured by Pini38,39 and chosen by

Rouquerol et al.3 to illustrate the difficulties of applying
the BET analysis to microporous systems.9,10

Carrying out the BET analysis via eq 14b (Figures 3b, 4b, and
5b) and determining the parameters for the statistical
thermodynamic isotherm via eq 13 (Figures 3c, 4c, and 5c)
reveal their varying degrees of closeness to the BET and
Langmuir models.

Figure 3. Adsorption of water at 293 K (blue circles) and nitrogen at
77.4 K (black squares) on a Portland cement paste using the data
published by Maruyama et al.36,37 (a) Adsorption isotherms. (b) BET
plot (eq 14b), leading to CB = 17.2 and nm = 2.86 mmol/g for water and
CB = 80.6 and nm = 1.09 mmol/g for nitrogen, with the resultant BET
surface areas from nm (196 m2/g for water, 106 m2/g for nitrogen)
consistent withMaruyama et al.36,37 (c) a

n

2

2

plot (eq 13) with the fitting

parameters listed in Table 1.

Figure 4. Adsorption of argon on crystalline (red squares) and pelleted
(black circles) zeolite 13X using the data published by Pini at 87 K.38

(a) Adsorption isotherms. (b) BET plot (eq 14b). Dotted lines: linear
fit based on data between a2 = 0.2 and 0.3 with the unphysical intercepts

of = −4.25
C n

1

B m
(red) and −7.56 (black), respectively; dashed lines:

linear fit based on the data between a2 = 0.05 and 0.1, with the

unphysical intercepts of = −0.25
C n

1

B m
(red) and −0.0034 (black). (c)

a

n

2

2

plot (eq 13) with the fitting parameters listed in Table 1. The

dashed and dotted lines were calculated under the BET (C0 = 2(A0 −

B0)) and Langmuir (C0 = 0) constraints.
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I Both nitrogen and water isotherms for Portland cement
can be modeled by the BET model, as evidenced by the
linearity of the BET plot (Figure 3b) and by the value of
C0 being not too far from the BET constraint, that is, 2(A0

− B0) (eq 14a) as shown in Table 1.
II The BET analysis for zeolite (Figures 4b and 5b) leads to

difficulties (as will be discussed below) because the
isotherms do not satisfy the condition for the BETmodel,
C0 = 2(A0 − B0). Judging from the value of C0 (Table 1),
the argon adsorption on pelleted samples is neither BET-
like nor Langmuir-like. The rest of the isotherms are close
to the Langmuir model yet not strictly so because of C0 ≠

0 (Table 1).

Given that the BET model is satisfied to a varying degree by the
real isotherms, how can we establish a method of surface area
estimation that can be used universally instead of force-fitting
the BET model to the systems that deviate from it?
Fundamental Assumptions of the BET Model May be

Broken.The first step of surface area determination by BET is to

identify the linear region of the BET plot (eq 14b). (Such a
process is unnecessary for an isotherm which strictly obeys the
BETmodel, Figure 2b.) The IUPAC guideline advises the linear
region to be chosen usually between a2 = 0.05 and 0.30.9 The
Portland cement isotherms exhibited good linearity in this a2
range (Figure 3b). For zeolites, the a2 regions within this
guideline, 0.05 ≤ a2 ≤ 0.1 and 0.20 ≤ a2 ≤ 0.3 for Figure 4b and
0.05 ≤ a2 ≤ 0.3 for Figure 5b, gave negative values for the

intercept (
C n

1

B m

in eq 14b) contradictory to the positive CB and

nm assumed by the BET model. This is because, outside the
range of very small a2 (<0.05), these isotherms violate the
consistency criteria listed in Introduction (Table 2). However,
how can we analyze isotherms in a simpler manner without the
laborious check against the four consistency criteria?

Removing the BET Restrictions via Statistical Thermody-
namics Facilitates Fitting.The difficulty in the BET analysis for
zeolite isotherms comes from the restrictive assumption of the
BET model (eq 14a) that is not satisfied (Table 1). Therefore,
eq 13, free of the BET assumptions, can fit the experimental
isotherm over a range of a2 between a2 = 0 and 0.4 (Figures 4c
and 5c), much wider than the linear regions of the BET plot
(Table 2). A straightforward analysis is afforded by the general
statistical thermodynamic formula without any constraints on its
parameters (eq 13).

Sorbate−Sorbate Exclusion is the Key to the
Statistical Thermodynamic Understanding of Isotherms.
Our Strategy. Due to the limitations of the BET model, a new
theoretical foundation is necessary for surface area estimation.
To achieve this goal, our strategy is to fulfill what the BET
analysis has aimed to achieve without the restrictions of the BET
model. To this end, we will reformulate the key concepts of the
BET model (such as the monolayer capacity, the BET constant,
and monolayer filling) in the framework of the statistical
thermodynamic fluctuation theory based on the correspondence
that we have already established (eqs 10b and 10c).

Presence of the Interface Affects Sorbate−Sorbate
Distribution. We have seen the importance of the sorbate−
sorbate excess number N22 in the Theory section. N22 is related
to the (log−log) gradient of the isotherm as21,22

∂ ⟨ ⟩

∂
= +

ikjjjjj y{zzzzzn
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1
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2

2
22

(15a)

which is a simplified version of eq 2 applicable to common
interfaces. Understanding the effect of the interface on sorbate−
sorbate interaction can be facilitated by introducing the
sorbate−sorbate Kirkwood−Buff integral, G22, as

21,28,30,40

Figure 5. Adsorption of nitrogen on crystalline (red squares) and
pelleted (black circles) zeolite 13X using the data published by Pini at
77 K.38 (a) Adsorption isotherms. (b) BET plot (eq 14b). Solid lines:
linear fit based on data between a2 = 0.05 and 0.3 with the unphysical

intercepts of = −2.77
C n

1

B m
(red) and −3.05 (black), respectively. (c)

a

n

2

2

plot (eq 13) with the fitting parameters listed in Table 1. The

dashed and dotted lines were calculated under the BET (C0 = 2(A0 −

B0)) and Langmuir (C0 = 0) constraints.

Table 1. Parameters for the Statistical Thermodynamic Isotherm and a Test of Closeness to the BET (C0 = 2(A0 − B0)) and
Langmuir (C0 = 0) Modelsa

sorbate−sorbent fitting a2 range A0 g/mmol −B0 g/mmol C0 g/mmol 2(A0 − B0) g/mmol

eq 13 eq 13 eq 13 eq 13 eq 14a

water/Portland cementb 0.04−0.3 1.78 × 10−2 3.43 × 10−1 8.40 × 10−1 7.22 × 10−1

N2/Portland cementb 0−0.25 4.00 × 10−3 1.02 × 100 2.64 × 100 2.04 × 100

Ar/crystalline zeolite 13Xc 0−0.4 1.04 × 10−4 1.03 × 10−1 3.46 × 10−2 2.06 × 10−1

Ar/crystalline zeolite 13Xc 0.01−0.15 1.33 × 10−4 1.04 × 10−1 4.38 × 10−2 2.08 × 10−1

Ar/pelleted zeolite 13Xc 0−0.4 1.51 × 10−4 1.36 × 10−1 1.16 × 10−1 2.73 × 10−1

Ar/pelleted zeolite 13Xc 0.01−0.15 2.06 × 10−4 1.40 × 10−1 1.80 × 10−1 2.81 × 10−1

N2/crystalline zeolite 13X
c 0−0.4 1.17 × 10−5 1.09 × 10−1 1.01 × 10−2 2.18 × 10−1

N2/pelleted zeolite 13Xc 0−0.4 1.64 × 10−5 1.35 × 10−1 4.01 × 10−2 2.70 × 10−1

aAll R2 values were above 0.9987. bData reported by Maruyama et al.36,37 cData reported by Pini.38
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where v is the volume of the interfacial layer (e.g., for a planar,
monolayer surface, v is simply the product of the monolayer
thickness and the interfacial surface area), and c2 = ⟨n2⟩/v is the
concentration of sorbates at the interface. The sign of G22 is an
important signature of sorbate−sorbate interaction; a positive
G22 represents a net sorbate−sorbate attraction, whereas a
negative G22 signifies a net exclusion of sorbates from a probe
sorbate.21,28,30,40 As will be shown below, G22 is negative for
adsorption obeying the BET model. This is in contrast to the
positive sign ofG22

g , that is, the sorbate−sorbate Kirkwood−Buff
integral of the vapor phase evaluated from the experimental virial
coefficients41−43 (Supporting Information), showing that the
presence of the interface influences the sorbate−sorbate
distribution, making it different from the vapor phase. In this
manner, how the interface (or sorbent) affects the sorbate−
sorbate interaction can be captured quantitatively by the
Kirkwood−Buff integral.
Sorbate−Sorbate Exclusion Determines the BET Constant

and Interfacial Capacity. Here, we show statistical thermody-
namically that the BET monolayer capacity and the BET
constant can only be positive under sorbate−sorbate exclusion,
which seems surprising from the common understanding of the
BET theory. First, the BET monolayer capacity nm (eq 12a) is
the ar→ 0 limit of the interfacial capacity (eq 12b), which can be
simplified as

≃
⟨ ⟩

−
=

−

ikjjjjj y{zzzzz ikjjjjj y{zzzzzn
n

N

v

G
a a

I
2

22 22
r r (16)

For the monolayer capacity to be positive, as postulated by the
BET model,3,9,10 G22 at ar → 0 must be negative. This is
underscored by the statistical thermodynamic expression of the
BET constant simplified in combination of eqs 8, 9, 10c, and 11b
as
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where c2
o is the concentration of the saturated sorbate vapor, and

K is the vapor-interface partition coefficient. For the BET
constant to be positive (as has been assumed by the BET
model), G22 must again be negative, which signifies sorbate−
sorbate exclusion. We emphasize that a positive sign of −G22,
which makes nI and CB positive, can be interpreted as the
measure of volume that a probe molecule occupies at the
interface. (Such an interpretation may bemost intuitive for thick
interfaces, verging onto a bulk liquid, where the positive −G22

signifies the volume occupied by a sorbatemolecule according to
the Kirkwood−Buff theory of liquids.40,44,45) Therefore, the
positive −G22 as the measure of probe volume at the interface is
the generalization of the bulk liquid argument. Such a statistical
thermodynamic interpretation is in contrast with the conven-
tional understanding that the BET constant “is exponentially
related to the energy of monolayer adsorption.”10

Problems with the BET Monolayer Coverage. BET
Parameters are Defined at the Dilute Sorbate Limit Far Away
from the Monolayer Coverage. The goal of the BET analysis
for surface area estimation is to probe “a complete monolayer of
atoms or molecules in close-packed array”.8 However, both nm
and CB correspond to the dilute sorbate limit (a2 → 0), as has
been shown above (eqs 10b and 10c). This seemingly surprising
conclusion can be supported also from a perspective based
purely on the BET plot (eq 14b, Figures 4b and 5b). The
monolayer capacity nm and the BET constant CB are evaluated

from its gradient ( −C

C n

1B

B m

) and intercept (
C n

1

B m

), respectively. The

intercept, by definition, is the value at a2 = 0. Therefore, against
its claim of capturing monolayer coverage, the monolayer
capacity in the BETmodel is inadvertently defined at the a2→ 0
limit far away from monolayer coverage.

Dilute Sorbate Limit May Be Hypothetical. Here, we
demonstrate that the dilute sorbate limit does not correspond
to the real sorption behavior at the same limit. (How adsorption
at very low a2 can be measured experimentally46−52 is
summarized in the Supporting Information). Extrapolation
requires a fitting function. However, even with the use of the
general polynomial free of BET (eq 13), the extrapolation at a2
→ 0 may still be different from the real system behavior at this
limit. For example, at very low a2, a negative experimental
gradient (positive B0) of the

⟨ ⟩

a

n

2

2

plot for argon (Figure 6)

corresponds (via eq 9) to a positive sorbate−sorbate excess
number opposite in sign from the extrapolated behavior. Thus,
using the unreal a2 → 0 extrapolation is problematic for surface
area estimation.

Overcoming the Problems with the BET Monolayer
Capacity by Redefining Interfacial Coverage and Filling
via Statistical Thermodynamics. Point M as the Com-
pletion of Interfacial Coverage. Our goal is to establish a
reliable and facile alternative to BET analysis. The BET analysis
has aimed, via nm, to quantify the amount of adsorption at the
knee of the isotherm at which the completion of monolayer
filling is assumed to take place.2,7,9,10 However, as discussed in
the Introduction, since the precise location of the knee (or Point
B) is unclear and becomes even more so as CB becomes smaller,
the BET monolater capacity and the amount of adsorption at
Point B may not be reliable quantitative measures. In addition,

Table 2. Determination of Argon and Nitrogen BET Surface Areas of Zeolite 13X Cross-Validated with the Consistency Criteria

sorbate−sorbent fitting rangeb
data
pts CB nm

c
BET surface

aread
(1 − a2) ⟨n2⟩ increases until

a2= a2 for nm
+C

1

1B

Ar/crystal 0.0003−0.04 21 2.51×103 9.10 775 4.27 × 10−2 1.92 × 10−2 1.96 × 10−2

Ar/pellet 0−0.05 22 1.49×103 6.85 585 7.32 × 10−2 2.46 × 10−2 2.52 × 10−2

N2/crystal 0−0.01 20 7.09×104 8.82 859 1.09 × 10−2 3.73 × 10−2 3.74 × 10−3

N2/pellet 0−0.04 19 4.71×104 7.07 689 9.74 × 10−3 4.56 × 10−3 4.59 × 10−3

criteriona A B C D

the values must be positive above the fitting range within the fitting
range

close to the left
column

aSee the list in the Introduction. bR2 values were above 0.9996. cUnits in mmol/g. dUnits in m2/g.
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even though the consistency criteria helped eliminate unphysical
results, they have complicated the BET analysis procedure; the
root cause of the complication is trying to fit the BET model to
the systems that break the BETmodel assumption (C0≠ 2(A0−

B0) (Table 1). To overcome these shortcomings, here, we
introduce Point M, at whichN22 takes a minimum, and calculate
the amount of sorption at this point. (For an intuitive grasp of
Point M, the reader may refer to our results in advance for the
Portland cement (Figure 7) and zeolite 13X (Figure 8).)
Combining eqs 7 and 15a under ⟨n2⟩ − ⟨n2

g⟩ − ⟨n2
s⟩ ≃ ⟨n2⟩

(Supporting Information), we obtain
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Solving eq 18b under B0 < 0 for sorbate−sorbate exclusion,
22 we

obtain
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Consequently, the amount of adsorption at Point M can be
calculated using eqs 7 and 18b as
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Restricting our result (eq 18d) to the BET model using eq 10b,
we obtain the following expression for the amount of adsorption
at Point M
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The approximation at the final step is accurate for large CB. The
location of aM can also be specified as
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Figure 6. The low a2 behavior of the argon adsorption on crystalline
(red) and pelleted (black) zeolite 13X using the data published by Pini
at 87 K.38 (a) Adsorption isotherms. (b) The BET plot (eq 14b) which
exhibits a negative gradient at a2 → 0. (c) a

n

2

2

plot with the fitting

equation (eq 13 with C0 = 0) using data between a2 = 4 × 10−4 and 1 ×
10−3.

Figure 7. (a) Adsorption of water (blue circles) and nitrogen (black
squares) on a Portland cement paste (Figure 3), with the indication of
the respective amounts of adsorption at Point M, ⟨n2⟩M at a2 = aM,
calculated using eqs 18c and 18d. nm is the corresponding BET
monolayer capacity determined in Table 2. (b) Excess numbers of
sorbates around a probe sorbate, N22, calculated using eq 18a (with the
parameters from Table 1) for water (blue circles) and nitrogen (black
squares). Point M, where N22 is minimum, is calculated using eq 18c.

Figure 8. (a) Adsorption of argon on crystalline (red squares) and
pelleted (black circles) on zeolite 13X (Figure 4), with the indication of
the respective amounts of adsorption at Point M, ⟨n2⟩M at a2 = aM,
calculated using eqs 18c and 18d. nm is the corresponding BET
monolayer capacity determined in Table 2. (b) Excess numbers of
sorbates around a probe sorbate, N22, calculated using eq 18a (with the
parameters from Table 1) for crystalline (red squares) and pelleted
(black circles) zeolite 13X. Point M, where N22 is minimum, is
calculated using eq 18c.
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Equations 18e and 18f are significant; for large CB (as
recommended by IUPAC), the monolayer capacity is equivalent
to the amount of sorption at Point M for the BET model.

Previously, = +a C1/( 1)2 B was identified as the point at

which the amount of sorption reaches the monolayer capacity,
⟨n2⟩ = nm.

53 This point has made it to one of the consistency
criteria (D) for the BET analysis (see Introduction).3,15 Note

that aM and = +a C1/( 1)2 B are close in values, with less

than 12% difference for CB > 80, providing a statistical
thermodynamic support for the consistency criterion D.
However, beyond being the point at which ⟨n2⟩ = nm, the
physical meaning of the latter has remained unknown, and its
applicability has been limited within the BET analysis. In
contrast, Point M can be defined for any isotherm.
Surface Area Estimation from the Adsorption at Point M.

The location of Point M has been defined precisely for the BET
model (eq 18f) and even for the statistical thermodynamic
isotherm (eq 18c). Therefore, the amount of adsorption at Point
M ⟨n2⟩M is a viable alternative for the estimation of the
monolayer capacity, nm. Indeed, ⟨n2⟩M, calculated via eq 18d,
agrees reasonably with the monolayer capacity calculated from
the BET analysis (Table 3, which reports a comparison between
the statistical thermodynamic surface area ⟨n2⟩Mσm with the
BET surface area nmσm, using the standard values of sorbate
cross-sectional areas). PointM values can be calculated precisely
by eq 18c, and their location around the knee can be inspected
visually by Figures 7 and 8. The clarity in locating Point M
contrasts with the inherent ambiguity of Point B.7 The clear
physical picture underlying the definition of Point M (i.e.,
minimum N22) contrasts with the lack of interpretation of

= +a C1/( 1)2 B in the criterion D and its strict dependence

on the BET model. Moreover, the interfacial capacity nI agrees
with the amount of sorption at the knee only at a2→ 0 under the
condition that adsorption obeys the BETmodel down to a2→ 0.
Thus, we propose the amount of adsorption at Point M as the
statistical thermodynamic alternative for the BET monolayer
capacity.
Advantage of Statistical Thermodynamic Surface Area

Estimation over the BET Model. Point M can be identified
simply by fitting the statistical thermodynamic isotherm (eq
10a) around the knee (Figures 7 and 8), without any need for
the restrictive BET assumptions, the cumbersome consistency
criteria, and the problematic extrapolation to a2→ 0. Note that a
very shallow minimum at Point M for the crystalline zeolite
(Figure 8) does not pose any problem because N22 ≃ −1 means

that the isotherm has a near-zero gradient (N22 + 1 ≃ 0); hence,
a small error in positioning PointM does not lead to inaccuracies
in the amount of adsorption at that point. Point M, defined as
the minimum sorbate−sorbate excess number N22, has a clear
microscopic interpretation. ⟨n2⟩M is also defined clearly as the
net excess sorbate−surface distribution function21,22 at this
point. Unlike the BET model constants, these distribution
functions can be calculated directly from molecular simulation,
thereby allowing a direct comparison between simulated and
experimental values. Thus, a statistical thermodynamic identi-
fication of Point M removes the need for the BET model
altogether in surface area estimation.

Probing Interfacial Coverage and Sorbate Packing
Statistical Thermodynamically at Point M. Sorbate−
Sorbate Interaction as the Measure for Knee Sharpness. In
the BET analysis, the BET constant CB, which determines the
shape of an isotherm, is used as a measure for the sharpness of
the knee and therefore as evidence for monolayer completion as
a prerequisite for surface area determination.9,10 IUPAC
recommends the BET constant be larger than 80.9,10 This
recommendation, however, cannot be used for isotherms that do
not obey the BET model. Therefore, a new quantitative
guideline, independent of sorption models, is necessary. To
this end, a relationship between N22 at Point M and CB will be
helpful, which can be derived by combining eqs 10b, 18a, 18e,
and 18f as

= − +
−

N
C

C
( ) 1

2 1
22 M

B

B (19)

Using eq 19, a one-to-one correspondence between CB and
(N22)M can be established for the BET model (Figure 9). The
IUPAC recommendation that CB must be larger than 80 is
translated as N22 should be below (i.e., more negative than)
−0.78. This criterion also means ⟨n2⟩M/(nI)M > 0.78, meaning
that the amount of sorption at Point M is more than 78% of the
interfacial capacity. This new criterion, formulated via N22, can
be applied to any isotherm. The meaning of this criterion will be
clarified in the next two paragraphs.

Probing the Close Packing of an Interface via the Sorbate−
Sorbate Excess Number. To understand the physical meaning
of Point M, let us first consider a case in which the gradient of an
isotherm is very small at Point M, namely, N22 ≃ −1. Such a
condition is satisfied by the nitrogen and argon adsorption on
zeolite 13X (Figure 8) but is different from the Portland cement
isotherms (Figure 7, Table 3).N22≃−1 at Point M is equivalent
to

Table 3. Surface Area Estimation via Statistical Thermodynamic Fluctuation Theory Using the Parameters (A0, B0, and C0) in
Table 1

sorbate−sorbent fitting a2 range aM ⟨n2⟩M mmol/g (N22)M stat therm surface area (STSA) m2/g BET surface area m2/g (Table 2)

eq 18c eq 18d eq 18a ⟨n2⟩Mσm
d nmσm

d

water/Portland cementa 0.04−0.3 0.127 2.32 −0.55 160d 196e

N2/Portland cementa 0−0.25 0.048 0.96 −0.86 94d 106e

Ar/crystalline zeolite 13Xb 0−0.4 0.076 9.69 −0.97 829 789

Ar/crystalline zeolite 13Xb 0.01−0.15 0.075 9.63 −0.97 823 789

Ar/pelleted zeolite 13Xb 0−0.4 0.049 7.32 −0.96 626 585

Ar/pelleted zeolite 13Xb 0.01−0.15 0.045 7.10 −0.94 607 585

N2/crystalline zeolite 13Xb,c 0−0.4 0.048 9.17 −0.99 895 860

N2/pelleted zeolite 13Xb,c 0−0.4 0.028 7.40 −0.99 722 690
aData reported by Maruyama et al.36,37 bData reported by Pini.38 cA narrower fitting range was not feasible due to the sparseness of data around aM
dWe have used the cross-sectional area, σm, for argon (0.142 nm2) and N2 (0.162 nm2) taken from the IUPAC recommendations and the one for
water (0.114 nm2) taken from Odler.12 eCompared to 196 and 113 m2/g by Aili and Maruyama.37
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a a very small sorbate number variance, ⟨δn2δn2⟩ ≃ 0, at
Point M, according to eq 4;

b approximately one sorbate molecule in total being
excluded around a probe sorbate, N22 ≃ −1 at Point M,
according to eq 4; and

c the amount of adsorption is close to the interfacial
capacity at Point M, (nI)M ≃ ⟨n2⟩M, according to eq 16.

A physical picture of Point M adsorption emerges from (a)−(c)
for this case (Figure 8). The interface contains a well-defined
number of sorbates because the number fluctuation is small (a).
The sorbate molecules are uniformly distributed in the interface
because introducing a probe sorbate excludes one sorbate
molecule around it (b). Under such a close and uniform packing,
the amount of sorption at Point M is close to the interfacial
capacity (c). (At the limit of a very thick interface or a bulk
sorptive liquid, (a)−(c) can be considered as the conditions for
very small compressibility). Therefore, (a)−(c) are the
statistical thermodynamic characterizations of very close sorbate
packing, most probably due to filling up micropores (which is
likely to be the case for zeolite 13X).23

Sorbate−Sorbate Excess Number May Be a Measure of
Monolayer−Multilayer Overlap. Unlike the idealized case in
the previous paragraph, the minimum ofN22 is usually above−1
for BET-like systems (Table 3). The existence of a sharp knee
corresponds to N22 below −0.78 (Figure 9). According to
IUPAC, the value of CB being less than 80 (or, more generally,
N22 above −0.78) is “an indication of a significant amount of
overlap of monolayer coverage and the onset of multilayer
adsorption”.10 This is the case for water adsorption on Portland
cement, while nitrogen adsorption behaves closer to the
previous paragraph (Figure 7). Compared to N22 ≃ −1 at
Point M, this case shows that

a the sorbate number variance, ⟨δn2δn2⟩, is larger (eq 4);
b when a probe sorbate is placed, less than one sorbate is
excluded (eq 4); and

c the amount of adsorption is smaller than the interfacial
capacity at Point M, (nI)M > ⟨n2⟩M (eq 16).

Thus, the interface is characterized by the less definite number of
sorbates (a) and inhomogeneity in the distribution of sorbates;
that is, the presence of a probemolecule (whose center of mass is
at rest) makes its vicinity deviate from the sorbate distribution

(b). Due to the inhomogeneity and fluctuation at the interface,
the amount of adsorption does not reach the interfacial capacity
at Point M (c). (Using, as before, the limit of a very thick
interface or a bulk sorptive liquid, (a)−(c) correspond to higher
compressibility). Such an interfacial behavior is reminiscent of a
“significant overlap of monolayer coverage and the onset of
multilayer adsorption”10 as viewed from the fluctuation theory.

Monolayer Coverage May Take Place between the Two
Extremes. While small CB is the sign of monolayer−multilayer
overlap, “[a] high value of [CB] (say, >∼150) is generally
associated with either adsorption on high-energy surface sites or
the filling of narrow micropores.”10 The recommended values of
CB between 80 and 150 correspond to the range of N22 at Point
M between−0.78 and −0.84. The BET-based IUPAC guideline
was translated to the more universal language of statistical
thermodynamics, applicable beyond the bounds of the BET
model. However, more investigations are necessary to specify
the range of N22 for monolayer coverage with sufficient clarity
for surface area estimation.We have shown that the monolayer−
multilayer adsorption mechanism may be operative between the
two extremes.

Quality of Surface Area Estimation Depends on the Probe
Used. The significant difference in surface area between water
and nitrogen sorbate probes has been recognized for a long
time,12 which is true also for the Portland cement (Table 3).
However, the quality of surface area determination depends on
the probes used. We first note that the minimumN22 for water is
−0.55, while that for nitrogen is −0.86 (Table 3). A larger N22

means a steeper isotherm gradient; a stronger water−water
interaction helps adsorb more water onto the interface.
However, according to the correspondence between N22 and
CB (Figure 9), water fails the IUPAC recommendation of CB >
80 while nitrogen satisfies it. Microscopically, ⟨n2⟩M = 0.55(nI)M
(eq 16) means that the amount of water adsorption at PointM is
only half of its interfacial capacity. Based on the previous
paragraph, water adsorption exhibits a significant overlap
between monolayer coverage and multilayer adsorption.
Consequently, nitrogen seems to be a more appropriate probe
than water for surface area estimation in this particular system.

Statistical Thermodynamic Guideline for Surface Area
Estimation. Procedure. Here, we summarize the statistical
thermodynamic analysis in terms of the following list of
procedures for surface area estimation:

1 Fit an experimental isotherm around its knee using eq 13
(Figures 3c, 4c, and 5c, and Table 1).

2 Calculate the location of Point M (aM) using eq 18c and
the amount of adsorption at Point M (⟨n2⟩M) eq 18d
(Table 3).

3 Estimate the surface area by multiplying ⟨n2⟩M by the
probe molecule’s cross-sectional area σm (Table 3). This
can be called the statistical thermodynamic surface area
(STSA) as an alternative for the BET surface area.

Note that a2 and ⟨n2⟩ correspond directly to p/p0 and n of the
IUPAC notation, respectively. Hence, aM and ⟨n2⟩M are simply
p/p0 and n at Point M, respectively. Here are the considerations
for a sense check:

• the location of aM and ⟨n2⟩M are roughly around the knee
of an isotherm (Figure 7a and 8a);

• the calculated aM via eq 18c is indeed at the minimum of
N22 (Figures 7b and 8b);

Figure 9. Relationship between the BET constant, CB, and the excess
number of sorbates around a probe sorbate, (N22)M, at Point M plotted
using eq 19 derived for the BET model. The IUPAC recommendation
that CB should be larger than 80 for the clarity of the knee corresponds
toN22 below−0.78. The recommendation based onN22 can be applied
beyond the boundary of the BET model.
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• N22 at Point M is between −0.78 and −0.84 for a sign of
monolayer coverage (Figures 7b, 8b, and 9). The value of
N22 should be quoted with STSA.

This range of N22 is the statistical thermodynamic translation
of the IUPAC guideline10 for CB to be between 80 and 150 for
the monolayer−multilayer mechanism, which requires further
work for clarification.
Evaluating the Underlying Assumptions via Simulation.

The above procedure for surface area estimation still contains
the following assumptions inherited from the BET analysis:

(a) The interface can be approximated as a planar monolayer.
(b) The standard value of the probe’s cross-sectional area is

valid.

Fortunately, a key attribute of the approach here is that the
above assumptions can be examined via classic molecular
dynamics or Monte Carlo simulations that allow the evaluation
of these key statistical thermodynamic quantities. (a) If the
interface is a monolayer, the sorbate−surface correlation
function has a sharp first peak and further peaks are negligibly
small. For an interface that cannot be considered planar or
monolayer (such as microporous materials like zeolite),
reporting the Point M capacity instead of the surface area may
bemore realistic. (b) The effectivemolecular size of sorbates can
be evaluated using the sorbate−sorbate distribution function.
Thus, the macroscopic (the isotherm) and microscopic (i.e.,
molecular dynamics or Monte Carlo simulations) pictures of
sorption can be linked and cross-validated.
Monolayer Versus Pore Filling. Extensive comparisons with

simulation have revealed recently that the BET approach
overestimates the surface area due to the contributions from
pore filling14 and that distinguishing pore filling and monolayer
filling is crucial for a reliable surface area determination.15

Addressing this difficult question requires further work.
However, we would like to point out, based on our previous
work on adsorption on porous materials,21,23,24 thatN22may still
play a crucial role in connecting the gradient of an isotherm to
the number of sorbates that sorb cooperatively.N22 changes with
a2 (Figures 7b and 8b) and plays a central role in understanding
how a macroscopic isotherm is composed of different sorption
processes.

■ CONCLUSIONS

Difficulties have persisted in surface area estimation using the
BET analysis of an isotherm. The present paper has identified
the causes of the difficulties and demonstrated how they can be
overcome. Difficulties have arisen from

i trying to fit the BET model to the isotherms that break its
basic assumptions; and

ii ambiguous and unclear physical meanings of the BET
constant and the monolayer capacity

The introduction of the consistency criteria helped eliminate the
unphysical solutions in (i) but has perpetuated (ii) by making
what looks like a straightforward linear plot (the BET plot) more
complicated to use. The statistical thermodynamic fluctuation
theory, due to its model-free nature, has

i shown that the statistical thermodynamic isotherm,
whose special and restricted case is the BET model,
removes the need for force-fitting the BET model to
sorption data; and

ii translated the objectives of the BET analysis into the
language of the fluctuation theory.

We have removed the need for the BET model to carry out
surface area estimation.
Our new, alternative approach is the generalization of the BET

analysis and can be carried out without its restrictive
assumptions or a force-adaptation of the BET model to reality.
The key ideas are

I the excess number N22, a measure of sorbate−sorbate
interaction at the interface, as central to interfacial
coverage;

II Point M, at which N22 takes the minimum value, as the
precise location of interfacial coverage; and

III adsorption at PointM replaces the monolayer capacity for
calculating the surface area.

This new procedure for the calculation of the statistical
thermodynamic surface area (STSA) can be carried out without
being restricted to an isotherm model and without the
consistency criteria necessitated by using a model beyond its
applicability. In our statistical thermodynamic generalization of
BET-based approaches, the excess number, N22, as a measure of
sorbate−sorbate interaction at the interface, will play a central
role

• as a replacement of the BET constant, representing the
clarity of the knee and the applicability of the monolayer
coverage;

• in linking the macroscopic measurement (isotherms) to
microscopic (simulation) measurement, to clarify, for
example, whether the interfacial filling is monolayer-like,
pore-filling-like, or with a significant monolayer−multi-
layer overlap; and

• as a measure of sorption cooperativity, which is especially
important for porous systems.

Thus, the problems of the BET analysis have been overcome
by the clarity, generality, and applicability afforded by model-
free statistical thermodynamics. This was brought about by a
statistical thermodynamic generalization of the BET approach.
However, this does not mean that our new general theory
eliminates the difficulties posed by the monolayer−multilayer
overlap or the ambiguity in distinguishing between monolayer
coverage and pore filling. What we have achieved is to establish
the general statistical thermodynamic measures for interfacial
filling that do not depend on a restricted isotherm model. To
address these questions, a systematic comparison with computer
simulation is indispensable in conjunction with our new
approach. The extension of our approach includes an
examination of other approaches to surface area estimation
based on different adsorption models and to clarify how the
difference between the monolayer and pore-filling behaviors
manifests in isotherms.
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