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Neural Encoding and Decoding with a Flow-based

Invertible Generative Model
Qiongyi Zhou, Changde Du, Dan Li, Haibao Wang, Jian K. Liu, Huiguang He*, Senior Member, IEEE

Abstract—Recent studies on visual neural encoding and
decoding have made significant progress, benefiting from the
latest advances in deep neural networks having powerful
representations. However, two challenges remain. First, the
current decoding algorithms based on deep generative models
always struggle with information losses, which may cause blurry
reconstruction. Second, most studies model the neural encoding
and decoding processes separately, neglecting the inherent dual
relationship between the two tasks. In this paper, we propose
a novel neural encoding and decoding method with a two-
stage flow-based invertible generative model to tackle the above
issues. First, a convolutional auto-encoder is trained to bridge
the stimuli space and the feature space. Second, an adversarial
cross-modal normalizing flow is trained to build up a bijective
transformation between image features and neural signals, with
local and global constraints imposed on the latent space to
render cross-modal alignment. The method eventually achieves
bi-directional generation of visual stimuli and neural responses
with a combination of the flow-based generator and the auto-
encoder. The flow-based invertible generative model can minimize
information losses and unify neural encoding and decoding
into a single framework. Experimental results on different
neural signals containing spike signals and functional magnetic
resonance imaging demonstrate that our model achieves the best
comprehensive performance among the comparison models.

Index Terms—Neural encoding, neural decoding, normalizing
flow, cross-modal generation

I. INTRODUCTION

RECENTLY, visual neural encoding and decoding have

become increasingly important. Visual neural encoding

refers to predicting neural responses to visual stimuli [1],

[2], [3], while visual neural decoding means decoding the

information of visual stimuli by identification [4], [5], classifi-

cation [6], or reconstruction [7] [8]. Exploration of the intrinsic

relationship between visual stimuli and neural representations
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can provide not only deep insight into the neural mechanisms

and brain-inspired intelligence but also algorithmic support for

practical applications, such as the brain-computer interface [9],

[8] and the decoding of mental imagery [10].

Many studies have investigated the visual neural encoding

and decoding of various types of neural recordings, mainly

including the spike signals of retinal ganglion cells (RGCs)

and functional magnetic resonance imaging (fMRI) of the

brain visual cortex. Initially, the studies utilized the Linear-

Nonlinear Poisson model (LNP) [11] and the Generalized

Linear Model (GLM) [12] to model RGCs. Recently, encoding

models based on machine learning [13], [14] and deep learning

methods [1], [2] have unlocked advances in the RGC encoding

of natural stimuli. The encoding models of the cerebral visual

cortex typically consist of two stages [4]. First, the model

extracts various feature maps from stimuli, such as Gabor

wavelets [4] and features extracted by deep neural networks

(DNNs) [3], [15], [16]. Then, linear mappings establish a

link from the feature space to the activity space. Stimuli

reconstruction is the most challenging task of visual neural

decoding. As a result of the powerful capability of deep

generative networks, visual reconstruction from neural spikes

of RGCs [8] and voxel responses of the human visual cortex

[7], [10] has made progress.

In general, deep learning has boosted research on visual

neural encoding and decoding. However, two challenges

remain.

1) Existing models based on Variational Auto-Encoders

(VAEs) [17] and Generative Adversarial Networks

(GANs) [18] suffer from information losses, which are

essentially attributed to irreversible networks. One of

the consequences is the blurry decoded images of the

VAE-based models [7], [19]. Several studies [20], [21]

have designed generators by combining VAE and GAN

to avoid blurry reconstruction, but information losses

will always occur as long as generative networks are

irreversible.

2) Most algorithms are designed exclusively for encoding

or decoding tasks, neglecting the dual relationship

between them. Simultaneous training of dual tasks can

be advantageous for cross-modal feature alignment and

can also reduce training expenses and improve general-

ization, as reported by the study on multi-task learning

[22]. In practice, the unified framework can favor the

performance evaluation of neural encoding algorithms

or visual neuroprostheses via visualization [8]. Studies

in [15], [19] linked these dual tasks by developing

encoding and decoding models that share feature space,
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but the two tasks were learned independently. A previous

study in [23] simultaneously trained neural encoding and

decoding using a Joint Multi-modal Variational Auto-

Encoder (JMVAE) [24]. However, as mentioned in the

first item, the main disadvantage of the model is the

blurry reconstruction.

Almost all studies on visual neural encoding and decoding

meet at least one of the challenges mentioned above. In this

paper, we try remedies for both of the above issues.

1) We develop invertible network generators for neural

encoding and decoding tasks. Specifically, we introduce

alternative generative networks called normalizing flows

[25] that are composed of a cascade of bijective

transformations. Unlike VAE and GAN, normalizing

flows ensure information integrity during generation.

Additionally, normalizing flows can directly fit the

real distribution through the Maximizing Likelihood

Estimation (MLE). The approach is superior to the

optimization of VAE on the lower bound to the marginal

likelihood and the adversarial learning of GAN, which

is at risk of unstable training.

2) We design a bi-directional cross-modal generation model

to integrate neural encoding and decoding into a single

framework and train them simultaneously. We regard

neural encoding and decoding as processes of cross-

modal generation. Neural encoding refers to the process

of generating neural responses from stimuli, while neural

decoding refers to the inverse process. Furthermore, the

dual tasks share a common feature space.

Specifically, we propose a FLow-based Invertible Gener-

ative model (FLIG) for neural encoding and decoding. The

model has two stages. In the first stage, a Convolutional

Auto-Encoder (CAE) is trained to extract features from

visual stimuli. In the second stage, a cross-modal normalizing

flow with discriminators is trained to enable the invertible

generation of image features and neural signals. The flow-

based generator and the pretrained CAE are combined to

establish bi-directional mappings between the stimulus space

and the neural activity space. To close the gap between

the heterogeneous modalities, we impose both local and

global constraints on the latent variables of the cross-modal

normalizing flow. The former is called the Mean Square

Error (MSE), which minimizes the point-to-point distance

between each pair of latent variables. The latter is a second-

order Representational Similarity Analysis (RSA) [26], which

forces the inter-modal representational similarity matrix to

be similar to the intra-modal matrix. In this way, the latent

representations of two modalities can be better aligned with

each other. Cycle-consistency loss [27] is a common issue in

cross-modal generation. In this paper, we exploit invertible

normalizing flows as the generator. Thus, the bi-directional

generation of neural signals and image features is completely

cycle-consistent [28]. As long as the CAE is properly trained

in the first stage, the cycle-consistency loss of the cross-modal

generation of neural signals and stimuli can be negligible.

In summary, the main contributions of our paper are listed

as follows.

1) We propose a novel neural encoding and decoding

method with a flow-based invertible generative model

that simultaneously learns two dual tasks with one

training.

2) The flow-based model not only has a powerful capability

to extract image features but also achieves bi-directional

invertible generation while preserving details and cycle

consistency.

3) We design local and global constraints on the modal-

specific latent spaces to ensure domain alignment

between the two heterogeneous modalities.

4) Experimental results on different neural signals demon-

strate the powerful generalization of our model. FLIG

achieves the best comprehensive performance among all

comparison methods when various evaluation metrics

are considered.

II. RELATED WORK

A. Visual Neural Encoding and Decoding

Visual neural encoding and decoding of RGCs and the

visual cortex have been of great importance.

1) Visual neural encoding: Classical methods of RGC

neural encoding include linear-nonlinear models (LNs) and

generalized linear models (GLMs). A linear filter and a

nonlinear transformation are used to fit image stimuli into

spike rates. Due to the complexity gap between models

and real neural circuits, traditional models only fit responses

to simple artificial stimuli well but show an unsatisfactory

generalization to natural stimuli. Studies have attempted to use

findings of neuroscience as prior knowledge [29] or resorted

to machine learning methods [14] to strengthen the modeling

capabilities. Recently, deep neural networks equipped with

a powerful capacity for representation have emerged as a

brand-new modeling technique for RGCs. Encoding models

of RGCs based on convolutional neural networks (CNNs)

[1], [30], [31] and recurrent neural networks (RNNs) [2]

perform significantly better at describing RGC responses to

natural stimuli. The neural encoding of the visual cortex

is more complex. Classical models contain two stages [4].

First, the stimuli are projected to the feature space via a

nonlinear transformation. The feature maps can be Gabor

wavelets [4], semantic features [5], or DNN-based features [3].

In the second stage, the image features are regressed onto the

voxel responses through linear mappings. The state-of-the-art

method is called the feature-weighted Receptive Field (fwRF)

[3]. It computes a weighted sum of image features within a 2D

Gaussian receptive field that is estimated for each voxel and

regresses it to the corresponding voxel response. Note that the

voxel-wise encoding pattern will incur considerable training

expenses.

2) Visual neural decoding: The conventional method for vi-

sual neural decoding is called pixel-wise nonlinear regression

[32], [33], which can only handle simple artificial stimuli but

does not work well on natural images. In computer vision,

deep generative networks, such as VAE and GAN, have

demonstrated enormous potential for generating vivid images.

Thus, many studies on neural decoding establish a connection
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between the latent representations of generative models and

neural activity and utilize the generators to reconstruct images

[7], [10], [19], [20], [23], [34]. However, the reconstruction of

VAE-based models tends to be blurry, and GAN-based models

usually suffer from unstable training.

Unlike previous studies based on irreversible networks,

this paper utilizes flow-based invertible networks to minimize

information losses and cycle-consistency losses during neural

encoding and decoding. In addition, until now, research on

neural encoding and decoding has been segregated, neglecting

their dual relationship. In this paper, we unify neural encoding

and decoding into one framework with the bi-directional

generation model and simultaneously learn the dual tasks.

Our work is related to the CDDG method in [23]. However,

the fundamental distinction between FLIG and CDDG is that

CDDG builds up a neural encoding and decoding model with

irreversible VAE, whereas FLIG in this paper is based on flow-

based invertible networks.

B. Cross-Modal Generation

Many algorithms for multi-view learning have been pro-

posed to achieve cross-modal generation. The Deep Canon-

ically Correlated Auto-Encoder (DCCAE) proposed in [35]

is the deep-learning version of canonical correlation analysis

[36]. DCCAE learns a shared latent space from which

each modality is reconstructed. Due to the correlation-based

optimization, the latent representation only preserves the

modal-shared information and abandons the modal-specific

information. Such a design is inappropriate for cross-modal

generation. [24] proposed JMVAEs to perform bi-directional

cross-modal generation. Unlike DCCAE, JMVAE learns not

only two modal-specific latent spaces but also a modal-

shared latent space. Then, the Kullback-Leibler divergence is

applied to make the distributions aligned. [27] came up with

a GAN using cycle-consistent loss (CycleGAN) to reduce the

solution space and enable unpaired image-to-image translation.

Furthermore, AlignFlow proposed in [28] substitutes the

generators of CycleGAN with normalizing flows. Due to the

invertibility of the normalizing flows, cycle consistency losses

of the generation no longer exist.

In comparison to CycleGAN and AlignFlow, our work

emphasizes diminishing the heterogeneity between modalities,

which is a negligible issue for the image-to-image translation

task but an inevitable problem for the neural encoding and

decoding tasks. Therefore, we introduce local and global

constraints on latent space to shrink the modal gap. In addition,

the CAE feature extractor can reduce the image dimension to

that of the neural signals before feeding the images into the

normalizing flows. The design adapts the model to the cross-

modal generation of two different-dimensional modalities that

AlignFlow cannot handle.

III. METHOD

A. Overview

In this paper, we study visual neural encoding and decoding

problems within a single model. For a neural dataset, visual

stimuli and neural signals are represented as x ∈ R
N×P×P

Stage1: Train a convolutional auto-encoder as the image feature extractor

Stage2: Train the adversarial cross-modal normalizing flow

Cross-modal Normalizing Flow

𝐱
ෞ𝐱𝑓

𝐬

𝐱𝑓
ො𝐬

RSA

MSE
𝐳𝐬

𝐷𝐱

𝐷𝐬
𝐳𝐱

Real / Fake

𝐱

ො𝐱
Real / Fake

MSE
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MSE
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MSE

INPUT𝐬𝐱 OUTPUTො𝐬ො𝐱

Fixed

Fixed

Fig. 1: The diagram of the two-stage training of our FLIG

model (best viewed in color). The top figure shows the training

of a convolutional auto-encoder that serves as the image

feature extractor in the first stage. The bottom figure shows

the training of the adversarial cross-modal normalizing flow

in the second stage. Fx, Fs and Dx, Ds are the flow-based

generators and discriminators of the image domain and the

neural signal domain, respectively. Encx, Decx with fixed

parameters are the encoder and decoder trained in the first

stage. zx and zs are the latent variables. The solid arrows in

gray and red denote the routes of neural encoding and neural

decoding, respectively. The dotted arrows in gray and red

denote the discrimination of the image domain and the neural

signal domain. The black bi-directional arrows in both figures

indicate the constraints imposed on the variables pointed by

the arrows, with annotations indicating the type of constraints.

and s ∈ R
N×M , respectively. Note that N,P and M are the

sample size, the image resolution and the dimension of neural

signals. Paired samples of two modalities build up an i.i.d.

multi-modal dataset (x, s) = {(xi, si)}
N
i=1. Our study aims

to learn a bi-directional mapping between visual stimuli and

neural activity, such that the model can not only generate the

predicted neural activity ŝi from xi via the forward mapping

but also produce the reconstructed stimulus x̂i from si via the

backward mapping.

Here, we propose a two-stage flow-based invertible gen-

erative model to achieve the goal. The model diagram is

shown in Fig. 1. In the first stage, a convolutional auto-encoder

containing the encoder Encx and the decoder Decx is trained

to extract features xf from the visual stimuli x. Then, the

parameters of Encx and Decx are fixed. In the second stage,

an adversarial cross-modal normalizing flow composed of two
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TABLE I: Definition of frequently used symbols.

Symbol Definition

N Sample size

P Image resolution

M Dimension of neural signals

x Visual stimuli

s Neural signals

x̂ Images generated by s

ŝ Neural signals generated by x

xrec Images reconstructed from x

xf Image features generated by x

x̂f Image features generated by s

zx, zs Latent variable of x, s

zxi
Latent variable of i-th visual stimuli

zsi
Latent variable of i-th neural signals

Kx, Ks The number of layers of networks Fx, Fs

z0, · · · , zKx
Input of each layers of Fx

z0, · · · , zKs
Input of each layers of Fs

Fx The normalizing flow of visual stimuli

Fs The normalizing flow of neural signals

Dx The discriminator of visual stimuli

Ds The discriminator of neural signals

F−1
x

The inverse transformation of Fx

F−1
s

The inverse transformation of Fs

θFx , θFs , θDx , θDs Parameters of networks Fx, Fs, Dx, Ds

Encx, Decx Encoder and Decoder of the CAE

φ, γ Parameters of networks Encx, Decx
Mxx Intra-modal representation dissimilarity matrix

Mxs Inter-modal representation dissimilarity matrix

fx1
(·), · · · , fxKx

(·) Layers of network Fx

fs1 (·), · · · , fsKs
(·) Layers of network Fs

Gx→s FsF
−1
x

κ(Gx→s) Condition number of Gx→s

normalizing flows, Fx and Fs, and two discriminators, Dx

and Ds, are trained to achieve the invertible generation of

image features xf and the corresponding neural signals s along

the red and gray routes in Fig. 1. The discriminators play an

adversarial game with the flow-based generators to enhance

the sample quality. To bridge the modality gap, we force MSE

and RSA-based constraints on the latent variables, zx and zs.

Given the pairwise visual stimuli x and neural signals s as the

input, the adversarial cross-modal normalizing flow, combined

with the fixed Encx and Decx, generates the corresponding

reconstruction ŝ and x̂ along the gray and red routes in Fig.

1, respectively. We elaborate on the method in the following

sections. We list the symbols that will be used frequently in

the following with their definitions in Table I in advance.

B. Image feature extractor

Due to the domain gap, it is challenging to learn a direct

mapping between visual stimuli and neural activity. Previous

studies on neural encoding and decoding [7], [8], [19], [20]

have demonstrated that an efficient solution is to project visual

stimuli and neural activity onto the intermediate feature space.

Thus, in the first stage of our model, an image feature extractor

is designed to serve as the intermediate space between the

stimuli space and the neural response space.

Here, we use a convolutional auto-encoder to extract image

features xf . CAE plays a prominent role in perceiving high-

level image representations in an unsupervised way. It is com-

prised of an encoder Encx and a decoder Decx. The encoder

reduces the dimension of the input data and the decoder

recovers the data from the feature space. The convolution

and dropout operations in the encoder are responsible for

extracting low-dimensional features, while the upsampling and

deconvolution operations in the decoder are used to reconstruct

images from features. The reconstruction loss leads the model

to learn a latent representation. The loss function is

LCAE = ‖x− xrec‖
2
2 (1)

where x and xrec are the original and reconstructed images,

respectively. Note that the dimension of the extracted features

is reduced to M since the invertible networks that bridge the

feature domain and the neural activity domain in the second

stage do not permit dimension changes.

C. Normalizing flows

In the second step of our model, we build a mapping

between the feature space and the neural response space.

Unlike VAE and GAN, normalizing flows are composed of

invertible networks and can directly estimate the real data

distribution. Therefore, normalizing flows are chosen to work

as the bridge between the feature domain and the neural

response domain.

Normalizing flows can transform a simple probability

density distribution into a highly complex distribution through

a series of invertible mapping networks. Given a random

variable z0, an invertible mapping f1 : RD → R
D projects

z0 into z1. According to the change of variable formula, the

relationship between the distribution p(z0) and p(z1) is

p(z1) = p(z0)

∣∣∣∣det
∂f−1

1

∂z1

∣∣∣∣ = p(z0)

∣∣∣∣det
∂f1
∂zT0

∣∣∣∣
−1

. (2)

A concatenation of K invertible networks f1, f2, · · · , fK can

enhance the expression ability of flows. Then, the distribution

of the target variable zK = fK ◦ · · · ◦ f2 ◦ f1(z0) is

p(zK) = p(z0)

K∏

i=1

∣∣∣∣det
∂fi

∂zTi−1

∣∣∣∣
−1

. (3)

The invertible property of the network, on the one hand,

ensures information integrity during generation and, on the

other hand, signifies that the dimensions of zK and z0 must

be equal. Normalizing flows build a bridge between the initial

and the obtained distributions through the determinants of the

Jacobian matrices. As generative models, normalizing flows

can be used to generate data using MLE. In practice, the

negative log-likelihood of the distribution of the generated data

p(zK) is minimized with the loss function

LMLE = − ln p(zK) = − ln p(z0) +

K∑

i=1

∣∣∣∣det
∂fi

∂zTi−1

∣∣∣∣ . (4)

In this paper, we use the Real-valued Non-Volume Preserving

(Real-NVP) transformations [37] to form normalizing flows

because they can balance good model performance, low

computational cost, and high convergence speed compared to

other transformations [38], [39]. The transformation fi(·) is

z1:di = z1:di−1,

zd+1:D
i = zd+1:D

i−1 ⊙ exp(s(z1:di−1)) + t(z1:di−1) (5)



IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 5

where d < D, and the vector zi ∈ R
D is sliced into two

parts with the superscripts (1 : d) and (d + 1 : D). ⊙
is an element-wise product, and s(·), t(·) denote the scale

and translation from R
d → R

D−d. The transformation is an

affine coupling layer since the second part of the vector is

transformed depending on the first part. In addition, the first

part that remains unchanged in this layer will be updated in

the subsequent layer, while the second part that changes in

this layer will remain unchanged in the subsequent layer. The

triangular Jacobian matrix of the transformation is

∂fi
∂zTi−1

=

[
Id 0

∂zd+1:D
i−1

∂(z1:d
i−1

)T
diag(exp[s(z1:di−1)])

]
, (6)

whose determinant is easy to calculate.

D. Adversarial cross-modal normalizing flows

As shown in Eq. (3), single-modal normalizing flows can

only generate data from latent variables. To achieve cross-

modal generation of xf and s, we combine two modal-specific

normalizing flows.

Specifically, the normalizing flow of the stimuli domain

is Fx = fxKx
◦ · · · ◦ fx2

◦ fx1
(·) with Kx layers, and

the normalizing flow of the neural signal domain is Fs =
fsKs

◦· · ·◦fs2◦fs1(·) with Ks layers. Two modalities share one

initial distribution p(z0). Thus, the generated neural responses

are ŝ = Fs(F
−1
x (xf )), and the generated image features are

x̂f = Fx(F
−1
s (s)). The cross-modal normalizing flow can be

trained by minimizing the loss function

LMLE =LMLEx
+ LMLEs

=− ln p(xf )− ln p(s)

=− ln p(z0) +

Kx∑

i=1

∣∣∣∣det
∂fxi

∂zTi−1

∣∣∣∣

− ln p(z0) +

Ks∑

i=1

∣∣∣∣det
∂fsi
∂zTi−1

∣∣∣∣ . (7)

Normalizing flows give an explicit optimization of the

real data distribution, but the generation quality is not

very outstanding [40]. In comparison, GAN only has an

implicit estimation of the real data distribution but is good at

generating high-fidelity samples. This observation motivates

us to incorporate adversarial learning into the cross-modal

normalizing flow. In our model, the flow-based generators

Fx, Fs play an adversarial game with two modal-specific

discriminators Dx, Ds. The discriminators are responsible for

distinguishing fake data from real data. For example, Dx is

expected to label the image features of the stimuli as real

data and label those generated from the neural responses as

fake data. The generators attempt to generate fake data that

the discriminators will tag as real. Suppose that pdata(xf ) and

pdata(s) are real data distributions of image features and neural

responses, respectively. The loss function of the generators is

LF =LMLEx
+ LMLEs

+ LGx
+ LGs

=LMLEx
+ LMLEs

+ Es∼pdata(s)[log(1−Dx(Fx(F
−1
s (s))))]

+ Exf∼pdata(xf )[log(1−Ds(Fs(F
−1
x (xf ))))]. (8)

Although adversarial learning is introduced to the cross-modal

normalizing flows, the training stability of the generators

can still be guaranteed by the intrinsically stable flow-based

optimization in the first two items in Eq. (8). The loss function

of the discriminators is

LD =LDgp−x
+ LDgp−s

+ LDx
+ LDs

=LDgp−x
+ LDgp−s

− Exf∼pdata(xf )[log(Dx(xf ))]

− Es∼pdata(s)[log(1−Dx(Fx(F
−1
s (s))))]

− Es∼pdata(s)[log(Ds(s))]

− Exf∼pdata(xf )[log(1−Ds(Fs(F
−1
x (xf ))))], (9)

where LDgp−x
and LDgp−s

are gradient penalties on the

discriminators for a stable training [41]. See Appendix B for

details.

E. Constraints on the inter-modal gap

Since two modalities share one initial distribution p(z0) =
N (0, I), the latent representations of two modalities, zx =
F−1
x (xf ) and zs = F−1

s (s), both obey the isotropic Gaussian

distribution. Despite the identical distributions, zxi
, zsi of the

i-th sample may not be adjacent due to modality heterogeneity.

To assure that ŝi, generated from xfi , can recover si as well

as possible and vice versa given any pair of samples 〈xfi , si〉,
we need to impose additional constraints on the latent space

of the cross-modal normalizing flow. Here, local and global

constraints are used to close the inter-modal gap.

First, the Mean Squared Error (MSE) loss brings the

Euclidean distance between zx and zs closer. The loss function

is

Lz = ‖zx − zs‖
2
2 . (10)

The MSE, as a local constraint, explicitly ensures the point-

to-point alignment on the latent space between each pairwise

〈xfi , si〉.
Second, we take advantage of the Representation Similarity

Analysis (RSA) to improve the correlation between zx and

zs. RSA was proposed in the field of neuroscience to quan-

titatively probe the relevance of brain-activity measurement,

behavioral measurement, and computational modeling [26].

RSA is typically performed by Representation Dissimilarity

Matrices (RDMs). Suppose ρxsij = zxi
⊗ zsj . ⊗ denotes

the computation of the cosine similarity and ρxsij ∈ [−1, 1].
The inter-modal RDM is Mxs[i, j] = (1 − ρxsij )/2. The

diagonal elements should be close to zero since the pairwise

latent variables should be as correlated as possible. The MSE

mentioned above can have such an effect. However, global

restrictions on latent spaces are in demand. Suppose that there
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Samples of 𝐳𝐱 in two classes

Samples of 𝐳𝐬 in two classes

MSE RSA

𝐳𝐱𝟏 𝐳𝐱𝟐 𝐳𝐱𝟑𝐳𝐬𝟏 𝐳𝐬𝟐 𝐳𝐬𝟑
𝐳𝐱𝟏 𝐳𝐱𝟐 𝐳𝐱𝟑
𝐳𝐬𝟏 𝐳𝐬𝟐 𝐳𝐬𝟑

𝐳𝐱𝟏 𝐳𝐱𝟐 𝐳𝐱𝟑
𝐳𝐬𝟏 𝐳𝐬𝟐 𝐳𝐬𝟑

Fig. 2: A demonstration of the effects of the MSE and the

second-order RSA on learning latent representations (better

viewed in color). The dots in gray and yellow respectively

denote three samples of zx and zs. The pairwise samples have

the same subscript numbers. The fill style is identical across

samples in the same class. The arrows indicate the effects of

the added constraints on each variable within the dotted circles.

are two similar stimuli xi,xj with the same category. Most

likely, the neural responses si, sj are similar. For a well-trained

model, two pairs of latent variables, 〈zxi
, zsj 〉 and 〈zsi , zsj 〉,

are expected to be correlated. Therefore, the similarity between

the observed variables could be exploited to guide the learning

of the latent representations.

Here, we resort to the second-order RDM [26]. We

introduce an intra-modal RDM Mxx in addition to the inter-

modal RDM Mxs. The elements are

Mxx[i, j] =
1− ρxxij

2
=

1− zxi
⊗ zxj

2
,

Mxs[i, j] =
1− ρxsij

2
=

1− zxi
⊗ zsj

2
.

Then, the Frobenius norm of the difference matrix is mini-

mized,

LRSA = ‖Mxx −Mxs‖F . (11)

The more similar xi and xj are, the larger ρxxij
is. According

to Eq. (11), ρxsij will be larger. Consequently, zsi and zsj
will be more similar. The opposite situation has the opposite

inferences.

For the sake of clarity, Fig. 2 demonstrates the effects

of MSE and RSA-based constraints on latent representation

learning . It is assumed that there are three pairs of samples

〈zx1
, zs1〉, 〈zx2

, zs2〉, 〈zx3
, zs3〉 and that the last two pairs

belong to the same semantic category. MSE produces local

effects that bring each pair of samples closer, while the second-

order RSA has global effects on all samples. Specifically,

the RSA-based constraint minimizes the intra-class distance,

maximizes the inter-class distance, and finally makes the latent

representation of two domains more consistent. These two

kinds of constraints are complementary and indispensable.

F. Synchronous convergence

In addition to the constraints on the latent variables,

constraints on the observed variables are imposed to ensure the

high accuracy of neural encoding and decoding. Besides, the

regularization technique, called Jacobian Clamping [28], [42],

is utilized to guarantee synchronous convergence of neural

encoding and decoding.

Constraints are imposed on x and x̂ of the image domain,

xf and x̂f of the feature domain, and s and ŝ of the neural

activity domain. Concretely, the following three losses are

added to the holistic loss:

Lx = ‖x̂− x‖22 , (12)

Lxf
= ‖x̂f − xf‖

2
2 , (13)

Ls = ‖ŝ− s‖22 , (14)

separately minimizing the reconstruction error of images,

image features and neural signals. The residuals in Eq. (13)

and (14) are coupled to some extent. The derivation is in

Appendix A. Let Gx→s = FsF
−1
x and κ(Gx→s) be the

condition number of Gx→s [43]. We have

1

κ(Gx→s)

‖x̂f‖

‖xf‖
≤

‖s‖

‖ŝ‖
≤ κ(Gx→s)

‖x̂f‖

‖xf‖
. (15)

See Appendix A for details of this coupling inequality. The

inequality in Eq. (15) means that if κ(Gx→s) is large, the

fluctuation scale of ‖s‖/‖ŝ‖ may be uncertain, although

‖x̂f‖/‖xf‖ → 1. The specific phenomenon is that the

reconstruction of one modality is already perfect, while that

of the other modality remains unsatisfactory. As a result, the

convergence of the two tasks might be out of sync. One

solution is to control the condition number κ(Gx→s) within

a region, but it is unfeasible. A more plausible solution is to

limit the fluctuation ratio of s and xf . The Jacobian Clamping

regularization technique proposed by [42] can attain the

objective. Although the Jacobian Clamping regularization was

originally proposed to ensure a more stable training of GAN,

we adopt it in our model for synchronous convergence of

neural encoding and decoding. Specifically, infusing random

noise δ ∼ N (0, I) into the input variable xf , i.e., x′

f =
xf+δ/‖δ‖, the ensuing fluctuation ratio of the output variables

is

Q =
‖Gx→s(xf )−Gx→s(x

′

f )‖

‖xf − x′

f‖
.

The regularization is implemented as

LJC = (max(Q, λ+)− λ+)2 + (min(Q, λ−)− λ−)2 (16)

to control the change ratio Q to lie within [λ−, λ+]. We can

adjust the interval to make ‖Gx→s(xf ) − Gx→s(x
′

f )‖ small

when ‖xf − x′

f‖ is small. Therefore, the Jacobian Clamping

can facilitate synchronous convergence of the multi-tasks

learned by the cross-modal normalizing flows by restricting

the residual ratio Q.

G. Optimizing Strategy

The optimization process contains two stages. Algorithm

1 outlines the entire training course. In the first stage, CAE

is trained to extract image features using an encoder and a

decoder. The loss function of the first stage is L1 = LCAE. In

the second stage, the network parameters of CAE are fixed.

The parameters of generators Fx, Fs, and the parameters of
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Algorithm 1 FLow-based Invertible Generative networks

Input: Paired original variables (visual stimuli, neural signals)
(x, s) = {(x1, s1), (x2, s2), · · · , (xN , sN )}
Output: Paired reconstructed variables
(x̂, ŝ) = {(x̂1, ŝ1), (x̂2, ŝ2), · · · , (x̂N , ŝN )}
S1: Training of the image feature extractor CAE

1: Initialize the parameters (φ, γ) of the networks Encx and Decx.
2: Set latent dimension M , batch size B1, learning rate µ1, maximum

iteration number T1

3: for t1 iteration do

4: Compute xrec, and LCAE

5: Update φ and γ by Adam algorithm
6: φ← φ− µ1∂LCAE/∂φ, γ ← γ − µ1∂LCAE/∂γ

S2: Training of the adversarial cross-modal normalizing flow

1: Fix network parameters of CAE.
2: Initialize the parameters (θFx , θFs , θDx , θDs ) of the networks

Fx, Fs, Dx, Ds.
3: Set batch size B2, learning rate µF , µD , maximum iteration number T2,

trade-off parameters in Eq. (17)
4: for t2 iteration do

5: Compute xf by CAE encoder
6: Compute x̂f , ŝ, and x̂ by Fx, Fs and CAE decoder
7: Compute L2-Gen

8: Update θFx , θFs by Adam algorithm
9: θFx ← θFx − µF ∂L2-Gen/∂θ

Fx

10: θFs ← θFs − µF ∂L2-Gen/∂θ
Fs

11: Fix the network parameters of Fx, Fs and compute x̂f , ŝ
12: Compute L2-Dis

13: Update θDx , θDs by Adam algorithm
14: θDx ← θDx − µD∂L2-Dis/∂θ

Dx

15: θDs ← θDs − µD∂L2-Dis/∂θ
Ds

discriminators Dx, Ds are updated alternately. The objectives

of the generators and the discriminators are

min L2−Gen =λMLELMLE + λGLG

+ λxLx + λxf
Lxf

+ λsLs

+ λzLz + λRSALRSA + λJCLJC, (17)

min L2−Dis =LD, (18)

with LMLE =LMLEx
+ LMLEs

, LG = LGx
+ LGs

,

where multiple losses are weighted by trade-off parameters.

IV. EXPERIMENT

A. Datasets

To validate the generalization of our model, we conduct

experiments on two kinds of neural signals. They are the

multielectrode recordings of salamander RGCs and the fMRI

of the human visual cortex. We use two publicly available

datasets1 in [29] containing the salamander RGC spike signals

triggered by natural movie clips and one public dataset2 in

[44] recording fMRI of the human visual cortex triggered by

handwritten digits.

The RGC spike trains were collected from isolated sala-

mander retinas with natural movie stimuli. Movie clips were

shown to the RGCs at a frame rate of 30 Hz. Fig. 3 shows

a demonstration of the data collection. RGCs trigger action

potentials in response to the visual stimuli and produce a series

of discrete spike trains. They are summed up to spike counts in

bins of 1000/30 ms and averaged across different trials for each

1https://datadryad.org/stash/dataset/doi:10.5061/dryad.4ch10
2http://hdl.handle.net/11633/di.dcc.DSC 2018.00112 485

TABLE II: Properties of three datasets used in the experiments.

Datasets
Recording

Methods
ROIs

Cells/

Voxels
Resolution Instances Train/test split

Natural

Movie-I
Spike Trains RGCs 90 64 × 64 1800

10% hold-out

(Five times)

Natural

Movie-II
Spike Trains RGCs 49 64 × 64 1600

10% hold-out

(Five times)

Handwritten

Digits
fMRI V1, V2, V3 1813 64 × 64 100

10-fold

cross-validation

Retinal 

Ganglion Cells

Spike Trains

N
e

u
ro

n
s

Stimuli

Fig. 3: Demonstration of the neural data collection.

stimulus. Finally, the continuous neural signals are obtained.

The datasets are named according to the stimuli kinds. The

detailed information is as follows.

1) Natural Movie-I has 1800 natural gray frames in total.

Neural spike trains of 90 RGCs were recorded.

2) Natural Movie-II has 1600 natural gray frames in total.

Neural spike trains of 49 RGCs were recorded.

The fMRI dataset from [44] contains the fMRI of one

human participant presented with grayscale handwritten digits

(numbers 6 and 9). 50 handwritten 6s and 50 handwritten

9s were presented to the subject. Over 3000 voxels from

V1, V2, and V3 areas were recorded. Additional information

about the data collection can be found in [44]. [7] discarded

the unrelated voxels that obtained negative average prediction

accuracy prior to the experiments. For the sake of fairness, we

use the 1813 voxels selected by [7].

The properties of these three datasets are listed in Table

II. The image resolution of all datasets is set as 64 × 64 for

training convenience. For fast convergence, we standardize the

pixels of all stimuli to [0, 1] and the neural signals to [−1, 1].
The image features are limited within [−1, 1] by the hyperbolic

tangent activation function (Tanh).

B. Experimental Settings

1) Compared Methods:

• LNP [11]: LNP is a classical neural spike encoding model

containing a linear layer and an exponential nonlinear

layer.

• CNN-Enc3 [1]: This is the state-of-the-art RGC spike

encoding model. CNN is utilized to mimic the neural

circuits in RGCs. We tune the network hyper-parameters

in [1] to achieve better performance.

• fwRF4 [3]: This is the state-of-the-art fMRI encoding

model. It weights image features by the receptive fields

estimated for every voxel and regresses them to the

recorded voxel responses.

3https://github.com/baccuslab/deep-retina
4https://github.com/styvesg/fwrf
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TABLE III: Evaluation of neural encoding and decoding performance on test sets of RGC datasets. The mean and standard

deviation of each metric are reported. The optimal value on each metric is highlighted. The up/down arrow mark next to each

evaluation metric indicates that the larger/smaller the value, the better.

Dataset Method
Neural Encoding Neural Decoding

MSEs ↓ NLL ↓ PCC ↑ MSEx ↓ LPIPS ↓ SSIM ↑

Natural

Movie-I

LNP .072 ± .003 .297 ± .005 .011 ± .012

CNN-Enc .030 ± .003 .174 ± .004 .770 ± .015

SID .009 ± .001 .384 ± .004 .744 ± .007

DCCAE .051 ± .004 .718 ± .042 .530 ± .026 .027 ± .002 .573 ± .016 .489 ± .014

CDDG .029 ± .003 .448 ± .024 .763 ± .015 .013 ± .001 .375 ± .003 .698 ± .006

CycleGAN .058 ± .006 .833 ± .027 .576 ± .023 .013 ± .000 .395 ± .006 .670 ± .003

FLIG .028 ± .003 .197 ± .004 .774 ± .011 .014 ± .001 .353 ± .005 .708 ± .008

Natural

Movie-II

LNP .011 ± .002 .140 ± .009 .012 ± .011

CNN-Enc .006 ± .001 .097 ± .007 .760 ± .029

SID .035 ± .001 .721 ± .017 .396 ± .013

DCCAE .006 ± .001 .270 ± .032 .672 ± .033 .051 ± .001 .587 ± .022 .235 ± .022

CDDG .005 ± .002 .243 ± .049 .816 ± .012 .040 ± .001 .649 ± .019 .324 ± .016

CycleGAN .011 ± .002 .462 ± .066 .341 ± .081 .037 ± .001 .686 ± .015 .345 ± .012

FLIG .005 ± .001 .106 ± .007 .767 ± .030 .041 ± .002 .582 ± .011 .404 ± .011

TABLE IV: Evaluation of neural encoding and decoding

performance on the test set of the fMRI dataset. The mean and

standard deviation of each metric are reported. The optimal

value on each metric is highlighted. The up/down arrow mark

next to each evaluation metric indicates that the larger/smaller

the value, the better.

Method
Neural Encoding Neural Decoding

MSEs ↓ PCC ↑ MSEx ↓ PSNR ↑ SSIM ↑

fwRF .193± .075 .296± .043

DGMM .035± .006 15.090± .616 .740± .031

SID .036± .008 15.001± .905 .740± .038
DCCAE .231± .080 .199± .042 .040± .007 14.388± .616 .638± .038
CDDG .327± .075 .191± .021 .030± .005 15.753± .693 .720± .033

CycleGAN .213± .077 .186± .044 .039± .007 14.519± .774 .726± .036
FLIG .179± .069 .204± .031 .030± .006 15.699± .738 .759± .032

• SID5 [8]: This is the state-of-the-art RGC spike decoding

model. SID projects neural signals into image space

through a fully-connected network and then reconstructs

stimuli by an auto-encoder.

• DCCAE6 [35]: It is a deep-learning version of canonical

correlation analysis and can be applied in the cross-modal

generation.

• CDDG [23]: It achieves simultaneous neural encoding

and decoding with JMVAE. CDDG reduces the solution

space of the cross-modal generation by imposing con-

straints on cycle-consistency losses.

• CycleGAN7 [27]: The model consists of two generators

and two discriminators to perform bi-directional genera-

tion under cycle-consistency constraints.

• Deep Generative Multiview Model (DGMM)8 [7]: By

using two view-specific generators with a shared latent

space, this model builds statistical relationships between

visual stimuli and corresponding fMRIs.

2) Training Settings: We cascade layers of Real-NVP

together to enhance the representation capability. The network

structure and hyper-parameters are tuned carefully on the

validation set split from the training set. The detailed network

5https://github.com/jiankliu/Spike-Image-Decoder
6https://github.com/VahidooX/DeepCCA
7https://github.com/aitorzip/PyTorch-CycleGAN
8https://github.com/ChangdeDu/DGMM

structures and hyper-parameter settings for the three datasets

are shown in Appendix B.

On two RGC datasets, we repeatedly ran the program five

times, randomly splitting training (90%) and test (10%) sets

each time. For the fMRI dataset, we perform a 10-fold cross-

validation. Each fold maintains a balance of classes. The mean

and standard deviation of each metric are reported.

C. Evaluation Protocol

1) Neural Encoding:

• MSE:

MSE(ŝ, s) =
1

N ×M

N∑

i=1

M∑

j=1

(sij − ŝij)
2. (19)

• Negative Log-Likelihood (NLL):

NLL(ŝ, s) =
1

N ×M

N∑

i=1

M∑

j=1

(ŝij − sij log ŝij). (20)

It reflects the fitting performance of spike counts that

are generated through Poisson processes. NLL reaches

its minima when ŝ = s.

• Pearson Correlation Coefficient (PCC): MSE reflects

the point-to-point error, while PCC reflects the linear

correlation. s:j is the response vector of the j-th neuron

to all the stimuli. The PCC of the j-th neuron is

ρ(ŝ:j , s:j) =
cov(ŝ:j , s:j)

σŝ:jσs:j

(21)

where the numerator is the covariance and the denomina-

tor is the product of the standard deviations. The average

of all neurons or voxels is used to evaluate the model

performance on the held-out sets.

2) Neural Decoding:

• MSE: The MSE of the i-th image pair 〈x̂i,xi〉 is

MSE(x̂i,xi) =
1

H ×W

H∑

j=1

W∑

k=1

(x̂jk
i − x

jk
i )2 (22)

where H,W are image size.
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Fig. 4: Examples of decoding results on RGC datasets with FLIG and compared methods. The first row presents the original

visual stimuli, of which the first seven columns are from the Natural Movie-I dataset and the last seven columns are from the

Natural Movie-II dataset. The following five rows show the corresponding reconstruction results of different methods. On the

right, magnified details of the fourteenth example indicate that FLIG preserves more details than SID.

• Peak Signal to Noise Ratio (PSNR): The PSNR of the

i-th image pair 〈x̂i,xi〉 is

PSNR(x̂i,xi) = 10× log10
xm

MSE(x̂i,xi)
(23)

where xm is the maximal pixel value.

• Structural-SImilarity Metric (SSIM): This metric com-

pares the reconstruction quality on a higher level [45].

The SSIM of the i-th image pair 〈x̂i,xi〉 is

SSIM(x̂i,xi) =
(2µx̂i

µxi
+ c1)(2σx̂ixi

+ c2)

(µ2
x̂i

+ µ2
xi

+ c1)(σ2
x̂i

+ σ2
xi

+ c2)

(24)

where 〈µx̂i
, µxi

〉, 〈σ2
x̂i
, σ2

xi
〉, and σx̂ixi

are the mean,

variance and covariance of x̂i,xi, respectively. c1, c2 are

constants for computational stability.

• Learned Perceptual Image Patch Similarity (LPIPS) [46]:

LPIPS calculates the feature distance between two images

with a pretrained DNN and has been indicated to

outperform MSE and SSIM in perceptual similarity

judgments. Here, we utilize LPIPS with AlexNet [47]

as one of the metrics for the neural decoding of natural

images.

The average of all image pairs of each indicator is used to

evaluate the model performance on the held-out sets.

D. Encoding Performance

The neural encoding performance of different methods on

two RGC datasets is summarized in Table III. It can be seen

that FLIG matches the state-of-the-art encoding method CNN-

Enc. Our method obtains the lowest MSE, while CNN-Enc

achieves the lowest NLL on both datasets. This result is

reasonable since our method and CNN-Enc optimize neural

encoding using the MSE loss and the NLL loss, respectively,

and both models are objective-oriented. In addition, FLIG

Original

DCCAE

CDDG

CycleGAN

DGMM

SID

FLIG

Fig. 5: Decoding results on the handwritten digits datasets with

FLIG and compared methods. The first row places the original

stimuli. The following six rows show the corresponding

reconstruction results of different methods.

obtains a higher PCC than CNN-Enc and surpasses the other

cross-modal generative models (i.e., DCCAE, CDDG, and

CycleGAN) on almost all metrics, demonstrating the validity

of the flow-based invertible generators. LNP, the traditional

RGC encoding model, is not competitive with the other

models. The result is consistent with previous studies showing

that predicting spike responses triggered by natural stimuli is

an intractable task for LNP.

Table IV shows the performance of various neural encoding

methods on the fMRI dataset. FLIG performs comparably to

the state-of-the-art voxel-wise encoding model fwRF. While

fwRF has the highest PCC, our method achieves the lowest

MSE. Note that our method is more efficient than fwRF

because FLIG can synchronously predict the neural responses

of all voxels, whereas fwRF performs voxel-wise encoding. In

addition, FLIG surpasses all the other cross-modal generation

models in neural encoding.
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Natural Movie-I Natural Movie-II Handwritten Digits
MSEs

PCC

NLL

MSEx

LPIPS

SSIM

LNP CNN-Enc SID DCCAE
CDDG CycleGAN FLIG

MSEs

PCC

NLL

MSEx

LPIPS

SSIM

MSEs

PCC

MSExPSNR

SSIM

fwRF DGMM SID DCCAE
CDDG CycleGAN FLIG

Fig. 6: Radar charts to visualize the comprehensive abilities

of all methods on all datasets (best viewed in color). The blue

background represents the full score.
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Fig. 7: The results of the ablation experiment on the Natural

Movie-I dataset.

E. Decoding Performance

The evaluation of neural decoding is divided into objective

assessment and subjective perception. The objective assess-

ment is shown in Table III and Table IV. On the RGC datasets,

our model achieves decoding results comparable to those of the

state-of-the-art decoding method SID and further outperforms

all the other cross-modal models. Interestingly, FLIG outpaces

all the other methods in LPIPS, in addition to the competitive

results in MSE and SSIM. Based on the prior research and

the following qualitative results, it is argued that the MSE

and SSIM cannot fully quantify the similarity between two

natural images compared to LPIPS. On the human visual

cortex dataset, FLIG acquires the highest SSIM among all

models.

For the sake of a comprehensive evaluation, we also focus

on subjective perception. The decoding results on the RGC

and fMRI datasets are demonstrated in Fig. 4 and Fig. 5,

respectively. In Fig. 4, our method reconstructs remarkably

more details than SID and other methods, such as the tiger

facial features in the last two columns of Fig. 4. Some

details are magnified and shown on the right of the figure.

The results reveal that our flow-based method preserves more

information during the generation process. In addition, the

subjective perception results also suggest that the LPIPS

metric used in Table III is more consistent with human visual

perception than the MSE and SSIM metrics. Fig. 5 presents

the decoding results on the handwritten digits dataset. FLIG

matches SID and CDDG, and surpasses the other methods

with more coherent reconstruction. We also visualize the

comprehensive performance of the models using radar charts

in Fig. 6. The charts are created by transforming the ranks of

objective metrics in Table III and Table IV of all methods into
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Fig. 8: Visualization of the distribution of zx and zs using

t-SNE (best viewed in color), with samples of the testing set

of the Natural Movie-I dataset. zx and zs are in blue and red,

respectively. The numbers are the sample indices.

scores. The better the metric, the higher the score. If a model

ranks first, it obtains the highest score. The blue background

denotes a perfect score. The corresponding score will be

zero if one model cannot be applied to neural encoding or

decoding. FLIG scores 28/33, 28/33, and 25/28 on the Natural

Movie-I, Natural Movie-II, and Handwritten Digits datasets,

respectively, ranking first. The second-highest scores are 23,

22, and 17, obtained by CDDG. In summary, our proposed

method achieves the best comprehensive performance among

all compared methods and can be generalized to different

neural signals.

F. Ablation Experiments

We conduct a series of ablation experiments on the Natural

Movie-I dataset to confirm the necessity of the flow-based

invertible generators, discriminators, constraints on the latent

space, and Jacobian Clamping regularization. Specifically,

we observe the effect of removing a particular module or

constraint from the model. The related result is shown in Fig.

7. The marks rmMSE, rmRSA, rmLAT, rmJC, and rmADV,

represent the methods removing the MSE loss, the RSA-

based loss, both the MSE and RSA-based losses on the

latent space, Jacobian Clamping, and adversarial learning (i.e.,

removing the discriminators), respectively. The mark rmFL

refers to the method that replaces the normalizing flows Fx

and Fs with fully-connected networks. The abolishment of the

MSE constraint deteriorates both the encoding and decoding

results. The removal of the RSA-based loss degrades the

decoding performance. The situation gets worse when both

restrictions are disabled. Furthermore, Fig. 8 provides a t-SNE

visualization [48] of the distributions of zx and zs with and

without the constraints on latent space. Each blue number

and each red number represent zxi
and zsi in the testing

set of the Natural Movie-I dataset, respectively. The numbers

are the sample indices. The results suggest that constraints

on latent space could lead to better cross-modal feature

alignment. The quantitative and qualitative results imply that

latent space constraints are indispensable for the generation of

two heterogeneous modalities.
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The decoding performance of the model without Jacobian

Clamping regularization is superior to that of the original

model, while the encoding performance is the worst of all

cases except for rmFL. These changes highlight the importance

of the Jacobian Clamping regularization for the synchronous

convergence of neural encoding and decoding. Without dis-

criminators, neural decoding performance deteriorates, reflect-

ing that the generation of high-dimensional data such as

images is more dependent on adversarial learning. Finally,

the encoding and decoding performance of the model without

flow-based generators dramatically gets worse, manifesting the

effectiveness of the normalizing flows.

V. DISCUSSION

The proposed flow-based generative model integrates visual

neural encoding and decoding into one framework. Further-

more, it is not limited to particular types of neural signals.

Here, we discuss the two-stage design and the strengths and

limitations of our model.

A. Two-stage design of FLIG

Due to the large modal gap between neural signals and

visual stimuli, it is not easy to learn a direct mapping from

neural data to images [20]. FLIG alleviates the issue by

projecting the two modalities onto an intermediate feature

space and imposing constraints to align their representations

on such a space. In addition, FLIG adopts two-stage training

rather than end-to-end training because the latter requires

learning more parameters at once and is more data-dependent

[49]. We adopt a two-stage training procedure to prevent model

overfitting to the training sets.

B. Advantages of FLIG

The first advantage of FLIG is the lossless generation,

which is enabled by normalizing flows. In comparison to

irreversible networks such as VAE and GAN, the bijective

transformations of normalizing flows minimize information

losses during generation. Despite the same-dimensional latent

spaces of the three models, the comprehensive performance

of FLIG is far superior to that of CDDG and CycleGAN,

demonstrating the advantage of normalizing flows. In addition,

FLIG is naturally good at preserving cycle consistency during

cross-modal generation, even without related constraints the

CDDG method used.

Second, FLIG can learn neural encoding and decoding

simultaneously. This property can not only unify the research

on neural encoding and decoding but also save training

expenses.

Finally, our proposed method can be taken as a universal

cross-modal generation method for two reasons. The first

reason is that FLIG breaks through the limitation of normal-

izing flows and enables the cross-modal generation of two

modalities in distinct dimensions. The second reason is that

the local and global constraints on the latent spaces can ensure

domain alignment between two heterogeneous modalities.

Experimental results show the strong generalization ability of

our model across different neural signals. Therefore, FLIG can

be theoretically applied to the neural encoding and decoding of

a variety of neural signals, as well as cross-modal generation

of image and text, audio and text. However, the latter is not

the focus of this paper.

C. Limitations of FLIG

The invertible mapping of normalizing flows is a double-

edged sword. It does not support dimension changes, which

may limit its expression ability. A cascade of flows can

improve the representation capability. In the future, we will

replace Real-NVP with more efficient normalizing flows.

VI. CONCLUSION

In this paper, we propose a novel neural encoding and de-

coding method with flow-based invertible generative networks

to mitigate information losses during cross-modal generation

and consider the dual relationship between neural encoding

and decoding. The model training contains two stages. First, an

auto-encoder extracts image features. Second, the generation

of the visual stimuli and neural signals is conducted by an

adversarial cross-modal normalizing flow and the well-trained

auto-encoder. Local and global constraints on the latent space

shrink the modal gap. Experimental results on two RGC spike

datasets and one fMRI dataset of the human visual cortex

indicate that the proposed method reconstructs stimuli images

with more details than other comparison methods. In addition,

our model matches the state-of-the-art models and achieves the

best comprehensive performance.

In the future, we plan to apply our model to neural signals

recorded by alternative techniques. We also expect to probe

the similarities and differences between our flow-based model

and visual processing in the human visual cortex.

APPENDIX A

PROOF OF THE COUPLING INEQUALITY

Let Gx→s = FsF
−1
x . In the following proof, we note

Gx→s as G for convenience. The condition number κ(G) =
‖G‖‖G−1‖. Then,

x̂f = Fx(zs) = Fx(F
−1
s (s)),

⇒s = Fs(F
−1
x (x̂f )) = G(x̂f ),

ŝ = Fs(zx) = Fs(F
−1
x (xf )) = G(xf ).

By plugging the corresponding terms into Ls, we obtain

Ls = ‖ŝ− s‖22 = ‖G(xf )−G(x̂f )‖
2
2 , (25)

which indicates that the relative trends of Ls and Lxf
are

coupled to some extent. Since G(xf ) = ŝ, G(x̂f ) = s, we get

‖G(xf )‖ = ‖ŝ‖, (26)

‖G(x̂f )‖ = ‖s‖. (27)

The matrix norm of a matrix A is defined as

‖A‖ = max
y

‖Ay‖

‖y‖
(28)
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for any y 6= 0. It can be deduced that

‖A−1‖ = max
v

‖A−1v‖

‖v‖
= 1/min

v

‖v‖

‖A−1v‖
= 1/min

y

‖Ay‖

‖y‖
(29)

with y = A−1 v. Substituting the matrix and the vector in

Eq. (28) and Eq. (29) with G and xf or x̂f , we can obtain

‖G‖ ≥
‖G(xf )‖

‖xf‖
, (30)

‖G−1‖ ≥ 1/
‖G(xf )‖

‖xf‖
, (31)

‖G‖ ≥
‖G(x̂f )‖

‖x̂f‖
, (32)

‖G−1‖ ≥ 1/
‖G(x̂f )‖

‖x̂f‖
. (33)

Combining Eq. (27) and Eq. (32) together, we get

‖G‖‖x̂f‖ ≥ ‖G(x̂f )‖ = ‖s‖. (34)

Combining Eq. (26) and Eq. (31) together, we obtain

‖G−1‖‖G(xf )‖ = ‖G−1‖‖ŝ‖ ≥ ‖xf‖. (35)

Multiplying the above two inequalities, we have

‖G‖‖G−1‖‖x̂f‖‖ŝ‖ ≥ ‖xf‖‖s‖

⇒
‖s‖

‖ŝ‖
≤ κ(G)

‖x̂f‖

‖xf‖
. (36)

In a similar way, we can prove the other side of Eq. (15).

Combining Eq. (30) and Eq. (26) together, we get

‖G‖‖xf‖ ≥ ‖G(xf )‖ = ‖ŝ‖. (37)

Combining Eq. (33) and Eq. (27) together, we obtain

‖G−1‖‖G(x̂f )‖ = ‖G−1‖‖s‖ ≥ ‖x̂f‖. (38)

Multiplying the above two inequalities, we have

‖G‖‖G−1‖‖xf‖‖s‖ ≥ ‖x̂f‖‖ŝ‖

⇒
‖s‖

‖ŝ‖
≥

1

κ(G)

‖x̂f‖

‖xf‖
. (39)

Eventually, we prove that

1

κ(Gx→s)

‖x̂f‖

‖xf‖
≤

‖s‖

‖ŝ‖
≤ κ(Gx→s)

‖x̂f‖

‖xf‖
. (40)

APPENDIX B

NETWORK ARCHITECTURES AND HYPER-PARAMETER

SETTINGS

Table V shows information about the CAE architecture used

in the experiments. In the table, the abbreviations indicate

the convolution (Conv), batch normalization (Batchnorm),

upsampling (Upsample) operations, and the fully-connected

layer (FC). The numbers before Conv denote the kernel size,

stride size, padding size, and the output channel number of

the convolution operation. For instance, (7, 2, 3, 64) Conv

means the convolution with a kernel size of 7 × 7, 2 strides,

3 paddings and a 64-channel output. Similarly, the number

before FC denotes the output dimension of the fully-connected

TABLE V: CAE architecture used in the experiments. The

latent dimension equals the dimension M of the corresponding

neural signals.

Encoder Encx Decoder Decx
Input 64 × 64 image Input ∈ RM

(7, 2, 3, 64) Conv.
Batchnorm. ReLU

(4× 4× 256) FC.

(5, 2, 2, 128) Conv.
Batchnorm. ReLU. Dropout.

×2 Upsample. (3, 1, 1, 256) Conv.
Batchnorm. ReLU. Dropout.

(3, 2, 1, 256) Conv.
Batchnorm. ReLU. Dropout.

×2 Upsample. (3, 1, 1, 128) Conv.
Batchnorm. ReLU. Dropout.

(3, 2, 1, 256) Conv.
Batchnorm. ReLU. Dropout.

×2 Upsample. (5, 1, 2, 64) Conv.
Batchnorm. ReLU. Dropout.

(M ) FC. Tanh. ×2 Upsample. (7, 1, 3, 1) Conv. Sigmoid.

layer. The architecture can be generalized to three datasets

by setting the latent dimension to M , the dimension of the

corresponding neural signals.

The architecture of the normalizing flow modules, i.e., Fx

and Fs, is the stack of several basic flow units. Each basic

flow unit is based on the scale and translation functions, s(·)
and t(·), as shown in Eq. (5). A basic flow unit is composed

of a five-layer fully-connected network (d → 128 → 128 →
128 → M − d), where d is the dimension of the first slice of

the intact input (See Section III-C). The activation function of

the hidden layers is Tanh. The numbers of basic flow units of

Fx and Fs are 15 and 1, respectively.

The discriminators, Dx and Ds, used in the experiments

are three-layer fully-connected networks (M → M
2 →

1) and output a value between 0 and 1 using Sigmoid

activation function. To ensure more stable training, we give

the discriminators the gradient penalty proposed in [41].

Concretely,

LDgp−x
= Es∼pdata(s)[(‖∇x̂f

Dx(x̂f )‖2 − 1)2],

LDgp−s
= Exf∼pdata(xf )[(‖∇ŝDs(ŝ)‖2 − 1)2],

with x̂f = Fx(F
−1
s (s)), ŝ = Fs(F

−1
x (xf )).

The trade-off parameters λMLE, λG, λx, λxf
, λz, λRSA, and

λJC in Eq. (17) are set to 0.01, 0.01, 100, 100, 10, 1, and 10,

except that λs is set to 100, 10 and 200 on the Natural-Movie I,

Natural Movie-II and Handwritten Digits datasets. In addition,

(λ+, λ−) is set to (0.1, 0.05), (0.4, 0.2), and (0.5, 0) on the

Natural-Movie I, Natural Movie-II, and Handwritten Digits

datasets. CAE’s learning rate is 1e-5. The normalizing flows

and the discriminators learn at a rate of 5e-5 on the Natural-

Movie I and Natural Movie-II datasets and at a rate of 1e-5 on

the Handwritten Digits dataset. The Adam optimizer is used

for all updates.
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