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PERSPECTIVE OPEN

Polygenic scores: prediction versus explanation
Robert Plomin 1✉ and Sophie von Stumm 2

© The Author(s) 2021

During the past decade, polygenic scores have become a fast-growing area of research in the behavioural sciences. The ability to
directly assess people’s genetic propensities has transformed research by making it possible to add genetic predictors of traits to
any study. The value of polygenic scores in the behavioural sciences rests on using inherited DNA differences to predict, from birth,
common disorders and complex traits in unrelated individuals in the population. This predictive power of polygenic scores does not
require knowing anything about the processes that lie between genes and behaviour. It also does not mandate disentangling the
extent to which the prediction is due to assortative mating, genotype–environment correlation, or even population stratification.
Although bottom-up explanation from genes to brain to behaviour will remain the long-term goal of the behavioural sciences,
prediction is also a worthy achievement because it has immediate practical utility for identifying individuals at risk and is the
necessary first step towards explanation. A high priority for research must be to increase the predictive power of polygenic scores
to be able to use them as an early warning system to prevent problems.

Molecular Psychiatry (2022) 27:49–52; https://doi.org/10.1038/s41380-021-01348-y

Research using polygenic scores emerged as a fast-growing area
in the behavioural sciences during the past decade. Polygenic
scores consist of sums of thousands of single-nucleotide
polymorphisms (SNPs) each weighted by the effect size of its
association with a target trait derived from genome-wide
association studies [1].
In 2009, the first paper was published reporting a polygenic

score that predicted up to 3% of the liability to schizophrenia in
independent case–control samples [2]. Since then, 2783 articles
using polygenic scores have been listed on the Web of Science
(search terms ‘polygenic score’ OR ‘polygenic risk score’ OR
‘polygenic risk’). The largest field of polygenic score research is the
behavioural sciences (Web of Science categories: psychiatry,
neuroscience, behavioural science, psychology, psychology multi-
disciplinary, psychological development and psychology clinical,
with overlapping publications removed), which accounts for 45%
(N= 1271) of the total publications. Figure 1 shows the dramatic
rise of these 1271 polygenic score publications and their 14,228
citations, reaching 4636 citations in 2020.

PREDICTION
The predictive power of polygenic scores has increased steadily
during the past decade for dozens of common disorders and
complex traits. For example, the polygenic score for schizophrenia,
which predicted up to 3% of the liability variance in 2009, can now
predict 6% [3]. Polygenic scores can predict 2% of the liability
variance for major depressive disorder [4], 5% for bipolar disorder
[5], 3% for neuroticism [6], 6% for attention deficit hyperactivity
disorder [7] and 10% for externalising behaviours [8]. In the
cognitive realm, variance predicted by polygenic scores is 7% for
general cognitive ability (intelligence) [9], 11% for years of

schooling (educational attainment (EA)) [10] and 15% for tested
school performance at age 16 [11], which is the most predictive
polygenic score in the behavioural sciences.
Explain is the word used in statistical parlance to refer to effect

sizes, but the word predict is more appropriate because polygenic
scores do not explain how inherited DNA differences become
associated with behavioural traits. Polygenic score predictions of
behavioural traits are correlations and correlations do not imply
causation. Causation is a complicated concept that generally refers
to mechanisms that precede effects, often identified by experi-
mental manipulation. Here, however, we refer to explanation in the
more limited sense of statistical models of nonexperimental data
that attempt to infer causation from correlational data [12, 13].
The purpose of this perspective is to contrast prediction and

explanation. Prediction and explanation offer different scientific
perspectives, and neither is right nor wrong, just more or less
useful to achieve different research goals. The goal of prediction is
to account for as much variance as possible, without regard for
explanation. The goal of explanation is to deduce causality,
without regard for prediction [14, 15]. These perspectives can be
complementary, for example, if explanatory models are validated
in terms of prediction, and if knowledge of causal processes leads
to better prediction.
The value of explanation without prediction is seldom ques-

tioned but we argue here that prediction without explanation is
also valuable. This point is widely acknowledged in some scientific
disciplines, for example, in artificial intelligence where machine
learning is an increasingly popular tool for prediction that
explicitly eschews explanation. However, in the behavioural
sciences, evidence for prediction has often been downplayed
and devalued if it was devoid of explanation. This attitude seems
especially paradoxical in the context of genomic research because
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success in identifying DNA differences came only after the search
for candidate genes selected for their possible causal connection
to a trait was superseded by a hypothesis-free approach that is
agnostic about the specific function of DNA variants (i.e., genome-
wide association).
The predictive power of polygenic scores is groundbreaking.

Predicting 10% of the variance marks an important milestone
because effect sizes of this magnitude are large enough to be
‘perceptible to the naked eye of a reasonably sensitive observer’
[16]. Nonetheless, 10% of the variance is equivalent to a
correlation of only 0.32, and the resulting oval-shaped scatterplot
between the polygenic score and a trait indicates the probabilistic
nature of polygenic score prediction at the level of an individual
[17, 18]. Even so, useful predictions can be made at the extremes.
For example, the lowest and highest deciles for the polygenic
score for IQ yield mean IQs of 92 and 108, respectively. For the
polygenic score for EA, 25% of those in the lowest decile go to
university as compared to 75% of those in the highest decile [18].
Being in the top decile of polygenic scores for schizophrenia is
associated with an odds ratio of 4.6 for becoming diagnosed with
schizophrenia as compared to the bottom decile; this is similar to
the risk that either smoking or diabetes poses for experiencing
coronary artery disease [19].
Polygenic score prediction compares favourably with other

predictors in the behavioural sciences, which are rarely subjected
to the same harsh spotlight of effect size. For example, in contrast to
polygenic scores that predict 15% of the variance in tested school
performance in the UK at age 16, ratings of school quality obtained
by an independent body of evaluators (Ofsted) only predict 4% of
the variance in the same tests of school performance [20]. Despite its
modest effect size, school quality ratings are used by parents to
decide which schools their children will attend [21].

Polygenic scores will never predict complex traits with perfect
precision because heritabilities are about 50% for most beha-
vioural traits [22]. Other limitations can be surmounted, most
notably, the ‘missing heritability’ gap between variance predicted
by polygenic scores and twin study estimates of heritability [23].
The missing heritability gap will be narrowed with bigger and
better genome-wide association studies and with whole-genome
sequencing that assesses all DNA differences in the genome rather
than several hundred thousand SNPs assessed in current studies
[24]. The only way is up for the predictive power of polygenic
scores.
The ability to directly assess people’s genetic propensities has

transformed research by enhancing the power and precision of
genetic research on diagnoses and dimensions, heterogeneity and
co-morbidity, developmental change and continuity and gene-
environment correlation and interaction [25]. Polygenic scores
make it possible to add genetic predictors of behavioural traits to
any research without the need for samples of twins or adoptees.
Although genome-wide association studies require huge sample
sizes, a polygenic score that predicts 5% of the variance only
needs a sample of 120 to detect its effect with 80% power (p=
0.05, one-tailed).
Polygenic score predictions are correlations, and correlations do

not necessarily imply causation. However, polygenic scores have a
unique causal status among predictors in one important sense:
correlations between polygenic scores and traits can only be
interpreted in one direction causally. That is, there can be no
backward causation in the sense that the brain, behaviour or the
environment cannot change inherited DNA variation. The
unchanging nature of inherited DNA variation from the moment
of conception also makes polygenic score predictions unique in
that they are just as predictive of adult traits early in life as they
are in adulthood.

EXPLANATION
Causal models using genomic data are burgeoning [12]. Much of
this work considers the extent to which assortative mating,
genotype–environment (GE) correlation and population stratifica-
tion contribute to polygenic score prediction. Assortative mating is
an ingredient in polygenic score prediction because it increases
genetic variance in a population when individuals inherit trait-
relevant DNA variants from both parents that deviate in the same
direction from the population mean. GE correlation can affect
polygenic score prediction, for example, when the correlation
between children’s polygenic scores and their school performance
is mediated by their experiences at home or school. Population
stratification, such as ancestral or regional differences within a
population, also contributes to the total genetic variance in the
population that is predicted by polygenic scores.
Quantitative genetic research that uses family, twin and

adoption designs to disentangle nature and nurture provides a
backdrop for genomic studies of these processes. For example, a
clever combination of twin and partner data indicated that
assortative mating is caused by social homogamy rather than
genetic influence on choice or environmental convergence of
spouses over time [26]. However, assortative mating increases
genetic variance regardless of its causal mechanisms that drive
assortative mating. Most twin studies ignore assortative mating
and thus underestimate heritability by misattributing its variance
to shared environmental influences. This is especially the case for
cognitive traits, which show much greater assortative mating than
personality or psychopathology [27].
Forty years of quantitative genetic research on GE correlation

has revealed that most environmental measures widely used in
the behavioural sciences show substantial genetic influence,
about 25% heritability on average [28–30] and correlations
between environmental measures and behavioural traits are
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substantially mediated genetically, about 50% on average [31, 32].
Three types of GE correlation have been investigated: passive,
evocative and active [33]. Passive GE correlation occurs when
children passively inherit environments correlated with their
genetic propensities. For example, parents with high polygenic
scores for EA not only transmit high EA scores to their children but
also provide experiences such as tuition, aspirations and role
models that foster EA-related traits in their children. Children with
high EA scores might also evoke reactions from others such as
teachers who enhance their school performance. Active GE
correlation occurs when children select, modify or create
environments correlated with their genetic propensities. For
instance, children with high EA scores might select like-minded
friends, extract more information from classroom instruction and
read more. Passive GE correlation is limited to experiences
provided by genetically related individuals, evocative GE correla-
tion includes experiences with anyone and active GE correlation
encompasses experiences with anything.
Twin studies commingle GE correlation in their estimates of

heritability, but adoption designs [31] and combinations of twins
and multi-generational families [34] are able to disentangle the
three types of GE correlation. For example, comparing adoptive
and nonadoptive families can assess passive GE correlation
because it is absent in adoptive families. Results from such
research point to the importance of passive GE correlation for
cognitive traits [31] and evocative GE correlation for psycho-
pathology [35]. It has been difficult to pin down active GE
correlation in part because measures of the environment widely
used in the behavioural sciences assess the environment that
happens to us passively rather than the experiences that we
actively choose and create.
Quantitative genetic research has had much less to say about

population stratification. Because ancestral and regional groups are
usually included in twin analyses, their effects, which are solely
between-family effects, are read as shared environmental influence.
Genomic methods have created many new opportunities to

investigate assortative mating [36, 37], population stratification
[38, 39] and especially GE correlation [40–42]. Some genomic
methods estimate the joint effect of all three mechanisms, most
notably comparing polygenic score predictions between families;
polygenic score predictions within families exclude the effects of
assortative mating and population stratification [10, 41, 42].
All these methods indicate that assortative mating, passive GE

correlation and population stratification can contribute to poly-
genic score predictions. The most notable finding is that they
contribute much more to polygenic score predictions of cognitive
traits than other behavioural domains. This seems likely to be part
of the reason why polygenic scores are more predictive for
cognitive traits.

PREDICTION VERSUS EXPLANATION
Assortative mating, GE correlation and population stratification are
interesting in their own right, and it is also reasonable to
investigate the extent to which they contribute to polygenic score
predictions. However, proclaiming that these processes make
polygenic scores confounded, biased or inflated as predictors
confuses explanation and prediction.
From the perspective of predicting individual differences in a

particular population, that population’s assortative mating, GE
correlation and population stratification are legitimate sources of
genetic variance for polygenic score prediction. If our goal is
prediction, we would not want to ‘correct’ the polygenic score to
remove genetic variance that can be ascribed to assortative mating,
GE correlation or population stratification. In contrast, in causal
models such as Mendelian randomisation [41], these phenomena
are viewed as confounds that need to be controlled, although it is
inherently difficult to infer causality from correlational data [13].

Most controversial is population stratification, which is so
assumed to be a confounder that its genetic variance is removed
in the first step of genome-wide association studies by covarying
principal component scores for groups that differ in SNP
resemblance. Polygenic scores are corrected again for group
principal components in analyses of their association with a
phenotype. The chopsticks example [43] illustrates the issue: in a
study of the use of chopsticks, any SNP differences between
Asians and non-Asians would be incorporated in a polygenic score
predicting chopstick use even though culture is the explanation
for the use of chopsticks. However, it could be argued from a
predictive perspective that once a phenotype and a population
are defined, any inherited DNA differences that predict the
phenotype in that population are legitimate sources of polygenic
score prediction, whether due to ancestry, geography or culture.
In addition, removing genetic variance due to ancestral differ-
ences raises the question of when to stop correcting polygenic
scores because, in the end, all genetic variance is ancestral. The
issue of whether population stratification confounds polygenic
score prediction in a particular population is separate from the
ability of polygenic scores to predict in different populations [44]
or the need for greater ancestral diversity in genome-wide
association studies [45, 46].
The long-term goal of the behavioural sciences is to map the

explanatory pathways from DNA through the brain to behaviour
[47]. Yet, prediction is the necessary first step towards explanation.
Polygenic scores also have immediate impact on research, are of
practical utility for identifying individuals at risk and serve as an
early warning system to prevent problems before they occur.
From the prediction perspective, anything that improves the

predictive power of polygenic scores is welcome, such as
improved methodologies for creating polygenic scores from
current genome-wide association data [48] or using multiple
polygenic scores [49, 50]. However, a high priority for research
must be to foster bigger and better genome-wide association
studies that can create more powerful polygenic scores. These
studies require enormous efforts because samples of unprece-
dented size are needed to pan for specks of gold from the sand of
millions of SNPs. Denigrating polygenic scores because they are
‘only’ predictive undermines this effort.
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