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AI is expected to have a profound effect on the practice of 
medicine in the next 10 years1–4. In particular, medical 
imaging is already being transformed by the application 

of AI solutions5. Such AI solutions can automate manual tasks in 
medical image analysis, but can also be used to extract informa-
tion that is not visible to the human eye6,7. Digitized histopathology 
images contain a wealth of clinically relevant information that AI 
can extract3. For example, deep convolutional neural networks have 
been used to predict molecular alterations of cancer directly from 
routine pathology slides8–13. In 2018, a landmark study showed a 
first proof of principle for this technology in lung cancer8. Since 
then, dozens of studies have extended and validated these find-
ings to colorectal cancer (CRC)9,14,15, gastric cancer16, bladder can-
cer10, breast cancer13 and other tumor types10–12,17,18. These methods 
expand the utility of H&E-stained tissue slides from routine tumor 

diagnosis and subtyping to a source for direct prediction of molec-
ular alterations3.

AI models are data hungry. In histopathology, the performance 
of AI models increases with the size and diversity of the training 
set16,19,20. Training clinically useful AI models usually requires the 
sharing of patient-related data with a central repository21,22. In prac-
tice, such data sharing—especially across different countries—faces 
legal and logistical obstacles. Data sharing between institutions may 
require patients to forfeit their rights of data control. This problem 
has been tackled by (centralized) federated learning (FL)23,24, in 
which multiple AI models are trained independently on separate 
computers (peers). In FL, peers do not share any input data with 
each other, and only share the learned model weights. However, 
a central coordinator governs the learning progress based on all 
trained models, monopolizing control and commercial exploitation.
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Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, 
training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These 
obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer 
and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel 
histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational sta-
tus and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We 
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In the past 2 years, this limitation of FL has been addressed by a 
new group of decentralized learning technologies, including block-
chain FL25 and SL26. In SL, AI models are trained locally, and models 
are combined centrally without requiring central coordination. By 
using blockchain-based coordination between peers, SL removes 
the centralization of FL and raises all contributors to the same 
level. In the context of healthcare data analysis, SL leads to equal-
ity in training multicentric AI models and creates strong incentives 
to collaborate without concentrating data or models in one place. 
This could potentially facilitate collaboration among several par-
ties, hence generating more powerful and more reliable AI systems. 
Ultimately, SL could improve the quality, robustness and resilience 
of AI in healthcare. However, SL has not been systematically applied 
to medical image data in oncology. In particular, it has not been 
applied to histopathology images, a common data modality with a 
high information density3.

In this study, we examine whether SL can be used for AI-based 
prediction of molecular alterations directly from conventional 
histology images. To investigate this, we perform a retrospective 
multicentric study. As pathology services are currently undergo-
ing a digital transformation, embedding AI methods into routine 

diagnostic workflows could ultimately enable the prescreening of 
patients, thereby reducing the number of costly genetic tests and 
increasing the speed at which results are available to clinicians27. 
The prediction performance of such systems increases markedly 
by training on thousands rather than hundreds of patients19,20. We 
hypothesize that SL could be a substitute for the centralized collec-
tion of data from large patient cohorts in histopathology, improving 
prediction performance20 and generalizability22 without centralizing 
control over the final model.

Results
SL can be used to train AI models for pathology. We developed an 
SL-capable AI pipeline for molecular classification of solid tumors 
based on histopathology images (Fig. 1a,b and Extended Data  
Fig. 1a–e). We collected three large datasets for training: Epi700 
(n = 661 patients from Northern Ireland; Extended Data Fig. 2), 
DACHS (Darmkrebs: Chancen der Verhütung durch Screening, 
n = 2,448 patients from southwestern Germany; Extended Data  
Fig. 3) and TCGA (The Cancer Genome Atlas, n = 632 patients;  
Fig. 1c, Table 1 and Extended Data Fig. 4). Each dataset was stored 
in a physically separate computing server. We then used our analysis  
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Fig. 1 | Schematic of the deep learning and SL workflows. a, Histology image analysis workflow for training. b, Histology image analysis workflow for 
model deployment (inference). c, SL workflow and training cohorts included in this study. On three physically separate bare-metal servers (dashed line), 
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that handles communication with peers via blockchain). d, Test cohorts included in this study. e, Schematic of the basic SL experiment. For basic SL, the 
number of epochs is equal for all cohorts, and weights are equal for all cohorts. f, Schematic of the weighted SL experiment. For weighted SL, the number 
of epochs is larger for small cohorts, and weights are smaller for small cohorts (wE = weight for the Epi700 cohort, wD = weight for the DACHS cohort,  
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pipeline in a retrospective multicenter study to predict genetic 
alterations directly from CRC histopathology whole slide images 
(WSIs), testing all models in external cohorts (Fig. 1d). First, we 
trained local AI models on each of the three training cohorts 
separately. Second, we compared their performances with that of 
a merged model, which was trained on all three training cohorts 
on a single computer. Third, we compared the performance of the 
merged model with the performance of three SL AI models. Basic 
model checkpoint 1 (b-chkpt1) was obtained when the partner with 
the smallest training cohort (TCGA) reached the end of the final 
epoch (Fig. 1e). Basic model checkpoint 2 (b-chkpt2) was obtained 
when the partner with the second-smallest training cohort (Epi700) 
reached the end of the final epoch. Finally, weighted SL balanced 
differences in cohort size by increasing the number of epochs for 
smaller cohorts while decreasing their weighting factor in the final 
model, yielding the weighted model checkpoint (w-chkpt) (Fig. 1f).

SL models can predict BRAF mutational status. We evaluated 
the patient-level performance for prediction of BRAF mutational 
status on the QUASAR cohort (n = 1,774 patients from the United 
Kingdom; Extended Data Fig. 5). We found that local models achieved 
areas under the receiver operating curve (AUROCs; mean ± s.d.) of 
0.7358 ± 0.0162, 0.7339 ± 0.0107 and 0.7071 ± 0.0243 when trained 
only on Epi700, DACHS and TCGA, respectively (Fig. 2a). Merging 
the three training cohorts on a central server (merged model) 
improved the prediction AUROC to 0.7567 ± 0.0139 (P = 0.0727 
vs Epi700, P = 0.0198 vs DACHS, P = 0.0043 vs TCGA; Fig. 2a and 
Supplementary Table 1). This was compared with the performance 

of the SL AI models. b-chkpt1 achieved a prediction AUROC on the 
test set of 0.7634 ± 0.0047, which was significantly better than that 
of each local model (P = 0.0082 vs Epi700, P = 0.0005 vs DACHS, 
P = 0.0009 vs TCGA), but not significantly different from that of 
the merged model (P = 0.3433). b-chkpt2 achieved a similar perfor-
mance: this model achieved an AUROC of 0.7621 ± 0.0045, which 
was significantly better than that of each local model (P = 0.0105 
vs Epi700, P = 0.0006 vs DACHS, P = 0.0011 vs TCGA), and on par 
with that of the merged model (P = 0.4393). Finally, we assessed 
the performance of the weighted SL model (w-chkpt) for BRAF 
mutation prediction. In this task, w-chkpt achieved an AUROC of 
0.7736 ± 0.0057. This is a significant improvement on the perfor-
mances of all other models, including the local models of Epi700 
(P = 0.0015), DACHS (P = 8.65 × 10−5) and TCGA (P = 0.0004), 
but also the merged model (P = 0.0374), b-chkpt1 (P = 0.0154) and 
b-chkpt2 (P = 0.0081; Supplementary Table 1).

SL models can predict microsatellite instability. Next, we tested 
our prediction pipeline in another benchmark task: the predic-
tion of microsatellite instability (MSI)/mismatch repair deficiency 
(dMMR) status in the clinical trial cohort QUASAR (Fig. 2b) and 
the population-based cohort YCR BCIP (Yorkshire Cancer Research 
Bowel Cancer Improvement Programme; Fig. 2c and Extended 
Data Fig. 6). In QUASAR, b-chkpt1 and b-chkpt2 achieved pre-
diction AUROCs of 0.8001 ± 0.0073 and 0.8151 ± 0.0071, respec-
tively, and thereby significantly outperformed single-cohort models 
trained on Epi700 with an AUROC of 0.7884 ± 0.0043 (P = 0.0154 
and P = 8.79 × 10−5 for b-chkpt1 and b-chkpt2, respectively; 

Table 1 | Clinicopathological features of all cohorts

Variable TCGA DACHS Epi700 YCR BCIP QUASAR

Use in this study Train Train Train Test Test

Cohort type Population Population Population Population Clinical trial

No. of patients 632 2,448 661 889 2,190

Median age (years) 68 69 72.7 71 63

IQR for age (years) 18 14 14.5 15 12

Male 322 (50.9%) 1,436 (58.7%) 358 (54.2%) 494 (55.6%) 1,334 (60.9%)

Female 292 (46.2%) 1,012 (41.3%) 303 (45.8%) 395 (44.4%) 848 (38.7%)

Unknown sex 18 (2.85%) 0 0 0 8 (0.4%)

MSS/pMMR 392 (62%) 1,836 (75%) 471 (71.3%) 760 (85.5%) 1,529 (69.8%)

MSI/dMMR 65 (10.3%) 210 (8.6%) 136 (20.6%) 129 (14.5%) 246 (11.2%)

Unknown MSI status 175 (27.7%) 402 (16.4%) 54 (8.1%) 0 415 (19%)

MSI/MMR method PCR 5-plex PCR 3-plex PCR 5-plex IHC IHC

Wild-type BRAF 471 (74.5%) 1,930 (78.8%) 553 (83.7%) 32 (3.6%a) 1,358 (62%)

Mutated BRAF 63 (10%) 151 (6.2%) 92 (13.9%) 75 (8.4%a) 129 (5.9%)

Unknown BRAF status 98 (15.5%) 367 (15%) 16 (2.4%) 782 (88%) 916 (41.8%)

BRAF detection method Sequencing37 IHC, Sanger38,39 ColoCarta[b,40 NA Pyrosequencing41

Stage I 76 (12%) 485 (19.8%) 0 169 (19%) 5 (0.2%)

Stage II 166 (26.3%) 801 (32.7%) 394 (59.6%) 317 (35.7%) 53 (2.4%)

Stage III 140 (22.2%) 822 (33.6%) 267 (40.4%) 370 (41.6%) 1,653 (75.5%)

Stage IV 63 (10%) 337 (13.8%) 0 (0%) 33 (3.7%) 268 (12.2%)

Stage unknown 187 (29.5) 3 (0.1%) 0 0 211 (9.7%)

Left-sided CRC 248 (39.2%) 1,607 (65.6%) 280 (42.3%) 487 (54.8%) 1,158 (52.9%)

Right-sided CRC 176 (27.8%) 819 (33.5%) 375 (56.7%) 332 (37.3%) 754 (34.4%)

Unknown side 209 (33%) 22 (0.9%) 6 (1%) 70 (7.9%) 278 (12.7%)

Right-sided CRC is defined as from cecum to transverse colon. IHC, immunohistochemistry; IQR, interquartile range; MMR, mismatch repair; NA, not available. aBRAF testing in YCR BCIP was performed in 
only MSI/dMMR cases and was therefore not used as a prediction target in this study. bThe ColoCarta panel uses a validated mass spectrometry-based targeted screening panel of 32 somatic mutations in 
six genes (Agena Bioscience).
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Supplementary Table 2). Similarly, SL outperformed MSI predic-
tion models trained on TCGA with an AUROC of 0.7639 ± 0.0162 
(P = 1.09 × 10−5 and P = 6.14 × 10−7 for b-chkpt1 and b-chkpt2, 
respectively). However, there was no significant difference between 
the model trained on the largest dataset (DACHS) and b-chkpt1 or 
b-chkpt2 in QUASAR (Fig. 2b) and YCR BCIP (Fig. 2c). For MSI 
prediction in QUASAR, w-chkpt significantly outperformed the 
local Epi700 model (P = 8.93 × 10−6) and the local TCGA model 
(P = 2.83 × 10−7), whereas the performance differences compared 
with the DACHS model were not statistically significant (DACHS 
AUROC = 0.8326 ± 0.0090 vs w-chkpt AUROC = 0.7403 ± 0.0878, 
P = 0.05705; Supplementary Table 2). Similar results were obtained 
for the second MSI validation dataset YCR BCIP (Supplementary 
Table 3). Compared with the merged model, w-chkpt was not 
significantly different for MSI prediction in QUASAR (merged 

AUROC = 0.8308 ± 0.0190 vs w-chkpt AUROC = 0.8326 ± 0.0089, 
P = 0.8650) or YCR BCIP (merged AUROC = 0.8943 ± 0.0161 vs 
w-chkpt AUROC = 0.8882 ± 0.0084, P = 0.4647). In other words,  
the performances of the merged model and w-chkpt were on par 
(Fig. 2b,c). Together, these data show that swarm-trained models 
consistently outperform local models and perform on par with cen-
tralized models in pathology image analysis.

SL models are data efficient. Learning from small datasets is a 
challenge in medical AI because prediction performance generally 
increases with increasing size of the training dataset19,20. Therefore, 
we investigated whether SL could compensate for the performance 
loss that occurs when only a small subset of patients from each insti-
tution is used for training. We found that restricting the number 
of patients in each training set to 400, 300, 200 and 100 markedly 
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reduced prediction performance for single-dataset (local) models. 
For example, for prediction of BRAF mutational status in QUASAR, 
training on only a subset of patients in Epi700, DACHS or TCGA 
markedly reduced prediction performance and increased the model 
instability as evidenced by a larger interquartile range of predictions 
in experimental repetitions (Fig. 3a and Supplementary Table 4). 
In particular, for training BRAF prediction models on the largest 
cohort (DACHS), there was a pronounced performance drop from 
an AUROC of 0.7339 ± 0.0108 when training on all patients to an 
AUROC of 0.6626 ± 0.0162 when restricting the number of patients 
in the training set to 200. Performance losses for the model that was 
trained on the centrally merged data were less pronounced down 

to 50 patients per cohort (Fig. 3a). Strikingly, SL was also able to 
rescue the performance: down to 100 patients per cohort, weighted 
SL (w-chkpt) maintained a high performance with AUROCs of 
0.7000 ± 0.0260 for 100 patients, 0.7139 ± 0.0149 for 200 patients 
and 0.7438 ± 0.0093 for 300 patients. The performances of these 
models were not statistically significantly different from that of the 
merged model (P = 0.7726, P = 0.7780, P = 0.2719 and P = 0.7130 
for 100, 200, 300 and 400 patients, respectively; Fig. 3a). Similarly, 
b-chkpt1 and b-chkpt2 maintained high performance (comparable 
to that of the merged model) down to 100 patients per cohort. For 
MSI prediction in QUASAR, w-chkpt performance was compara-
ble to that of the merged model down to 300 patients per cohort 
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(P = 0.4342 and P = 0.7847 for 300 and 400 patients, respectively). 
For 200 patients or fewer, the merged model outperformed local 
models and swarm models (Fig. 3b and Supplementary Table 5). 
Similarly, for MSI prediction in YCR BCIP, single-cohort perfor-
mance dropped as patients were dropped from the training set; the 
merged model and swarm models could partially rescue this perfor-
mance loss, although the merged model outperformed the swarm 
models in this experiment (Fig. 3c and Supplementary Table 6).  
Together, these data show that SL models are highly resilient to small 
training datasets for prediction of BRAF mutational status, and par-
tially resilient to small training datasets for prediction of MSI status.

SL models learn plausible patterns. Medical AI models should not 
only have high performance, but should also be interpretable28,29. 
We assessed the model predictions on a millimeter scale by visual-
izing whole slide prediction heatmaps (Fig. 2d). These maps gener-
ally showed a clear and homogeneous predominance of one of the 
classes. In addition, we assessed the model predictions on a microm-
eter scale by extracting the image patches with the highest scores for 
models trained on 300 patients and all patients from the local train-
ing cohorts (Fig. 4a–c), the merged cohort (Fig. 4d) and the swarm 
models b-chkpt1, b-chkpt2 and w-chkpt (Fig. 4e,f). Qualitatively, 
we found that in many cases there was a histological phenotype 
known to be associated with either BRAF mutational status or MSI/
dMMR, such as mucinous histology and/or poor differentiation30,31. 

However, we also observed that the highly scoring patches identified 
by the TCGA model failed to represent classical histopathological 
features of BRAF mutation; indeed, seven out of nine highly scor-
ing tiles in this group showed abundant artifacts or no tumor tissue 
(Fig. 4c). The observation that such low-information patches were 
flagged by the model as being highly relevant shows that a model 
trained only on TCGA does not adequately learn to detect relevant 
patterns, possibly because of pronounced batch effects in the TCGA 
cohort22. We further investigated the plausibility of detected pat-
terns through a systematic reader study, in which a blinded expert 
scored the presence of five relevant patterns or structures in 1,400 
highly scoring image tiles: tumor-infiltrating lymphocytes (TILs), 
any mucus, poor differentiation, Crohn’s-like lymphoid reaction 
and signet ring cells. We found that out of all models trained on 
300 patients per cohort, swarm-trained models frequently flagged 
image tiles with the presence of relevant patterns or structures, 
compared with locally trained models (Extended Data Fig. 7a,b). 
For BRAF prediction models, TILs (P = 0.019), poor differentiation 
(P = 0.017) and signet ring cells (P = 0.019) were significantly more 
frequently present in tiles selected by swarm-trained models than 
in those selected by locally trained models (Extended Data Fig. 7a). 
Similarly, for MSI/dMMR, these patterns were more abundant in 
tiles selected by swarm-trained models than in those selected by 
locally trained models, but these differences were not statistically 
significant (Extended Data Fig. 7b). For BRAF prediction models 

Trained on Epi700

Top patches for mutated BRAF Top patches for wild-type BRAF

Trained on DACHS

Top patches for mutated BRAF Top patches for wild-type BRAF

Trained on TCGA

Top patches for mutated BRAF Top patches for wild-type BRAF

Trained on all

Top patches for mutated BRAF Top patches for wild-type BRAF

Swarm b-chkpt1

Top patches for mutated BRAF Top patches for wild-type BRAF

Swarm b-chkpt2

Top patches for mutated BRAF Top patches for wild-type BRAF

a b

c d

e f

Fig. 4 | Highly predictive image patches for BRAF prediction. All patches are from the QUASAR test set and were obtained using the median model (out 
of five repetitions) trained on 300 randomly selected patients per training cohort. a–f, Model trained on Epi700 (a), model trained on DACHS (b), model 
trained on TCGA (c), model trained on all three datasets (d), swarm chkpt1 (e), swarm chkpt2 (f). Tiles with red borders contain artifacts or more than 
50% nontumor tissue.
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trained on all patients, we observed no significant difference in 
the abundance of relevant patterns or structures (Extended Data  
Fig. 7c). For MSI/dMMR prediction models trained on all patients, 
TILs were significantly (P = 0.035) more frequently present in 
tiles selected by swarm-trained models than in those selected by 
locally trained models (Extended Data Fig. 7d). In all image tiles 
for highly scoring tiles in the wild-type BRAF and microsatellite 
stability (MSS)/mismatch repair proficiency (pMMR) classes, the 
occurrence of relevant patterns or structures was uniformly low, 
and no statistically significant differences were present. Together, 
these data show that SL-based AI models can generate predictions 
that are explainable and plausible to human experts, and in some 
cases exceed the plausibility of locally trained models as assessed in 
a blinded study.

Discussion
Currently, the total amount of healthcare data is increasing at an 
exponential pace. In histopathology, institutions across the world 
are digitizing their workflows, generating an abundance of data6. 
These image data can be used in new ways—for example, to make 
prognostic and predictive forecasts—with an aim to improve patient 
outcomes3. However, AI requires large and diverse datasets, and its 
performance scales with the amount of training data19,20. To train 
useful and generalizable AI models, institutions should be able to 
collaborate without jeopardizing patient privacy and information 
governance. In 2016, FL was proposed as a technical solution for 
such privacy-preserving distributed AI32. FL enables joint train-
ing of AI models by multiple partners who cannot share their data 
with each other. However, FL relies on a central coordinator who 
monopolizes the resulting AI model, concentrating the power of 
exploitation in the hands of a single entity. Thus, FL removes the 
need for data sharing but does not solve the problem of informa-
tion governance. SL, however, offers a solution to the governance 
problem, providing a true collaborative and democratic approach 
in which partners communicate and work on the same level, jointly 
and equally training models and sharing the benefits25,26,33. Most 
recently, SL has been tested to detect coronavirus disease 2019 
(COVID-19), tuberculosis, leukemia and lung pathologies from 
transcriptome analysis or X-ray images26. Here, we demonstrate 
that the use of SL can enable AI-based prediction of clinical bio-
markers in solid tumors, and yields high-performing models for 
pathology-based prediction of BRAF and MSI status, two impor-
tant prognostic and predictive biomarkers in CRC3,9,34. In the future, 
our approach could be applied to other image classification tasks in 
computational pathology. SL enables researchers to use small datas-
ets to train AI models; co-training a model on many small datasets 
is equivalent to training a model on a single large dataset. This also 
reduces hardware requirements, potentially making SL an option 
for researchers in low-income and middle-income countries.

A possible technical limitation of our study is that we did not 
explicitly investigate differential privacy, but this could be incor-
porated in future work. Although histological images without 
their associated metadata are not considered protected health 
information even under the Health Insurance Portability and 
Accountability Act (HIPAA) in the United States35, any member-
ship inference attack or model inversion attack from shared model 
weight updates can be precluded by implementing additional dif-
ferential privacy measures36. Other technical improvements to the 
SL system are conceivable. For example, different weighting fac-
tors could be explored. A high-quality dataset could be weighted 
more than a low-quality dataset, and a more diverse dataset could 
be weighted more than a homogenous dataset. Another limita-
tion of this work is that the model performance needs to be fur-
ther improved before clinical implementation. Previous work has 
shown that when the sample size is increased to approximately 
10,000 patients, classifier performance will increase19,20. Our study 

shows that SL enables multiple partners to jointly train models 
without sharing data, thereby potentially facilitating the collection 
of such large training cohorts. Finally, previous proof-of-concept 
studies on SL in medical AI relied on virtual machines on a single 
bare-metal device. Here, we improved this by using three physi-
cally separate devices and implementing our code largely with 
open-source software. Although this indicates that SL is feasible 
between physically distinct locations, embedding SL servers in 
existing healthcare infrastructure in different institutions in mul-
tiple countries would probably require substantial practical efforts, 
which should ideally be addressed in research consortia. To assess 
the interchangeability of model data generated by SL projects, 
validation of this technology in large-scale international collab-
orative efforts is needed. Our study provides a benchmark and a 
clear guideline for such future efforts, ultimately paving the way to 
establish SL in routine workflows.
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Methods
Ethics statement. This study was carried out in accordance with the 
Declaration of Helsinki. This study is a retrospective analysis of digital images 
of anonymized archival tissue samples from five cohorts of patients with CRC. 
The collection and anonymization of patients in all cohorts took place in each 
contributing center. Ethical approval for research use of all cohorts was obtained 
from each contributing center. The MI-CLAIM (minimum information about 
clinical artificial intelligence modeling) checklist is available as Supplementary 
Table 7 (ref. 29).

Patient cohorts. We collected digital WSIs of H&E-stained slides of archival 
tissue sections of human CRC from five patient cohorts, three of which were 
used as training cohorts and two of which were used as test cohorts (Table 1). 
The value proposition of SL is to enable geographically distributed partners to 
co-train models without data exchange. Hence, we selected three geographically 
distributed training cohorts, representative of various real-world clinical settings: 
(1) the Northern Ireland Epi700 cohort (n = 661; Extended Data Fig. 2) of patients 
with stage II and stage III colon cancer, whose data were provided by the Northern 
Ireland Biobank40,42 (application NIB20-0346); (2) the DACHS cohort (n = 2,448; 
Extended Data Fig. 3), including samples from patients with CRC at any disease 
stage recruited at more than 20 hospitals in Germany for a large population-based 
case-control study, which is coordinated by the German Cancer Research Center 
(DKFZ)43–45; and (3) the TCGA CRC cohort (n = 632; Extended Data Fig. 4), a 
large collection of tissue specimens from several populations in study centers 
across different countries, but largely from the United States (https://portal.gdc.
cancer.gov). The first test cohort was derived from a clinical trial of adjuvant 
therapy, the QUASAR trial (n = 2,206, Extended Data Fig. 5), which originally 
aimed to determine the survival benefit from adjuvant chemotherapy in patients 
with CRC from the United Kingdom41,46. The second test cohort was the YCR 
BCIP47 cohort (n = 889 surgical resection slides; Extended Data Fig. 6), from a 
population-based study collected in Yorkshire in the United Kingdom. For all 
cohorts, BRAF mutational status and MSI/dMMR48 data were acquired. Despite 
the different geographic origins, the distribution of tumor stages in TCGA, 
DACHS and YCR BCIP is similar (Table 1), whereas in QUASAR, stage III 
tumors are overrepresented, as adjuvant therapy is mainly indicated in stage III 
tumors. We deliberately selected YCR BCIP and QUASAR as test cohorts to 
investigate the robustness of the AI models both on a general population and on 
a clinical trial population; in a clinical trial population, determining molecular 
status is highly relevant for evaluation of treatment efficacy. As the ground truth 
diagnostic methods for MSI/dMMR, immunohistochemistry was used in YCR 
BCIP and QUASAR, and PCR was used in TCGA, DACHS (ref. 49) and Epi700 
(ref. 40). As the ground truth diagnostic methods for BRAF mutational status, 
immunohistochemistry and Sanger sequencing were used in DACHS (refs. 38,39),  
and pyrosequencing was used in QUASAR. In Epi700, BRAF mutation screening  
was performed as part of the ColoCarta panel using a validated mass spectrometry 
-based targeted screening panel of 32 somatic mutations in six genes (Agena 
Bioscience)40. These ground truth diagnostic methods are the clinical state of the 
art in determining MSI/dMMR status50. In YCR BCIP, analysis of BRAF was only 
undertaken for dMMR tumors, and BRAF mutational status was therefore not 
assessed in this cohort in the current study. A CONSORT (Consolidated Standards 
of Reporting Trials) flowchart for each cohort is available as Extended Data Figs. 2–7  
(ref. 51). There was no overlap between the training cohorts and test cohorts.

Principle of SL. The principle of SL is to jointly train a machine learning model 
in different physically separated computer systems. Here, we use SL in a network 
of three physically separate computers (peers). Model weights are sent from each 
partner to the other peers at multiple synchronization (sync) events, which happen 
at the end of each sync interval. Model weights are averaged at each sync event, 
before the training continues at each peer with the averaged parameters. Unlike in 
FL, there is no central instance that always merges the parameters. Instead, smart 
contracts on an Ethereum blockchain (https://ethereum.org) enable the network 
to select any of the peers to perform parameter merging at every sync stop. In this 
setup, the blockchain maintains the global state information about the model. 
We designed, applied and evaluated two types of SL: basic and weighted. Basic SL 
is a simple procedure; assume that the training datasets A, B and C each have a 
different number of patients (A < B < C). We train on all datasets for the same fixed 
number of epochs (five epochs, motivated by previous studies). The system holding 
dataset A will reach the final epoch faster than those holding datasets B and C. At 
this point, the basic model checkpoint b-chkpt1 is created. The systems holding 
datasets B and C will continue until B reaches the final epoch. At this point, the 
basic model checkpoint b-chkpt2 is created. Also at this point, the system holding 
dataset C will stop, because at least two partners are required by default. However, 
the fact that all three systems reach the final epoch at different time points may be 
suboptimal; it would make sense to train all datasets for the same time, until they 
all stop at the same point in time. We have done this and termed it ‘weighted SL’, 
generating w-chkpt. This implies that smaller datasets will be passed through the 
network more times than larger datasets. To compensate for this, smaller datasets 
receive a lower weighting factor. The weighting factor is strictly proportional to the 
number of tiles.

SL implementation. Here, we use the Hewlett Packard Enterprise (HPE) 
implementation of Swarm Learning (‘master’ release of 10 June 2021), which has 
four components: the SL process, the swarm network process, identity management 
and HPE license management26. All processes (also called “nodes” in the original 
HPE implementation) run in a Docker container. The key component is the SL 
process, which contains the image processing components (Extended Data Fig. 1a).  
The SL process sends the model weights to the swarm network process. The 
swarm network process handles peer crosstalk over the network. For identity 
management, we used SPIRE (Secure Production Identity Framework for Everyone 
(SPIFFE) Runtime Environment). A detailed hands-on description of this process 
with a small example dataset and step-by-step instructions to reproduce our 
experiments is available at https://github.com/KatherLab/SWARM (instructions 
for troubleshooting, and a mechanism for users to report issues are also available). 
Our SL setup can also be executed on a cluster with tasks potentially queued. The 
participating peers coordinate the synchronization among each other such that the 
other peers will wait if one peer is not yet ready for synchronization. However, as this 
might be inefficient in terms of computational resources (the other peers are idle if 
the task of one peer is queued), we recommend executing our SL setup on dedicated 
computers, or giving high priority to the execution when performed on clusters.

Image preprocessing and deep learning. For prediction of molecular features from 
image data, we adapted our weakly supervised end-to-end prediction pipeline, which 
outperformed similar approaches for mutation prediction in a recent benchmark 
study52. As an implementation of this pipeline, we used our own image processing 
library, Histopathology Image Analysis (HIA)9. Histopathological WSIs were acquired 
in SVS format. As a preprocessing step, high-resolution WSIs were tessellated into 
patches of 512 pixels × 512 pixels × 3 colors and were color-normalized53. During this 
process, blurry patches and patches with no tissue are removed from the dataset 
using Canny edge detection52. Specifically, we obtained a normalized edge image 
using the Canny() method in Python’s OpenCV package (version 4.1.2) and then 
removed all tiles with a mean value below a threshold of 4. Subsequently, we used 
ResNet-18 to extract a 512 × 1 feature vector from 150 randomly selected patches 
for each patient, as previous work showed that 150 patches are sufficient to obtain 
robust predictions9. Before training, the number of tiles in each class was equalized 
by random undersampling, as described before9,12. Feature vectors and patient-wise 
target labels (BRAF or MSI status) served as input to a fully connected classification 
network. The classification network comprised four layers with 512 × 256, 256 × 256, 
256 × 128 and 128 × 2 connections with a rectified linear unit (ReLU) activation 
function. This approach is a re-implementation of a previously published workflow52. 
Only one model was developed and used, and no other models were evaluated. Only 
one set of hyperparameters was used (Supplementary Table 8) to train the deep 
learning model (based on a previous study52).

Optimizing efficiency of model synchronization. Different choices of sync 
intervals were evaluated on the QUASAR MSI/dMMR prediction task, but not 
on any of the other prediction tasks. This was evaluated for a single model, a 
simple swarm model trained on 200 random patients from each training cohort, 
repeated three times with different random seeds. The sync interval did not have 
a significant effect on classification performance in the range of 1 to 64 iterations 
between sync events (Extended Data Fig. 1c,d). The training time decreased with 
more frequent synchronizations (Extended Data Fig. 1e), indicating that the SL 
time was dominated by network communication overhead (Extended Data Fig. 1e). 
For all further experiments, we used a sync interval of four iterations.

Experimental design and statistics. First, we trained MSI and BRAF classifiers on 
each of the training cohorts individually. Second, all training cohorts were merged, 
and new classifiers were trained on the merged cohort (combining all three training 
cohorts in a single computer system). Third, classifiers were trained by SL, with the 
SL training process initiated on three separate bare-metal servers containing one 
training cohort each. Fourth, all models were externally validated on the validation 
cohorts. Two variants of SL were explored (baseline SL and weighted SL), as explained 
above. For baseline SL, each cohort was trained for a fixed number of epochs, and two 
resulting models were saved at two checkpoints (b-chkpt1 and b-chkpt2). b-chkpt1 
was reached when the smallest cohort concluded the final epoch, and b-chkpt2 was 
reached when the second-smallest cohort concluded the final epoch. In weighted 
SL, only one model checkpoint is generated (w-chkpt). Finally, to investigate data 
efficiency, we repeated all experiments for subsets of 25, 50, 100, 200, 300 and 
400 patients per cohort, randomly selected in a stratified way (preserving class 
proportions). All experiments were repeated five times with different random seeds. 
AUROC was selected as the primary metric to evaluate algorithm performance and 
potential clinical utility. AUROC is the most widely used evaluation criterion for 
binary classification tasks in computational pathology and was chosen to enable a 
comparison with the findings of previous studies54. The AUROCs of five training runs 
(technical replicates with different random seeds) of a given model were compared. 
A two-sided unpaired t-test with P ≤ 0.05 was considered statistically significant. The 
raw results of all experimental repetitions are available in Supplementary Data 1.

Model examination techniques. To examine the plausibility of model 
predictions29, we used three methods: whole slide prediction heatmaps;  
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a qualitative analysis of highly scoring image tiles (patches); and a quantitative, 
blinded, reader study of highly scoring image tiles. First, whole slide prediction 
heatmaps were generated by visualizing the model prediction as a continuous 
value with a univariate color map, linearly interpolating gaps. For whole slide 
prediction heatmaps, the models with median performance (from five models) 
for all model types (three local, one merged and three swarm) trained on all 
patients were used. Second, highly scoring image tiles were generated by using the 
N highest-scoring tiles from the M highest-scoring patients as described before12 
and were qualitatively checked for plausibility. Qualitative plausibility criteria 
were as follows: (1) Is tumor present on the highly scoring tiles?; (2) Are highly 
scoring tiles free of artifacts?; and (3) Is the phenotype subjectively consistent with 
a histological phenotype associated with BRAF mutations and/or MSI/dMMR? 
These criteria were assessed in highly scoring image tiles generated by the median 
model (median performance out of five replicates) for each model type (three local, 
one merged and three swarm), using the model that was trained on all patients, as 
well as the model that was trained on 300 patients per cohort. Third, highly scoring 
image tiles were systematically evaluated by an expert observer (S.F.) in a blinded 
study. In this study, the five highest-scoring tiles for the five highest-scoring 
patients for mutated and wild-type BRAF and MSI/dMMR and MSS/pMMR (1,400 
image tiles total) were assessed for the presence of TILs, the presence of any mucin, 
poor differentiation, Crohn’s-like lymphoid reaction and the presence of signet ring 
cells, based on criteria proposed in ref. 31. Again, for the qualitative reader study, 
the model with the median performance out of five replicates was used.

Hardware. In our setup, three computer systems (all consumer hardware) were 
used for the SL experiments. In detail, the systems had the following specifications: 
system A, 128 GB RAM and two NVIDIA Quadro RTX 6000 graphics processing 
units (GPUs); system B, 64 GB RAM and one NVIDIA RTX A6000 GPU; and 
system C, 64 GB RAM and two NVIDIA Quadro RTX 6000 GPUs. All of the 
systems accessed a 1 GBit s−1 Internet connection.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Some of the data that support the findings of this study are publicly available, and 
some are proprietary datasets provided under collaboration agreements. All data 
(including histological images) from the TCGA database are available at https://
portal.gdc.cancer.gov. All molecular data for patients in the TCGA cohorts are 
available at https://cbioportal.org. Data access for the Northern Ireland Biobank 
can be requested at http://www.nibiobank.org/for-researchers. All other data are 
under controlled access according to the local ethical guidelines and can only be 
requested directly from the respective study groups that independently manage 
data access for their study cohorts. Access to QUASAR and YCR BCIP was obtained 
via Pathology & Data Analytics, Leeds Institute of Medical Research at St James’s, 
University of Leeds, Leeds, UK (https://medicinehealth.leeds.ac.uk/dir-record/
research-groups/557/pathology-and-data-analytics), and access to DACHS was 
obtained via the DACHS study group at http://dachs.dkfz.org/dachs/kontakt.html.

Code availability
Our source codes are available with an example dataset, detailed instructions and 
troubleshooting help at https://github.com/KatherLab/SWARM. All source codes for 
the baseline HIA workflow are available at https://github.com/KatherLab/HIA. All 
source codes for image preprocessing are available at https://github.com/KatherLab/
preProcessing. Our SL implementation requires HPE’s SL community edition, which 
is publicly available under an Apache 2.0 license along with detailed instructions and 
troubleshooting help at https://github.com/HewlettPackard/swarm-learning.
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Extended Data Fig. 1 | Workflow details and effect of synchronization interval. (a) Schematic of the structure of the Swarm Learning network in HPE 
Swarm Learning which was used in this study. (b) Schematic of the training procedure in Swarm Learning. (c) Evaluation of synchronization (sync) interval 
on the model performance. (d) Pairwise (two-sided) t-tests yielded non-significant (p > 0.05) p-values for all pairwise comparisons of the AUROCs 
obtained with 1, 4, 8, 16, 32 and 64 iterations between sync events. (e) Time for training with different sync internal. Abbreviations: WSI = whole slide 
images, MSI = microsatellite instability, SL = swarm learning, SN = swarm network, SPIRE = SPIFFE Runtime Environment. All statistical comparisons were 
made with two-sided t-tests without correction for multiple testing.
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Extended Data Fig. 2 | CONSORT chart for Epi700. Initial patient number in this dataset, exclusions and missing values, and final patient number.
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Extended Data Fig. 3 | CONSORT chart for DACHS. Initial patient number in this dataset, exclusions and missing values, and final patient number.
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Extended Data Fig. 4 | CONSORT chart for TCGA. Initial patient number in this dataset, exclusions and missing values, and final patient number.
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Extended Data Fig. 5 | CONSORT chart for QUASAR. Initial patient number in this dataset, exclusions and missing values, and final patient number.
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Extended Data Fig. 6 | CONSORT chart for YCR-BCIP. Initial patient number in this dataset, exclusions and missing values, and final patient number.
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Extended Data Fig. 7 | Results of the blinded reader study. For each model (seven model types, BRAF and MSI/dMMR prediction tasks, positive and 
negative class), a blinded observer scored the presence of five relevant histopathological patterns or structures in the highly scoring image tiles. (a) 
Presence of relevant patterns or structures in highly scoring tiles in the BRAF mutated class for BRAF prediction models trained on 300 patients per cohort, 
as scored by the blinded observer. P-values indicate a two-sided comparison between the three local models and the three Swarm-trained models for each 
feature. (b) Presence of relevant patterns or structures in highly scoring tiles in the MSI/dMMR for MSI status prediction models trained on 300 patients 
per cohort, as scored by the blinded observer. (c) Same experiment as panel (A), but for the models which were trained on all patients in all cohorts. 
(d) Same experiment as panel (B), but for the models which were trained on all patients in all cohorts. Abbreviations: MSI = mismatch repair deficiency, 
B-Chkpt = basic Swarm Learning experiment checkpoint, W-Chkpt = weighted Swarm Learning experiment checkpoint, TILs = tumor-infiltrating 
lymphocytes, Poor Diff. = poor differentiation, Crohn’s like = Crohn’s like lymphoid reaction, N/A = not applicable (division by zero). All statistical 
comparisons were made with two-sided t-tests without correction for multiple testing.
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