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Additional Supporting Information (Files uploaded separately) 

The trained emulators per grid cell in China that support the findings of this study are available 

in Conibear et al (2022a). 

Supplementary Methods 

Emulators and simulators of air quality 

The version of WRFChem used here (version 3.7.1) was described and evaluated in our 

previous work (Reddington et al 2019, Silver et al 2020, Conibear et al 2021b, 2021a). 

We developed separate emulators for each grid cell across China in our WRFChem (Weather 

Research and Forecasting model online–coupled with Chemistry) domain. Hence, the 

emulators provided spatial information of air quality across China. The emulators were trained 

on data from 50 separate annual WRFChem simulations, and independently tested on 5 

separate years of data. Simulations were selected to train and test the emulators across the entire 

parameter space of inputs. Each simulation was identical apart from having different fractional 

changes in anthropogenic emissions. The fractional changes for each sector were determined 

from separate maxi−min Latin hypercube space–filling designs for the training and test data 

(Conibear et al 2022b). 

Each simulation was for the whole of 2015 with one–month spin–up. The domain covered the 

whole of China at 30 km × 30 km horizontal resolution. The anthropogenic emissions in China 

were from the MEIC (Multi–resolution Emission Inventory for China) emission inventory for 

2015 at 0.25° × 0.25 horizontal resolution (Li et al 2017b, MEIC Research Group and 

Tsinghua University 2019, Zheng et al 2018, Li et al 2017a). Gas phase chemistry was 

simulated using the extended MOZART (Model for Ozone and Related Chemical Tracers) 

scheme (Emmons et al 2010, Knote et al 2014, Hodzic and Jimenez 2011). Aerosol physics 

and chemistry was simulated using the updated MOSAIC (Model for Simulating Aerosol 

Interactions and Chemistry) scheme with aqueous chemistry (Hodzic and Knote 2014, Zaveri 

et al 2008). Secondary organic aerosol (SOA) formation was based on an updated volatility 

basis set mechanism (Knote et al 2015). 

To provide the closest match with observations, we scaled the emulated fine particulate matter 

(PM2.5) and ozone (O3) concentrations to measurements (Silver et al 2018, Jin et al 2020). 

Scalings were applied by prefecture if observations were available, otherwise scalings were 

applied by province (administrative division). The scaling was applied to all emulators to allow 

us to accurately predict the spatial pattern and magnitude of PM2.5 (annual−mean) 

concentrations and O3 (maximum 6−monthly−mean daily−maximum 8−hour, 6mDM8h) 

concentrations across China. 

Compared to measurements, the simulators had low bias and error for both annual−mean PM2.5 

concentrations (normalised mean bias factor, NMBF = 0.02 and normalised mean absolute 

error factor, NMAEF = 0.10) and 6mDM8h O3 concentrations (NMBF = 0.03 and NMAEF = 

0.11). The emulators were then independently evaluated on the unseen test simulations from 

WRFChem to predict air quality concentrations from only emission changes. The emulators 

accurately predicted the unseen simulated test data, with a coefficient of determination (R2) 

value for both PM2.5 and O3 concentrations of 0.999. These evaluations showed that the 

simulators accurately represented the spatial pattern and magnitude of measured PM2.5 and O3 

concentrations across China, and that the emulators accurately predicted the simulator. The 

emulators are detailed in full in Conibear et al (2022c). 

These outputs were chosen as they are the metrics used in the health impact assessment. 
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The emulators do not account for any future changes in the O3 chemical regime due to emission 

changes. 

Future emission scenarios 

The ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short–Lived Pollutants) 

scenarios are state−of−the−art scenarios for future global emissions (Klimont et al 2022, 2017, 

Stohl et al 2015). The ECLIPSEv6b emissions were produced using the GAINS (Greenhouse 

gas – Air pollution Interactions and Synergies) model (Amann et al 2011, Klimont et al 2017, 

Höglund−Isaksson et al 2020). Detailed descriptions of the ECLIPSEv6b emissions were 

provided by Höglund−Isaksson et al (2020) for methane and Klimont et al (2022) for other 

species. 

These scenarios include activity projections from the World Energy Outlook (WEO) 2018 

(International Energy Agency 2018). These activity projections combine various short−term 
activities, such as the Three–Year Action Plan in China, alongside possible long−term future 
projections of energy use, demand, and activity. 

The baseline (BASE) activity projections were developed with the GAINS (Greenhouse gas – 

Air pollution Interactions and Synergies) model (Amann et al 2011) and draw on the WEO 

2018 New Policy Scenario (NPS) energy projections (International Energy Agency 2018). The 

BASE activity projections included the proposed national energy programs, the commitments 

of the NDCs, the Three–Year Action Plan in China (Ministry of Environmental Protection of 

China 2018), and the Clean Heating Plan for North China (Ministry of Environmental 

Protection of China 2017). The BASE activity projections included China’s plans for growth 
in gas demand, a reduction in coal demand, and an increase in electricity demand and energy 

efficiency. The Three–Year Action Plan required emission reductions of 15% in sulphur 

dioxide (SO2), 15% in nitrogen oxides (NOX), and 10% in volatile organic compounds (VOCs). 

The Three–Year Action Plan required all cities that exceeded the National Air Quality Standard 

(35 g m−3) for annual–mean PM2.5 concentrations in 2015 to achieve 18% reductions by 2020. 

The projected carbon dioxide (CO2) emissions under the BASE activity projections were 

comparable to Shared Socioeconomic Pathways (SSP) 2–4.5 (Eyring et al 2016, Riahi et al 

2017). Agricultural forecasts in the BASE activity projections were derived from the United 

Nations Food and Agriculture Organization (Alexandratos and Bruinsma 2012) and from the 

European Union (EU) funded First Clean Air Outlook for the EU 28 countries (European 

Commission 2019). 

The sustainable development (SDS) activity projections were developed with the GAINS 

model and adapted the SDS energy scenario from the WEO 2018 (International Energy Agency 

2018). The SDS activity projections included China’s plans for substantial reductions in coal 
demand, with increases in land transport electrification, nuclear energy, renewables, carbon 

capture and storage, and of the emissions trading scheme. The actions to tackle climate change 

were for energy–related CO2 emissions to peak and decline in line with the Paris Agreement 

objectives and to be consistent with a global average temperature rise of 1.7–1.8 °C. The SDS 

activity projection focused on the energy–related components of the Sustainable Development 

Goals (SDGs). The energy–related components of the Sustainable Development Goals (SDGs) 

included tackling climate change (SDG 13), universal access to clean cooking and electricity 

(SDG 7), and substantial reductions in the disease burdens from ambient and household air 

pollution exposure (SDG 3). The projected CO2 emissions under the SDS activity projections 

were comparable to SSP1–2.6 (Eyring et al 2016, Riahi et al 2017). Forecasts of agricultural 

activities were the same as in the BASE activity projections. 
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There were two air pollution storylines applied to the BASE activity projection and one to the 

SDS activity projection (Supplementary Table 1). The current legislation (CLE) air pollution 

storyline assumes effective implementation of the currently committed environmental policies, 

and for China included the Three–Year Action Plan and the Clean Heating Plan. The maximum 

technically feasible reduction (MFR) air pollution storyline assumes the introduction of the 

best air pollutant reduction measures, considering constraints on how quickly measures achieve 

high market penetration, but were unconstrained by costs. Examples of the best available 

technologies for air pollution include selective catalytic/noncatalytic reduction, electrostatic 

precipitators, flue gas desulphurisation, stringent emission limit values for road and non–road 

vehicles, and improved nitrogen fertiliser use efficiency. Further discussion of the CLE and 

MFR assumptions and implementations in the GAINS model can be found in Amann et al 

(2013), Klimont et al (2022), and Höglund−Isaksson et al (2020). The global gridded emission 

datasets for the air pollutants from these scenarios are available from the dedicated website: 

iiasa.ac.at/web/home/research/researchPrograms/air/ECLIPSEv6b.html. 

Supplementary Table 1: Summary of the future emission scenarios. Emissions were from ECLIPSE (Evaluating 
the Climate and Air Quality Impacts of Short–Lived Pollutants) version 6b. 

Scenario Activity Projection  Air Pollution Storyline 

BASE–CLE Baseline (BASE). Current legislation (CLE). 

BASE–MFR Baseline (BASE). Maximum technically feasible reduction (MFR). 

SDS–MFR Sustainable development (SDS). Maximum technically feasible reduction (MFR). 

The inputs to the emulators were fractional changes in anthropogenic emissions per sector, 

averaged across all species. Averaging over all species was chosen for computational reasons. 

For 5 inputs, 55 annual WRFChem simulations were required for training and testing data 

(Loeppky et al 2009). If the emulators used emissions per specie and per sector, then the 

computational burden would increase by up to a factor of 10. The results were similar when 

averaging over a key few species (i.e., NOX, VOC, ammonia (NH3), and PM2.5) compared to 

averaging over all species. Individual specie changes were different in a few cases, for example, 

future changes in industrial VOC emissions and NH3 emissions increased in the BASE–CLE 

scenario, as opposed to the reduction over all species (Supplementary Figure 1). These changes 

could influence the non–linear formation of O3. Future research of these scenarios in terms of 

both species and sectors would provide additional insight into air quality.  

https://iiasa.ac.at/web/home/research/researchPrograms/air/ECLIPSEv6b.html
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Supplementary Figure 1: Fractional emission changes in China from 2015 to 2050 under the baseline activity 
projection with current legislation air pollution storyline (BASE–CLE), baseline activity projection with 

maximum technically feasible reduction air pollution storyline (BASE–MFR), and sustainable development 

activity projection with maximum technically feasible reduction air pollution storyline (SDS–MFR). Emission 

changes per specie of (a) fine particulate matter (PM2.5), (b) nitrogen oxides (NOX), (c) volatile organic 

compounds (VOC), and (d) ammonia (NH3). Emissions changes from the residential (RES), industrial (IND), land 

transport (TRA), agricultural (AGR), and power generation (ENE) sectors. 

Health impact assessment 

The disease burden attributable to PM2.5 and O3 exposure was estimated using population 

attributable fractions of relative risk. Exposure variations were used to predict associated 

outcome variations. The estimated outcome was annual premature mortality (MORT). 

The outcome associated with PM2.5 exposure was non−accidental mortality 
(non−communicable disease, NCD, plus lower respiratory infections, LRI). The Global 

Exposure Mortality Model (GEMM) model used parameters that included the China cohort. 

The GEMM is one of the leading methods for health impact assessment, in part because it 

incorporates ambient air pollution data across the majority of the global exposure range owing 

to the inclusion of the China cohort (Yin et al 2017). The counterfactual exposure level of no 

excess risk for PM2.5 exposure was 2.4 g m−3. The outcome associated with O3 exposure was 

chronic obstructive pulmonary disease (COPD). The counterfactual exposure level of no excess 
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risk for O3 exposure was 35.7 ppb. Baseline mortality was for NCD directly, with LRI being 

for respiratory infections from communicable disease, and COPD being for 

non−communicable respiratory disease. 
The population count data was for the Shared Socioeconomic Pathways (SSP) 2 scenario (Jones 

and O’Neill 2016, 2020). Version 7.5.3 of the International Futures integrated modelling 

system was used for population age and baseline mortality rates (Frederick S. Pardee Center 

for International Futures 2021). Age groupings were for adults over 25 years of age in 5−year 
intervals. Population count was from a different data source to age groupings and baseline 

health rates due to data limitations. We ensured that population age and baseline health rates 

came from the same data source, as these two drivers have larger impacts on the air pollution 

disease burden relative to population count (see Figure 2b and 2d). Shapefiles were used to 

aggregate results at the country, province, and prefecture level (Hijmans et al 2020). 

Uncertainty intervals at the 95% confidence level were estimated using the uncertainty 

intervals from the exposure−outcome associations. We acknowledge that other uncertainties 

exist, as we discuss below. However, it is common for health impact assessments to provide 

confidence intervals based on the given uncertainties in the exposure−outcome associations. 
The uncertainties between health impact assessments often do not overlap, in part because they 

use different exposure−outcome associations from independent epidemiological studies. Our 

95% confidence interval estimates of the total air pollution disease burden were 8−9%. This is 

only slightly smaller than those from leading health impact assessments from the GEMM of 

15−16% and from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) of 

18−19% (Burnett et al 2018, GBD 2019 Risk Factors Collaborators 2020). 

Health impact assessments of the disease burden associated with air pollution exposure have 

many uncertainties (Nethery and Dominici 2019). Dedicated previous work has explored the 

current−day uncertainties in health impact assessments of total air pollution exposure in China 

(Giani et al 2020). This study quantified uncertainties in the three variables of PM2.5 

concentrations, baseline health rates, and exposure−outcome associations by sampling over 
assumed Gaussian distributions. They estimated that the total air pollution disease burden had 

95% confidence intervals of 35−45%. However, it is unclear the uncertainties of these three 

variables are accurately captured by sampling Gaussian distributions. For example, annual 

PM2.5 exposure was simulated using the simplified bulk aerosol scheme from GOCART 

(Global Ozone Chemistry Aerosol Radiation and Transport) (Chin et al 2000). This simplified 

scheme makes many assumptions relative to more sophisticated aerosol schemes, such as the 

updated sectional MOSAIC scheme with complex SOA formation mechanisms, as used in this 

study (Hodzic and Knote 2014, Zaveri et al 2008, Knote et al 2015). 

There are many more uncertainties in health impact assessments, several of which are 

unquantifiable. These other uncertainties include ones in the scenarios (e.g., projections of 

future human action, future knowledge, future technologies), simulator (e.g., input data, 

parameterisations, grid aggregations, schemes of physics and chemistry, dynamical cores), 

exposure−outcome associations (e.g., confounding, induction, study variability, causality), 
generalisations (e.g., non−representative cohorts, population extrapolations), and population 

data (e.g., population count, age groupings). Future work should fully explore the quantifiable 

uncertainties in health impact assessments. 

The population count, age groupings, and baseline health rates did not vary between the 

scenarios due to lack of data. The population count for the SSP1 was 3% smaller in China in 

2050 compared to the SSP2. The air pollution disease burden is sensitive to population age and 

baseline health rates due to the influence on disease susceptibility (see Figure 2b and 2d). This 

study focused on the isolated impacts from emissions on air quality and human health. The full 
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separation of drivers to the future air pollution disease burden should be explored in upcoming 

work. 

There are large projected future changes in population and baseline health in China 

(Supplementary Figure 2). Over 2020−2050, the total population of China is projected to 

reduce by 8%. Urbanisation is projected to continue, with the percentage of people living in 

urban areas in China estimated to increase from 58% to 77% over 2017−2040 (International 

Energy Agency 2018). The population is projected to age substantially, with the percentage of 

the population over 60 increasing from 25% to 46% over 2020−2050. Baseline health rates are 

projected to improve considerably for non−communicable disease and lower respiratory 

infections, and slightly improve for chronic obstructive pulmonary disease. To explore the 

impacts of these changes on the future disease burden from air pollution exposure, we 

undertook sensitivity experiments where population count, population age groupings, and 

baseline mortality rates were kept at 2020 levels.  
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Supplementary Figure 2: Population count, age distributions, and baseline mortality rates in China from 2020 

and 2050 (Frederick S. Pardee Center for International Futures 2021, Jones and O’Neill 2016, Jones and O’Neil 
2020). Population count subplots are for (a) 2020 and (b) 2050 minus 2020. Age distribution subplots are for (c) 

2020 and (d) 2050. Age−specific baseline mortality rate subplots are for (e) non−communicable disease (NCD) 
in 2020, (f) NCD in 2050, (g) lower respiratory infections (LRI) in 2020, (h) LRI in 2050, (i) chronic obstructive 
pulmonary disease (COPD) in 2020, and (j) COPD in 2050. 

Sector−specific changes in the air pollution disease burden can either be calculated using the 
subtraction or attribution methods (Kodros et al 2016, Conibear et al 2018). The subtraction 

method estimates the change in the air pollution disease burden over time. The attribution 

method estimates the sector−specific contributions to the air pollution disease burden. In 

high−exposure regions, the sector−specific public health benefits from the subtraction method 

are smaller than those from the attribution method due to the non−linear exposure−outcome 
association for PM2.5 concentrations (Kodros et al 2016, Conibear et al 2018). Here, we use 

the subtraction method to estimate the sector−specific change in the air pollution over time. 

We did not calculate the household PM2.5 disease burden and our estimates of the public health 

benefits from the residential sector are therefore likely underestimated given the major 

contribution of residential solid fuel emissions to total PM2.5 exposure (Zhao et al 2018, Xing 

et al 2020). 

Supplementary Results 

In the results and discussion, emulated PM2.5 concentrations are ambient annual−means and 
emulated O3 concentrations are ambient 6mDM8h. Exposures are population−weighted 
concentrations.  

In 2020, O3 exposure in China is 42.0 ppb (Supplementary Figure 3), attaining both the 

National Air Quality Target of 80 ppb and the 2021 WHO guideline of 50 ppb (World Health 

Organization 2021). Under the BASE–CLE scenario, O3 exposure slightly reduces by 4% in 

2050, down to 40.5 ppb (Supplementary Figure 4a). The BASE–MFR scenario reduces O3 

exposure by 9% in 2050, down to 38.1 ppb (Supplementary Figure 4b). The SDS–MFR 

scenario reduces O3 exposure by 11% in 2050, down to 37.5 ppb (Supplementary Figure 4c). 

Despite the modest size of these air quality improvements, national O3 exposure would then be 

close to the counterfactual exposure level no health risk (35.7 ppb). However, O3 exposure 

remains high in some areas of China, for example, in Beijing O3 exposure is 58.7 ppb. 

 

Supplementary Figure 3: Control exposure in 2020 for (a) fine particulate matter (PM2.5, annual−mean) and (d) 
ozone (O3, maximum 6−monthly−mean daily−maximum 8−hour, 6mDM8h).  
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Supplementary Figure 4: The impacts of future emission scenarios on ozone (O3, maximum 6−monthly−mean 
daily−maximum 8−hour, 6mDM8h) exposure in China from 2020 to 2050. Scenarios are the baseline activity 
projection with current legislation air pollution storyline (BASE–CLE), baseline activity projection with 

maximum technically feasible reduction air pollution storyline (BASE–MFR), and sustainable development 

activity projection with maximum technically feasible reduction air pollution storyline (SDS–MFR). Results are 

for (a) BASE–CLE in 2050, (b) BASE–MFR in 2050, (c) SDS–MFR in 2050, (d) BASE–CLE in 2050 minus the 

control in 2020, (e) BASE–MFR in 2050 minus the control in 2020, (f) SDS–MFR in 2050 minus the control in 

2020, (g) BASE–MFR in 2050 minus BASE–CLE in 2050, and (h) SDS–MFR in 2050 minus BASE–MFR in 

2050. 

In 2020, the disease burden associated with O3 exposure is 67,300 (95UI: 48,600–85,600) 

premature deaths per year (Figure 3d). Under the BASE–CLE scenario in 2050, the O3 disease 

burden increases by 79%, an additional 53,100 (95UI: 38,300–67,500) premature deaths per 

year compared to 2020. This is despite the 3% reduction in O3 exposure, and is driven by future 

population ageing significantly increasing the susceptibility to disease, with smaller 

improvements in baseline health for COPD. If the O3 exposure reductions are isolated from all 

other changes (POPAGEBM2020), then the O3 disease burden reduces by 13% in 2050, 

avoiding 8,600 (95UI: 6,200–10,900) premature deaths per year compared to 2020. 

Compared to the BASE–CLE scenario in 2050, the BASE–MFR scenario reduces the O3 

disease burden by 22%, avoiding 26,200 (95UI: 19,000–33,300) premature deaths per year. 

Compared to the BASE–MFR scenario in 2050, the SDS–MFR scenario avoids 4,400 (95UI: 

3,200–5,700) premature deaths per year. Relative to the baseline in 2020, the O3 disease burden 

in 2050 increases by 40% under the BASE–MFR scenario and 33% under the SDS–MFR 

scenario, due to the large impacts from population ageing. The changes in O3 disease burden 

are greater than the changes in O3 exposure due to the high counterfactual exposure level of no 

excess risk (35.7 ppb). For example, O3 exposure is 37.5 ppb in 2050 under the SDS–MFR 

scenario, where a further 5% reduction in exposure would remove 100% of the remaining 

disease burden. 
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Impacts of individual emission sectors on future air quality and public health 

Under the BASE–CLE scenario, the 1.5 ppb reduction in O3 exposure by 2050 is primarily 

from industrial (48%) and residential (34%) emissions (Supplementary Figure 5a). Under the 

BASE–MFR scenario, the further 2.4 ppb reduction in O3 exposure by 2050 is mainly due to 

industrial (40%), land transport (18%), and residential (11%) emissions (Supplementary Figure 

5b). Under the SDS–MFR scenario, the further 0.5 ppb reduction in O3 exposure by 2050 is 

mainly due to land transport (36%) and industrial (19%) emissions (Supplementary Figure 5c). 

Similar to the future PM2.5 disease burden under the BASE–CLE scenario, projected population 

ageing substantially increases the O3 disease burden beyond the impacts of individual emission 

sectors (Supplementary Figure 5d). This increase in disease susceptibility increases the O3 

disease burden by 53,100 (95UI: 38,300–67,500) premature deaths per year, which is partly 

offset from reductions in industrial and residential emissions. Under the BASE–MFR scenario, 

the reduction in O3 disease burden by 26,200 (95UI: 19,000–33,300) premature deaths per year 

in 2050 is mainly due to industrial (47%), land transport (20%), and residential (13%) 

emissions (Supplementary Figure 5e). Under the SDS–MFR scenario, the further 4,400 (95UI: 

3,200–5,700) avoided premature deaths per year from O3 exposure in 2050 is mainly due to 

land transport (50%) and industrial (27%) emissions (Supplementary Figure 5f). 

 

Supplementary Figure 5: The relative impacts of individual sector changes on (a–c) maximum 6−monthly−mean 
daily−maximum 8−hour (6mDM8h) ozone (O3) exposure and (d–f) associated premature mortalities (MORT) 

from future emission scenarios in China. Scenarios are (a and d) the baseline activity projection with current 

legislation air pollution storyline (BASE–CLE) in 2050 compared to 2020, (b and e) the baseline activity 

projection with maximum technically feasible reduction air pollution storyline (BASE–MFR) in 2050 compared 

to BASE–CLE in 2050, and (c and f) the sustainable development activity projection with maximum technically 

feasible reduction air pollution storyline (SDS–MFR) in 2050 compared to BASE–MFR in 2050. The overall 

impact per scenario is shown by the horizontal lines and bottom estimates. The sector–specific impacts per 

scenario are shown by the top percentages. 
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Supplementary Discussion 

The new knowledge that has been brought in by this study is the source–specific estimates to 

the future air pollution disease burden in China. These were across a range of projections from 

an updated version of the state–of–the–art ECLIPSE scenarios. These estimates were made 

possible by the novel machine learning emulators, which due to their low computational 

complexity, enabled much greater experimentation than numerical chemical transport models. 

Here, we compare our estimates of total air pollution exposure to relevant previous studies. 

Recent studies of air quality exposure in China for 2019 vary in their estimates of PM2.5 

exposure between 33−48 g m−3 and O3 exposure between 48−69 ppb (Health Effects Institute 

2020, Silver et al 2020, Zhang et al 2019, Liang et al 2020, Huang et al 2021, Yue et al 2020, 

Geng et al 2021b, Ma et al 2019, Zhai et al 2019, Kong et al 2021, Xue et al 2019, McDuffie 

et al 2021, Geng et al 2021a, Lu et al 2020). Our estimates of 43.3 g m−3 for PM2.5 exposure 

and 42.0 ppb for O3 exposure in 2020 are similar to these previous studies. 

The differences between our estimates and previous studies are likely due, in large part, to the 

different exposure estimation methods, scenarios, and health impact assessment methods, 

which are difficult to separate out. For example, Xing et al (2020) and Cheng et al (2021) both 

estimated emission projections using an Integrated Assessment Model (GCAM–China, Global 

Climate Assessment Model) and estimated exposure using WRF–CMAQ (Community 

Multiscale Air Quality). However, Xing et al (2020) tuned their Integrated Assessment Model 

with a bottom–up emission inventory, while Cheng et al (2021) incorporated a technology–
based emission projection model (DPEC, Dynamic Projection for Emission in China) with 

hindcast PM2.5 datasets, and both had different configurations for WRF–CMAQ. The GBD 

MAPS Working Group (2016) considered emissions projections from a 2012 baseline, before 

the legislation of the Three–Year Action Plan and the nationally determined contributions 

(NDCs), and estimated future exposure from scaling satellite–derived PM2.5 concentrations by 

GEOS–Chem (Goddard Earth Observing System) simulations. For disease burden estimates, 

Li et al (2019b) used older exposure–outcome associations from the GBD 2013 Risk Factors 

Collaborators (2015) and Xie et al (2018) used linear exposure–outcome associations, in 

addition to other differences in estimation methods for emissions and exposure. 

Our baseline PM2.5 disease burden for 2020 is 4% larger than Conibear et al (2021d), due to 

the increased burden from larger baseline mortality rates and more recent estimates, partially 

offset by a decreased burden from scaling down simulated exposure to match measurements. 

The air quality impacts from future climate change are likely to be smaller than those from 

emission changes. For example, Hong et al (2019) found that future climate change increased 

PM2.5 exposure by 3% and O3 exposure by 4% over 2010–2050, mainly due to changes in 

atmospheric stagnation and heat waves. Horton et al (2014) found that the air quality impacts 

from future changes in air stagnation in China primarily emerge after 2080. These air quality 

impacts from climate change are substantially smaller than the impacts from changes in 

emissions or population ageing (greater than 50%). 
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