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Abstract—Target tracking often relies on complex models with
non-stationary parameters. Gaussian process (GP) is a model-
free method that can achieve accurate performance. However,
the inverse of the covariance matrix poses scalability challenges.
Since the covariance matrix is typically dense, direct inversion
and determinant evaluation methods suffer from cubic complexity
to data size. This bottleneck limits the GP for long-term tracking
or high-speed tracking. We present an efficient factorisation-
based GP approach without any additional hyperparameters.
The proposed approach reduces the computational complexity
of the Cholesky decomposition by hierarchically factorising the
covariance matrix into off-diagonal low-rank parts. Meanwhile,
the resulting low-rank approximated Cholesky factor can also
reduce the computation complexity of the inverse and the
determinant operations. Numerical results based on offline and
online tracking problems demonstrate the effectiveness of the
proposed approach.

Index Terms—Gaussian process, sensor networks, uncertainty
quantification, factorisation, covariance matrix, hierarchical off-
diagonal matrix, low-rank approximation, Cholesky factorisation,
online tracking

I. INTRODUCTION

Tracking an object’s trajectory is a fundamental task for

various applications including sea surveillance, autonomous

vehicles, and traffic management. In order to improve tracking

performance, a variety of model-based filtering approaches

have been proposed such as [1]. These approaches, however,

rely on well-defined motion models. In most applications, the

actual target dynamic cannot be accurately captured by a model.

Although the multiple-model method can capture complex

behaviours, it suffers from high computational complexity

which is not efficient when a large number of models are

involved. In order to track multiple models, GP-based model-

free methods can be used, which, as non-parametric methods,

are capable of learning unknown functions directly from noisy

data [2].

The use of Gaussian processes (GPs) is supported by efficient

sampling algorithms, a rich methodological literature, and

strong theoretical grounding [3], [4]. Unfortunately, due to

the prohibitive computational and storage demands, exact GPs

cannot be used in Bayesian models with more than a few

thousand observations. It takes O(n3) operations to calculate

the inverse of the covariance matrix, where n is the number of

input data sizes. Meanwhile, the storage of individual matrices

scales at O(n2), can quickly overwhelm the resources of

most modern computers [5]. Since the covariance matrix is a

symmetric matrix and the upper triangular matrix can easily

solve the inverse and determinant. The Cholesky factorisation

is widely used in the GP However, it still requires a cube

computation cost for the factorisation itself.

This paper seeks to solve the online tracking problem. In the

online tracking problem, the hyperparameters must be trained

every step instead of only considering the prediction, since the

input also changes. So there are more concrete challenges than

the general O(n3) complexity. In the optimization process of

the GP, the inverting of the covariance matrix would be repeated

until it finds the optimal value, thereby the computation

complexity would be multiplied. GP would be unable to solve

complex online tracking problems associated with big data.

There have been numerous approximation GP methods devel-

oped in the last decade to counteract these bottlenecks. There

are two tactics to solve this bottleneck: global approximations,

which distil the entire data, and local approximations, which

divide the data for subspace learning [6]. In this paper, we

focus on the global approximation. Subset-of-data is the most

straightforward global approximation GP method. This method

identifies the subset of training data to approximate the full

kernel matrix [7]. However, the limited dataset produces an

overconfident prediction variance due to the limited subset.

Instead of selecting a subset of the training data, inducing

points that are not limited to the existing dataset. The fully-

independent training conditional [8] is the most popular

inducing point method, which removes the dependence between

the inducing data and the actual training data, allowing for a

more stable result. After that, Titsias raised an elegant, sparse

method based on variational inference and Kullback-Leibler

divergence variational, which is called the free energy method

[9], [10]. The computation cost of these methods is O(nm2)
where m is the number of the inducing points. Although

inducing points solve the prediction quickly, this method adds

the inducing points as extra parameters, increasing the workload

when training the hyperparameters and making it easier to fall

into the local optimum [8].

The other global approximation strategy is structure approxi-

mation. Wilson [11] raised a kernel interpolation for a scalable

structured method to transform the matrix to the Kronecker or

Toeplitz structure and reduce the computation cost on these

structures. This method is a variant of the inducing point, which

places the inducing point at the selected location.

Besides, several factorisation-based methods can directly

work on the covariance matrix, such as Cholesky factorisation

which can solve the dense symmetric matrix at O(1/3n3)



computation cost. Ambikasaran also raises a hierarchically

factored into a product of block low-rank updates of the identity

matrix [12].

In this paper, with the inspiration of hierarchical off-

diagonal low-rank (HODLR) structure [12], [13] and Cholesky

factorisation, we design a double factorisation method named

hierarchical off-diagonal low-rank Cholesky factorisation Gaus-

sian process (HCFGP). The HCFGP method offers a fast and

reliable prediction of online tracking in the GP by boosting the

Cholesky factorisation. For the HODLR matrix, all the dense

parts are divided up into a few smaller components and remain

at the diagonal of the matrix. Based on this characteristic,

the HODLR structure can provide a very close approximation

to the Cholesky factorisation method with only O(n log2 n)
cost. The factor L can efficiently solve A−1B for A and B

matrices,at O(n log n) cost. The determinant det
(

K+ σ2I
)

can be calculated by the sum of the diagonal elements of

Cholesky factor L matrix [12]. Here I denotes the identity

matrix. The K matrix is a kernel matrix of the GP, σ - noise

standard deviation and these will be introduced in detail in

Section II.

The main contributions of this work are as follows: (i) The

HODLR decomposition is applied to enhance the Cholesky

decomposition step for the block diagonal matrices of the

GP kernel. The HODLR factorisation enables the Cholesky

decomposition only requires O(n log2 n), inverse in O(n log n)
operations and determinant, in O(n) operations; (ii) A compar-

ison of computationally to other efficient factorisation based

approaches for GP regression is presented; (iii) The perfor-

mance of the considered algorithms is validated over target

tracking in sensor networks. Results demonstrate reduction

both the training and predicting time at a comparable level of

accuracy with respect to the non-factorised GP algorithm.

The paper is organised as follows. Section II reviews funda-

mental knowledge about GP methods and related approximate

GP efficiency acceleration methods. Section III describes the

newly developed matrix factorisation for HODLR matrices.

The following Section IV presents efficient GP solutions based

on the HODLR method. Performance evaluation and validation

results over tracking testing examples with data from sensor

networks are presented in Section V. Section VI summarises

the results and discusses future work.

II. THEORETICAL BACKGROUND KNOWLEDGE

A. Overview of Gaussian Process

This section provides a brief overview of the GP regression

method and the associated computational process for inference

and learning process. In statistics, GP regression originally used

in geostatistics is called Kriging and is a method of interpolation

based on the GP governed by prior covariances [3]. Under

suitable assumptions on the priors, GP regression provides the

best linear unbiased prediction of the observations. From the

algorithm perspective, a GP can also be assumed as a stochastic

process used to map a nonlinear function from an input space

to an output space. The problem of learning with GP is solved

by learning the hyperparameters of the kernel function.

Assume that the training dataset D comprised of n input

vectors X = {x1, . . . ,xn}
⊤

and the observation vector y =
(y (x1) , . . . , y (xn))

⊤
are given:

f ∼ GP(f̄(x), k (x,x′)). (1)

y = f(x) + ε, ε ∼ N
(

0, σ2
)

, (2)

where f̄ : X → R is the mean function and k : X ×X → R is

the kernel function. The mean function is specified as µ(x) =
E[f(x)] where is often taken as 0. The kernel function controls

the smoothness of GP specified as k (x,x′) = cov (f(x)f (x′)).
In (2), ε is the additive independent identically distributed

Gaussian measurement noise and E[·] is the mathematical

expectation operation. The variance σ2 ̸= 0 [3].

Then we define a GP model f∗ which follows the Bayesian

approach to predict the output Y∗ for the new input X∗ with

the joint distribution y which can be written as
[

y

f∗

]

∼ N

(

0,

[

Knn + σ2I KnN

KNn KNN

])

. (3)

The prior mean is set up to be equal to zero, and the conditional

distribution of (3) can be written as

f∗ | X,y, X∗ ∼ N
(

f∗, cov (f∗)
)

, (4)

where

f∗ = µX∗

+KX∗,X(KX,X + σ2I)−1y (5)

cov (f∗) = KX∗,X∗
−KX∗,X(KX,X + σ2I)−1KX,X∗

. (6)

From equations (5) and (6), the computational bottleneck to

GP algorithms is to evaluate the hyperparameters and unknown

function. The inverse of the covariance matrix K requıring

O
(

n3
)

operations and O
(

n2
)

storage. So, the predictive mean

and variance respectively cost O(n) and O
(

n2
)

for each test

point X∗.

B. Adaptation of Hyperparameters

Maximum likelihood estimation for parameter-fitting given

observations from a GP in space is a computationally-

demanding task that restricts the use of such methods to

moderately-sized data-sets. The hyperparameters θ of the kernel

function Kθ are learned directly by maximizing the negative

log marginal likelihood:

− log p(y | θ) ∝ y⊤(Kθ + σ2I−1)y + log
∣

∣Kθ + σ2I
∣

∣ (7)

This paper proposes a factorisation-based framework for

evaluating log-likelihood and its gradient (i.e., score equations).

The approximation of the Cholesky factor gives a quickly and

accurately computation for the maximum-likelihood estimation.

The details are explained in Section IV

III. HIERARCHICAL MATRICES

This section would briefly introduce the HODLR matrices

[14]. As we mentioned in Section II, the main reason for

the cube computation cost in GP regression is the inverse

of the dense covariance matrices. To handle the big dense

covariance matrix, many mathematicians developed different



Fig. 1. Level 3 HODLR matrix, the grey blocks represent the matrices that need to be stored as the HODLR matrix.

strategies to rearrange the matrix. The HODLR matrix as a

sparse representation of matrix is one of the shining structures

to solve the covariance matrices.

A. The Structure of the HODLR Matrix

In accordance with the different low-rank approximation

methods, the HODLR matrix has many versions or variants,

but its main structure remains the same. In general, HODLR

matrices are defined via a recursive block partition [15]. This

method aims to do the low-rank approximation to the off-

diagonal blocks and remain the diagonal parts. According to

the k-dimensional tree, we sort the data points recursively

[13]. At each level of the decomposition it would require at

most O(n) time or often much faster. Here is an example of

a two-level decomposition in HODLR matrix.

A real symmetric matrix K ∈ R
n×n can be decomposed to

a two-level HODLR matrix (the notation are different to the

last section):

K =

[

K1 U1V
T
1

V1U
T
1 K2

]

, (8)

the diagonal blocks can be further decomposed to:

K1 =

[

K
(2)
1 U

(2)
1 V

(2)T

1

V
(2)
1 U

(2)T

1 K
(2)
2

]

,

K2 =

[

K
(2)
3 U

(2)
2 V

(2)T

2

V
(2)
2 U

(2)T

2 K
(2)
4

]

,

(9)

where the K1 and K2 are the n/2j × n/2j diagonal block

matrices from the original matrix K and U(j), V(j) matrices

are n/2j × r matrices with r ≪ n. j is the level of

decomposition which are 2 in this example and rank r is

depends on the desired accuracy of the low-rank approximation.

A higher rank results in less precision loss and a higher

computation cost.

In Fig. 1, the matrix K1 represent the left top grey block

in the second square, K2 are the left bottom block. U1, V1

are the tall and thin rectangle. Then the level 2 decomposition

would result in the third square. The white parts in the square

are the approximation part which help us to solve the dense

matrix easily.

B. Fast Low-Rank Approximation

The most significant step in constructing a HODLR matrix

is to compress the off-diagonal blocks into low-rank small

matrices U, V . Moreover, these ”tall” and ”thin” matrices are

the most time-consuming step in the factorisation of HODLR

method. In this part, we will briefly discuss these methods.

The most important decomposing method: the singular value

decomposition (SVD). For a matrix A ∈ R
m×n. Then there

exists a factorisation of the form

A = UΣV∗ (10)

where U ∈ R
m×m,V ∈ R

n×n are unitary matrices and Σ ∈
R

m×n is a diagonal matrix with non-negative entries on the

diagonal, i.e., σk = Σkk ≥ 0. And the eigenvalue are sort from

big to small. The SVD method would offer us the optimal low-

rank approximation according to the outcome of the SVD. Keep

the first column or row of U and V that has the dominant

eigenvalue (diagonal of Σ) [16]. However, SVD is a very

expensive computation method. For the square matrix in n×n
the SVD method costs O(n3) since it compute the whole matrix.

Although it leads to very reliable results, it is meaningless to

apply this method to accelerate the GP.

Recently, in papers [14], more aggressive strategies have

been proposed, such as partially pivoted adaptive cross approx-

imation [17] or some analytical techniques such as Chebyshev

interpolation [18], which can further reduce computation

costs to O(rn). But it should be noted that in GP once

the precision of the approximation is too high, the matrix

cannot be invested. So the other popular method which called

rank-revealing QR factorisation are used. Similar to the SVD

method, rank-revealing QR are approximate the matrix by

choosing a part of the matrix such as the ’best’ rows or

columns. The computation for these methods cost O(rn2)
[19]. The sub-sampling error estimate would be accurate to

near machine precision if the underlying matrix (covariance

kernel) is sufficiently smooth [20].

IV. EFFICIENT GAUSSIAN PROCESS WITH FACTORISATION

BASED SOLUTIONS

As mentioned in Section Section II, the main bottleneck

of the GP is the cube computation cost. In the practical, the

standard GP is always solved by Cholesky decomposition

[3] [21]. Since the covariance matrix is a symmetric positive



definite matrix, Cholesky decomposition can be used to reduce

computation costs. The other classic decomposition method:

lower-upper (LU) decomposition would take O(1/3n3) time,

and the Cholesky method only requires half of the computation

cost for the covariance matrix O(1/6n3), around half time

cost. However, it still involves the cube computation cost since

the entire matrix should be calculated.

Back to the HODLR matrix, there are different strategies to

solve the inverse and determinant of the HODLR matrix such

as continuous multiplication [12], [13]. In this paper, since

the covariance matrix is a symmetric positive definite matrix,

we apply the Cholesky decomposition to the HODLR matrix.

The special structure of the HODLR matrix allows us to do it

easily with only O
(

n log2(n)
)

computation cost.

A. HODLR Matrix with Cholesky factorisation

As the diagonal parts of the HODLR are still positive

definite matrices, we only need to calculate the small diagonal

matrices and a few low-rank matrices (U and V), rather than

the entire matrix. So for the HODLR matrix K, an inexact

Cholesky factorisation can be done as K ≈ LLT with the

lower computation cost. This process can be done recursively,

here is an 1 level example: the K matrix is a HODLR matrix,

U1V
T
1 are the low rank block, K1, K2 are the dense block

in the form

K =

[

K1 U1V
T
1

V1U
T
1 K2

]

, L =

[

L11 0
L21 L22

]

(11)

Since K ≈ LLT , it leads to the equations

K1 = L11L11, (12)

U1V
T
1 = V1U

T
1 = L11L21, (13)

K2 = L21L
T
21 + L2

22. (14)

Therefore the Cholesky factorisation in HODLR structure can

be proceed in the following step:

1) Compute Cholesky factors L11 of K1 from (12)

2) Compute L21 = L−1
11 U1V

T
1 from (13)

3) Compute L22 of K2 − L12L
T
21 from (14)

In this process only L11,L22 are the dense matrix. Each of these

three steps can be addressed using Cholesky factorisation. In the

level 1 case the matrices size is n/2, we can further reduce size

of the matrices by increase the level of HODLR decomposition.

The computation cost of these process is O
(

n log2(n)
)

[22].

B. Fast Solving Algorithm for Finding the Inverse Matrix and

its Determinant

After we get the HODLR factorisation and the Cholesky

factorisation. The inverse and the determent of the matrix can

be solved in a very low computation cost. In this section, we

will briefly review the algorithm used for the inverse and the

determinant.

The inverse here can be solved as a linear system which is

same to the use the Cholesky factorization to solve the matrix

inversion. First set the A = K + σ2
nI. The matrix inversion

can be regarded as get the x for Ax = b. Then based on the

Cholesky factorization

LL⊤x = b (15)

Assume for some y let Ly = b.

LL⊤x = Ly (16)

L⊤x = y (17)

Thus, if we can solve for y in Ly = b, and then solve for x

in L⊤x = y, we will have solved for the same x that solves

Ax = b. Let the notation A\b denote the vector x that solves

Ax = b. Then we have

x = L⊤\(L\b) (18)

To gain the matrix y, based on Ly = b. To be specific, with

the same matrix in (11)

L =

[

L11 0
L21 L22

]

, (19)

Y =

[

y11 y12

y21 y22

]

, (20)

B =

[

B11 B12

B21 B22

]

, (21)

where a low-rank matrix L21 and HODLR matrices L11,L22.To

find the Y11,Y12:

L11y11 = B11, L11y12 = B12. (22)

To find y11,y12. Afterwards, we get y21,y22 from

L22Y21 = B21 − L21y11, L22y22 = B22 − L21y12 (23)

In this case the linear system can be solved with

O (n log(n)) [22]. Meanwhile, det
(

K+ σ2
nI
)

can be effi-

ciently computed using the Cholesky factor L of K + σ2
nI

:

det
(

K+ σ2
nI
)

= det
(

LL⊤
)

= det(L) det
(

L⊤
)

The reason det(L) is efficient to compute is because L looks

like the following, Since the determinant can be written as the

sum of the products of the elements in the top row with their

respective minors [23] the first step in the computation can be

written as

ℓ1,1 ×











ℓ2,2 0 · · · 0
ℓ3,2 ℓ3,3 · · · 0

...
. . .

...

ℓn,2 · · · · · · ℓn,n











Continuing this logic, determinant can be write as the sum of

the diagonal of the L matrix:

det(L) =

n
∏

i=1

ℓi,i. (24)

The determinant is obtained by only O(n) computation cost,

which can be ignored.



C. Computational Complexity

We propose a three-step factorisation method to solve the

GP: (i) constructing a HODLR factorisation by computing the

low-rank factors of all off-diagonal blocks, (ii) applying the

Cholesky factorisation to the symmetric HODLR matrix, (iii)

solving the inverse and determinant based on the factor of

Cholesky factorisation.

In the first step, the low-rank approximation method is

the primary factor influencing the computation cost. This

paper applies the Householder QR decomposition with column

pivoting [24] to the off-diagonal block. This algorithm is

terminated when an upper bound for the spectral norm of

the remainder is below ϵ times the maximum pivot element. If

r denotes the HODLR rank of the output, this procedure has

complexity O
(

rn2
)

.

For the Cholesky factorisation on HODLR matrix, Bal-

lani [22] proposed a detailed calculation process which results

in O
(

n log2(n)
)

costs. Then linear systems Ax = b with the

lower triangular HODLR matrix requires additional cost of

O(n log(n)) and O(n) to sum the diagonal elements of the

determinant.

V. PERFORMANCE VALIDATION

In this section, we will test the performance of the new

factorisation GP on solve the synthetic data and the tracking in

sensor network . All these experiments were run on a laptop

with AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz

and 8.00 GB RAM.

In this section, we will evaluate the computation time take

and the accuracy of the HCFGP method. The standard GP

which inverts the covariance matrix directly is used as the

benchmark in this scheme. We also apply the LU and Cholesky

factorisation method to compare with the HCFGP method since

all these methods are directly factorisation-based methods. The

accuracy are represent by the root mean squared error (RMSE)

between the prediction to the true data. The accuracy of HCFGP

method are rely on the tolerance of the low rank approximation.

A smaller tolerance will leads a more accuracy approximation

with higher computation cost. Here we select the tolerance

as 0.00001 as a trade-off. This solution relies on maximum

likelihood estimation (7) for learning of the hyperparameters.

A. Squared Exponential Kernel

This experiment uses the most common kernel function: the

squared exponential kernel

K (xi, xj) = σ2 exp

(

−
(xi − xj)

2

2l2

)

, (25)

which is appropriate for modelling smooth functions. There

are two hyperparameters in this kernel, the length scale l
determines the length of the ’wiggles’ in your function and the

variance σ2 determines the average distance of your function

away from its mean as a scale factor.

B. Synthetic Data

The simultaneously modeling the following function:

y = 0.3x+ 1.2 + sin (x) + ϵ, (26)

where ϵ is the noise with standard deviation 0.5. Then randomly

pick n initial xi from [−2, 2] and the real input x of the training

data is x = 1 + 4xi + sign(xi) which clusters the training

data into two clusters. The 10000 inputs x∗ are isometric take

from -8 to 10 for the prediction. As a directly method, HCFGP

and other factorisation methods can work on the training and

prediction at same time. So here we record the time taken for

training and prediction separately. Table I shows the time take

for training of the hyperparameters and Table II shows the

time needed for the prediction.

TABLE I
THE TIME FOR TRAINING THE HYPERPARAMETERS

Time (second)

Data size 1000 2000 5000 10000

Invert 2.41 22.19 299.73 1480.09

LU 2.27 28.67 277.12 1506.74

Chol 1.73 20.758 204.45 986.98

HCFGP 2.28 18.45 143.39 438.51

TABLE II
THE TIME FOR PREDICTION OF THE GP

Time (second)

Data size 1000 2000 5000 10000

Invert 0.64 2.19 19.63 97.22

LU 0.67 2.82 17.86 87.28

Chol 0.54 1.902 11.11 57.37

HCFGP 0.37 1.03 4.77 16.81
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Fig. 2. The running time for different factorisation methods

In Table I, when the data size is more than 2000 the HCFGP

method takes less time to learn the hyperparameter than other

methods. In Table II, when the data size is more than 1000, the

HCFGP method contributes to time reduction in the calculation

of the prediction step. This result demonstrates that the HCFGP

method reduces the computational costs in both training and

prediction.



However, when the data size is less than 1000, the training

process would take longer than the other methods. Meanwhile,

the HCFGP has the shortest prediction time in prediction for

1000 data sizes. This phenomenon is caused by the uncertainty

of the low-rank approximation method. Since the learning

process is a repetition of the single HCFGP, the rank r
of a low-rank approximation would be high to meet the

tolerance under certain circumstances. The HCFGP based on

QR decomposition, which requires O
(

rn2
)

for the first step,

would be no more competitive in this circumstance when the

data size is small.

At last, in Table III, the RMSE of all these factorisation based

method are very close the the benchmark (standard GP). It

also demonstrate the HCFGP method achieves a high accuracy

of the prediction.

TABLE III
THE RMSE FOR THE PREDICTION WITH DIFFERENT FACTORISATION BASED

GP METHOD

RMSE (meter)

Data size 1000 2000 5000 10000

Invert 1.35 1.21 1.10 0.98

LU 1.35 1.21 1.05 0.98

Chol 1.37 1.21 1.05 0.98

HCFGP 1.36 1.21 1.05 0.99

C. Testing Scenarios

This section presents the evaluation of the HCFGP GP

methods over a sensor network with 200 randomly distributed

sensors in 1(km2) two-dimensional square regions. The sen-

sors’ sensing range and the trajectory of one moving object of

interest is represented in Fig. 3. There are two scenarios for

this experiment. Trajectories of moving objects are only shown

as long as at least one sensor contains the object in its range.

Performance of sparse approximation GP methods is eval-

uated in two manoeuvring examples and over 30 Monte

Carlo independent runs. Here, the experiment consists of four

scenarios. Testing scenarios in which the motion models used

to generate the trajectory of the targets are the same models

used in the tracking algorithms are called matched scenarios.

• S1 the target trajectory is generated based on the nearly

constant velocity model in the straight line, and the

velocity changes at each pre-defined turning point.

• S2 The target trajectory is generated by the Singer

acceleration model. The maximum possible acceleration

is 2 m/s2, the probability of non-acceleration is 0.3.

The main objective of our factorisation-based method is to

reduce the computation cost. Based on the trajectory the noise

are adding to this scenarios. To evaluate HCFGP method in

the big dataset, each trajectory would generate multiple data

with Poisson distribution with the additional noise. Here is an

example for S1 with 3000 observations size and S2 with 1500

observations size in Fig. 3.

D. Offline Tracking

The performance of the HCFGP method has been demon-

strated in both the training and prediction processes. In each of
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Fig. 3. S1 is a wide-angle turn matched scenarios, S2 is a random speed
scenarios, where the green circles are the sensing range, the red point are the
sensor location, the blue line is the object trajectory and the purple points are
the sensor measurements.

the following tables, the timings are provided for the sum of

training and prediction. Before testing online tracking, we first

validate the performance of HCFGP on the offline tracking.

Here we trade three-quarters of the data as training data, and

the rest are the testing data. Since the 1D GP method is applied,

we train the x and y, respectively. Here the data size is no

more than 10000, so we set the minimum block size of the

HCFGP matrix as 600. All offline results are collected from

30 Monte Carlo runs. The HCFGP The following is the result

of the offline tracking for different factorisation methods:

TABLE IV
THE TIME TAKE FOR FACTORISATION METHODS IN S1 OFFLINE TRACKING

Time (second)

Data size 600 1200 3000 8000

Invert 1.12 9.88 39.53 508.82

LU 1.32 11.43 43.27 528.34

Chol 0.99 9.01 32.55 478.25

HCFGP 1.06 9.08 27.12 267.94

TABLE V
THE TIME TAKE FOR FACTORISATION METHODS IN S2 OFFLINE TRACKING

Time (second)

Data size 1500 2500 5000 8000

Invert 9.90 28.65 162.70 648.92

LU 11.12 32.03 173.00 668.97

Chol 8.19 22.71 114.08 416.42

HCFGP 8.18 21.84 86.22 276.95

Tables IV and V indicate that the HCFGP method reduces

the time cost for the GP when the data size is greater than



3000. The LU decomposition has the longest take in almost all

data sizes. The standard Cholesky decomposition is competitive

when the data size is less than 3000. Obviously, in the large

data size, our HCFGP method takes less than 300 seconds for

the 8000 data size, which is significantly faster than another

option.

During the same period, the tracking performance is repre-

sented by the RMSE. As illustrated in Table VI and VII, the

HCFGP only has a very small loss of accuracy in different data

sizes compared to other methods. This result demonstrates that

the HCFGP method can meet our theoretical expectations to

reduce the time taken of the GP to solve the tracking problems

with reliable performance.

TABLE VI
THE PERFORMANCE OF FACTORISATION METHODS ON THE OFFLINE

TRACKING IN S1

Invert LU Chol HCFGP

Data size 600

RMSE-X(m) 3.87 3.87 3.87 3.84

RMSE-Y(m) 5.03 5.03 5.03 5.05

Data size 1200

RMSE-X(m) 4.39 4.39 4.39 4.40

RMSE-Y(m) 5.17 5.17 5.17 5.17

Data size 3000

RMSE-X(m) 4.70 4.70 4.70 4.70

RMSE-Y(m) 6.47 6.47 6.47 6.47

Data size 8000

RMSE-X(m) 5.71 5.73 5.71 5.73

RMSE-Y(m) 9.25 9.24 9.24 9.25

TABLE VII
THE PERFORMANCE OF FACTORISATION METHODS ON THE OFFLINE

TRACKING IN S2

Invert LU Chol HCFGP

Data size 1500

RMSE-X(m) 2.22 2.22 2.22 2.22

RMSE-Y(m) 3.72 3.72 3.72 3.72

Data size 2500

RMSE-X(m) 2.21 2.22 2.22 2.24

RMSE-Y(m) 1.77 1.77 1.77 1.77

Data size 5000

RMSE-X(m) 2.09 2.09 2.09 2.09

RMSE-Y(m) 1.58 1.58 1.58 1.58

Data size 8000

RMSE-X(m) 1.61 1.61 1.61 1.61

RMSE-Y(m) 1.75 1.75 1.75 1.75

E. Online Tracking

Online tracking is a repeat of offline tracking in every step

of the tracking process with only a single prediction. In this

scenario, we divide all the training data here into 120 time steps.

For each time step, we learn the hyperparameter and predict

the object state. The hyperparameters are learned recursively.

The previous iteration of the optimize would be applied as

the initial value of the next iteration to reduce the number

of iterations required for convergence. Same as the offline

tracking, we apply the SE kernel (25) to predict the x and y
direction separately. Here are the performances of each method:

TABLE VIII
THE TIME TAKE FOR FACTORISATION METHODS IN S1 ONLINE TRACKING

Time (second)

Data size 1200 2000 4000 6000

Invert 99.99 367.34 2172.65 12202.07

LU 111.23 412.60 2358.82 13716.65

Chol 77.02 291.81 1811.69 8636.39

HCFGP 81.06 278.49 1223.03 5302.46

TABLE IX
THE TIME TAKE FOR FACTORISATION METHODS IN S1 ONLINE

TRACKING

Time (second)

Data size 1500 2500 5000 8000

Invert 46.59 144.64 1132.32 3244.17

LU 49.91 157.14 1192.65 3458.21

Chol 36.26 125.35 830.32 2457.68

HCFGP 47.92 126.70 701.60 1453.30
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Fig. 4. The time take for different factorisation method for offline tracking

Tables VIII and IX show that the Cholesky decomposition

method is faster than the standard GP and LU decomposition.

However, when the data size is more than 3000, the time

taken for the HCFGP has a clear advantage compared to the

other methods. It proves the HCFGP method does improve

the Cholesky decomposition in large data sizes. As shown in

Figure 4, the HCFGP will significantly reduce the computation

time for the larger data sizes. The RMSE result is shown in

Table X and XI. The error loss of the HCFGP during the

approximation can be ignored if we use the standard GP as

the benchmark. These results demonstrate the efficiency of the

HCFGP method in solving online tracking problems.

VI. CONCLUSIONS

In this paper, a factorisation-based model-free GP is raised

to solve the bottleneck of the cubic computational cost for

GP in the tracking problem. In the HCFGP factorisation, only

the diagonal parts of the covariance matrix are considered

for the Cholesky decomposition. This method only requires

O(n log2 n) cost for Cholesky decomposition, inverse in

O(n log n) operations and determinant in O(n) operation. The

performance of this method is proved in both online and offline

tracking. Future work will focus on applying more aggressive

low-rank approximations strategies and combine with sparse

approximation GP methods.



TABLE X
THE PERFORMANCE OF FACTORISATION METHODS ON THE

ONLINE TRACKING IN S1

Invert LU Chol HCFGP

Data size 600

RMSE-X(m) 14.70 14.70 14.70 14.70

RMSE-Y(m) 7.67 7.67 7.67 7.67

Data size 1200

RMSE-X(m) 15.46 15.46 15.46 15.46

RMSE-Y(m) 6.23 6.23 6.23 6.23

Data size 3000

RMSE-X(m) 13.95 13.95 13.95 13.94

RMSE-Y(m) 5.75 5.75 5.75 5.79

Data size 8000

RMSE-X(m) 18.61 18.61 17.45 17.45

RMSE-Y(m) 16.38 16.38 16.38 16.38

TABLE XI
THE PERFORMANCE OF FACTORISATION METHODS ON THE

ONLINE TRACKING IN S2

Invert LU Chol HCFGP

Data size 1500

RMSE-X(m) 8.24 8.24 8.24 8.24

RMSE-Y(m) 7.32 7.32 7.32 7.32

Data size 2500

RMSE-X(m) 8.60 8.60 8.60 8.60

RMSE-Y(m) 6.74 6.74 6.74 6.74

Data size 5000

RMSE-X(m) 12.97 12.97 12.97 12.97

RMSE-Y(m) 10.61 10.61 10.61 10.61

Data size 8000

RMSE-X(m) 13.10 13.10 13.10 13.10

RMSE-Y(m) 10.89 10.89 10.89 10.89
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