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ABSTRACT Enhancing soil phosphate solubilization is a promising strategy for agricultural
sustainability, while little is known about the mechanisms of how microorganisms cope with
differing phosphorus availability. Using a combination of genome-resolved metagenomics
and amplicon sequencing, we investigated the microbial mechanisms involved in phosphorus
cycling under three agricultural treatments in a wheat-maize rotation system and two natural
reforestation treatments. Available soil phosphorus was the key factor shaping bacterial and
fungal community composition and function across our agricultural and reforestation sites.
Membrane-bound quinoprotein glucose dehydrogenase (PQQGDH) and exopolyphosphatases
(PPX) governed microbial phosphate solubilization in agroecosystems. In contrast, genes
encoding glycerol-3-phosphate transporters (ugpB, ugpC, and ugpQ) displayed a significantly
greater abundance in the reforestation soils. The gcd gene encoding PQQGDH was found to
be the best determinant for bioavailable soil phosphorus. Metagenome-assembled genomes
(MAGs) affiliated with Cyclobacteriaceae and Vicinamibacterales were obtained from agricultural
soils. Their MAGs harbored not only gcd but also the pit gene encoding low-affinity phos-
phate transporters. MAGs obtained from reforestation soils were affiliated with Microtrichales
and Burkholderiales. These contain ugp genes but no gcd, and thereby are indicative of a
phosphate transporter strategy. Our study demonstrates that knowledge of distinct microbial
phosphorus acquisition strategies between agricultural and reforestation soils could help in
linking microbial processes with phosphorus cycling.

IMPORTANCE The soil microbiome is the key player regulating phosphorus cycling proc-
esses. Identifying phosphate-solubilizing bacteria and utilizing them for release of recal-
citrant phosphate that is bound to rocks or minerals have implications for improving
crop nutrient acquisition and crop productivity. In this study, we combined functional
metagenomics and amplicon sequencing to analyze microbial phosphorus cycling proc-
esses in natural reforestation and agricultural soils. We found that the phosphorus ac-
quisition strategies significantly differed between these two ecosystems. A microbial
phosphorus solubilization strategy dominated in the agricultural soils, while a microbial
phosphate transporter strategy was observed in the reforestation soils. We further iden-
tified microbial taxa that contributed to enhanced phosphate solubilization in the agro-
ecosystem. These microbes are predicted to be beneficial for the increase in phosphate
bioavailability through agricultural practices.
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Phosphorus availability is essential for soil health and plant growth (1, 2). Unlike
nitrogen, soil phosphorus exists in many organic and inorganic forms, and most of

these forms are physically immobilized by soil minerals that are not readily bioavailable
for utilization by plants (3, 4). While plant growth and biomass accumulation are con-
strained by soil phosphorus bioavailability, mitigating phosphorus limitation in an
agroecosystem has been shown to be a promising strategy for sustainable phosphorus
resource management and crop production in the future (5). Microbes have great
potential to increase soil phosphorus availability and are the key players in regulating
phosphorus transformation processes (6–8). A series of microbially released enzymes
(e.g., phytase, C-P lyase, and phosphonatase) and organic acids (e.g., gluconic acid,
malic acid, and oxalic acid) are able to solubilize recalcitrant phosphorus (6, 9). The soil
microbiome also contributes to plant phosphorus uptake by arbuscular mycorrhizal
symbiosis (10). The balance between microbial phosphorus assimilation and scaveng-
ing processes further regulates soil phosphorus bioavailability (11). Despite the impor-
tance of microbially mediated phosphorus cycling to terrestrial ecosystem functioning
and services, little has been known about the microorganisms involved in phosphate
solubilization and their genetic potential to adapt to phosphorus limitation.

Microbial genes involved in the soil phosphorus cycle encode four distinct functional
traits: inorganic phosphate solubilization (e.g., gcd, ppa, and ppx), organic phosphorus
mineralization (e.g., phoA and phoD), transporters (e.g., pit, pstA, pstB, and ugpQ), and regu-
latory genes (e.g., phoB and phoR) (12–15). Among these genes, the gcd gene encoding
the membrane-bound quinoprotein glucose dehydrogenase (PQQGDH; EC.1.1.5.2) is the
major determinant of rock phosphate and hydroxyapatite solubilization by gluconic acid
production (16, 17). Exopolyphosphatase (PPX), encoded by the ppx gene, was shown to
play an important role in the degradation of inorganic polyphosphate into phosphate
(18). Microbes also possess efficient phosphorus uptake systems to effectively compete
for soil phosphorus resources with other biota (19, 20). The genes encoding the high-affin-
ity phosphate-specific transporter (pst) and low-affinity inorganic phosphate transporter
(pit) are essential to facilitate microbial phosphorus uptake under phosphorus-depleted or
phosphorus-rich conditions (21). A positive correlation between the abundance of micro-
bial genes encoding high-affinity phosphorus uptake and low bioavailability of soil phos-
phorus has been reported (20). Phosphate-solubilizing microorganisms have previously
been characterized as plant growth-promoting bacteria, including strains of the genera
Bacillus, Burkholderia, Pseudomonas, and Rhizobium (22–24). A recent genome-resolved
metagenome study expanded our knowledge of phosphate-solubilizing capabilities from
Firmicutes and Proteobacteria to members of other phyla, including Acidobacteria,
Bacteroidetes, Gemmatimonadetes, and Planctomycetes (13). However, the link between
their phosphorus acquisition strategies, including inorganic phosphate solubilization, and
particular soil conditions still needs to be further elucidated.

A meta-analysis of research data from 192 samples showed us that soil available phos-
phorus (AP) significantly differs between agricultural and forest soils across China (see
Fig. S1 in the supplemental material). To understand the microbial mechanisms underly-
ing the different phosphorus availability in these two ecosystems, we combined functional
metagenomics and amplicon sequencing (bacterial 16S rRNA gene and fungal internal
transcribed spacer [ITS] region). Given that key traits linked to nutrient acquisition can be
inferred from genomic data (25), we anticipated that this approach would allow us to
obtain more comprehensive profiles of microbial community composition and function
(26) and thus to elucidate the genetic potential for phosphorus acquisition in soils under
contrasting management practices. Located in the North China plain, our experimental
field site involved three agricultural treatments (no fertilizer, chemical fertilizer, and chemi-
cal fertilizer plus manure) in a wheat-maize rotation system and two natural reforestation
treatments initiated 12 and 42 years ago. We specifically aimed to investigate microbially
mediated inorganic phosphate solubilization and phosphate transport mechanisms in ag-
ricultural and reforestation soils and to determine the driving factors for regulating micro-
bial phosphate solubilization. In particular, we hypothesized that soil microbiomes
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inhabiting resource-limited reforestation soils exhibit efficient phosphate transport sys-
tems to compete for and acquire available phosphorus with minimal energy investment.
In contrast, the high-resource inputs into agricultural soils stimulate the activity of
microbes involved in inorganic phosphate solubilization with more energy investment in
extracellular metabolic processes.

RESULTS
Soil properties. Reforestation significantly decreased soil available phosphorus (AP)

contents in comparison to agricultural soil (P , 0.05) (Fig. 1). The lowest soil AP content
(1.53 mg kg21) was observed under R40 treatment, while the highest soil AP content
(51.50 mg kg21) was found under CFM (chemical fertilizer plus organic manure) treatment.
The soil organic carbon (SOC) content was the highest (19.85 g kg21) under CFM treat-
ment, which was directly enhanced by organic manure inputs (P, 0.05) (Fig. 1). Soil avail-
able potassium (AK) was significantly increased by 111.17 and 359.67 mg kg21 under
chemical fertilizer (CF) and CFM treatments compared to CK (control without fertilization)
treatment (P, 0.05) (Fig. 1). R40 and R10 significantly increased soil AK content by 136.50
and 145.67 mg kg21 in comparison to CK treatment, respectively (P, 0.05) (Fig. 1).

Treatment-driven changes in taxonomic and functional profiles. Principal-coor-
dinate analysis (PCoA) revealed distinct clustering between agricultural and reforesta-
tion soils (Fig. 2). Reforestation explained 36 and 32% of the total bacterial and fungal
diversity variation in the first axis, respectively (Fig. 2a and b). Bacterial rather than fun-
gal diversity varied with reforestation age. With regard to the functional gene profiles
(KEGG level 4), reforestation accounted for 24 and 8% of the variation in the first and
second axes, respectively (Fig. 2c). Random forest analysis further showed that soil
properties explained 67.30, 61.41, and 44.56% of bacterial, fungal, and functional beta
diversity variation, respectively (Fig. 2d to f). Among the soil chemical parameters, AP
was the most important predictor for bacterial, fungal, and functional beta diversity,
followed by AK and SOC (Fig. 2d to f). Soil AP was positively correlated to both taxo-
nomic and functional beta diversity (P , 0.05) (see Fig. S2a in the supplemental
material).

Correlation between microbial indicators and soil available phosphorus. Soil
AP was found to be the key soil variable affecting microbial indicators (Fig. 3). A total
of 181 microbial indicators were shared by the CK, CF, and CFM treatments in the agri-
cultural soils, while 324 microbial indicators were shared by the R40 and R10 treat-
ments in the reforestation soils (see Fig. S2b and Tables S1 and S2 in the supplemental
material). Co-occurrence networks showed that themicrobial indicators were closely connected
and formed distinct clusters between reforestation and agricultural soils (Fig. S2c and d). Soil AP
was identified to be significantly positively correlated to most of the microbial indicators (86.7%)
in agricultural soils, while it was significantly negatively correlated to most of the microbial indi-
cators (90.1%) in reforestation soils (Fig. 3). At the phylum level, Actinobacteria and Chloroflexi
were mainly indicative of reforestation soils, while Bacteroideteswas representative of agricultural
soils (Fig. 3; Table S2). At the family level, Chitinophaceae (Bacteroidetes), Sphingomonadaceae

FIG 1 Soil chemical properties in the agricultural and reforestation soils. The effects of the different management practices on SOC, TN, NO3
2-N, AK, and

AP are shown. Different letters indicate significant differences between treatments (P , 0.05).
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(Alphaproteobacteria), and Xanthomonadaceae (Gammaproteobacteria) were abundant indicators
for the agricultural soils, while members of the Solirubrobacteraceae (Thermoleophilia) were indic-
ative of the reforestation soils and negatively correlated with soil AP (see Fig. S3 and Table S2 in
the supplemental material). Among fungi, Hypocreales and Eurotiales (Ascomycota) were identi-
fied to be the indicators of agricultural and reforestation soils, respectively.

Correlation between abundance of phosphorus cycling genes and soil available
phosphorus. A total of 24 genes encoding functions in phosphorus metabolism were
detected (Fig. 4a; see Table S3 in the supplemental material). PCoA analysis of these
genes showed distinct clusters in reforestation and agricultural soils (see Fig. S4 in
the supplemental material). Random forest analysis showed that the gcd gene was the
most important predictor for soil AP, followed by ppa and phoR (P , 0.05) (Fig. 4b; see
Table S4 in the supplemental material). The abundance of genes encoding functions
involved in inorganic phosphate solubilization was the highest in the agricultural soils
(Fig. 4c). In addition, their collective abundance (gcd, ppa, and ppx) was positively
associated with soil AP and significantly enriched in the agricultural soils (Fig. 4d and
5a; Fig. S4). However, the ugpB, ugpC, and ugpQ genes, which encode a glycerol-3-
phosphate transporter, were significantly enriched in reforestation soils (R40 and R10)
(P , 0.05) (Fig. 5b).

The taxonomic compositions of key genes involved in phosphorus cycling (gcd, ppa,
ppx, and ugpQ) significantly differed between the two ecosystems (Fig. 6). In particular,
the relative abundance of gcd genes affiliated with Cytophagales, Sphingomonadales, and
Vicinamibacterales was significantly greater in the agricultural soils than in the reforesta-
tion soils (P, 0.05) (Fig. 6). Likewise, ppa and ppx genes affiliated with Solirubrobacterales,
Sphingomonadales, and Xanthomonadales were significantly enriched in the agricultural
soils (P , 0.05) (Fig. 6). In contrast, ugpQ genes affiliated with Cytophagales and

FIG 2 Microbial diversity and the effects of soil parameters on the microbial diversity in agricultural and reforestation soils. Shown are the results from
principal-coordinate analysis (PCoA) of bacterial (a), fungal (b), and functional gene (c) diversity. The analyses are based on 16S rRNA gene (bacteria), ITS
region (fungi), and gene profiles at KEGG level 4. Random forest analysis was applied to determine the contribution of each soil property to bacterial (d),
fungal (e), and functional gene (f) diversity. The importance of each predictor was determined by the increase in mean squared error (MSE). Asterisks
indicate that the predictor was significant (*, P , 0.05; **, P , 0.01).
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Solirubrobacterales showed a significantly greater abundance in the reforestation soils
than in the agricultural soils (P, 0.05) (Fig. 6).

Linking MAGs to phosphorus acquisition strategy. The 14 metagenome-assembled
genomes (MAGs) had an average completeness and contamination of 81.1% and 3.9%,
respectively (see Table S5 in the supplemental material). The five gcd-containing MAGs from
agricultural soils were phylogenetically classified as Cyclobacteriaceae (Bacteroidetes),
Gemmatimonadaceae (Gemmatimonadetes), and Vicinamibacteria (Acidobacteria) (Fig. 7a;
Table S5). All of these five gcd-containing MAGs harbored at least one ppa or ppx gene.
Most of the MAGs contained one to three gcd genes. However, MAG CFM_bin.39 con-
tained five gcd genes, one ppa gene, and two ppx genes. This MAG was obtained from
phosphorus-rich agricultural soil and belongs to the Cyclobacteriaceae. Among trans-
porters, MAG CFM_bin.39 only encoded the low-affinity phosphate transporter (pit) but
no high-affinity phosphate transporters (ugp, pst). The Cyclobacteriaceae family was
highly abundant under CFM treatment and positively correlated to soil AP content
(R = 0.9, P , 0.001) (Fig. 7b). In addition, the Vicinamibacterales (CFM_bin.6) harbored
three gcd genes and one pit transporter gene, but no high-affinity ugp or pst transporter
system. These two genomes were representative of the phosphate solubilization strat-
egy in the agroecosystem.

The MAGs obtained from the phosphorus-deficient R10 and R40 treatments displayed
genes encoding a high-affinity phosphate transporter (pst) and the glycerol-3-phosphate
transporter (ugp). For instance, the MAGs affiliated with Rokubacteriales (R40_bin.28),
Microtrichales (Acdimicrobila) (R40_bin.93, R40_bin.33, and R40_bin.27) and Burkholderiales
(Proteobacteria) (R10_bin.28, R10_bin.37, R10_bin.68, R40_bin.88, and R40_bin.53) har-
bored genes encoding the glycerol-3-phosphate transporter (ugpA, ugpB, and ugpE), while
no gcd genes could be detected in these MAGs (Fig. 7a). In addition, three MAGs in the re-
forestation soils contained a gene involved in phenazine biosynthesis (phzS) (Table S5).
Phenazine is a newly characterized redox-active antibiotic that has been shown to be
involved in phosphorus acquisition under phosphorus limitation (8).

DISCUSSION

In this study, we analyzed the distinct responses of soil microbial communities to
soil AP in two contrasting ecosystems by using a combination of genome-resolved

FIG 3 Microbial indicators in agricultural and reforestation soils. The indicators shared by R40 and R10 treatments were viewed as
the representative microbial indicators for reforestation soils, and indicators shared by CK, CF, and CFM treatments were viewed
as the representative microbial indicators for agricultural soils. A significant correlation between microbial indicators and soil
properties was calculated by Spearman correlation analysis (P , 0.05) and visualized in Gephi. The positive and negative
correlations between microbial indicators are shown in red and blue, respectively.
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binning, comparative metagenomics, amplicon sequencing, and multivariate analysis.
Notably, the genetic potential of the retrieved MAGs confirmed that the phosphorus
acquisition strategies in reforestation and agricultural soils significantly differ. Thus, our
study expands the knowledge of phosphate-solubilizing capacities and microbial
adaptive traits to soil microbiomes in reforestation and agricultural soils.

Microbial indicators and functional responses driven by soil available phosphorus.
Soil AP was the most important predictor for microbial diversity and structure across
the reforestation and agricultural soils. Our study showed that soil AP shaped microbial
functional diversity, which reinforced the view that phosphorus bioavailability shaped
microbial functions (9). In addition to the association between microbial functional di-
versity and soil AP, significant correlations between microbial indicators and soil AP
were observed in both reforestation and agricultural soils (Fig. 2 and 3). In particular,
Chitinophagales, Cytophagales, Sphingomonadales, and Xanthomonadales were the
order-level indicators that positively correlated to soil AP in agricultural soils (Fig. S3
and Table S2). These taxa may be potential indicators that regulate soil phosphorus bi-
oavailability, as supported by the results of our meta-analysis correlating taxon abun-
dance with bioavailable phosphorus across 120 agricultural soils and 72 forest soils in
China (P , 0.001) (see Fig. S5 in the supplemental material). Our results were further con-
firmed by MAGs being affiliated with Chitinophagales, Cytophagales, and Sphingomonadales,
which have previously been reported to have the genetic potential to solubilize phosphate

FIG 4 Abundance of phosphorus transformation-related genes in agricultural and reforestation soils. (a) Heat map displaying the Z-scored transformed
abundance of 24 microbial phosphorus transformation-related genes based on metagenomic data. Predictors for soil available phosphorus were
determined by random forest analysis. The importance of each predictor was evaluated by the increase in mean squared error (MSE). Asterisks indicate that
the predictor was significant (*, P , 0.05; **, P , 0.01). (b) Bar plot showing the collective abundance of gcd, ppa, and ppx across the five treatments. (c)
The three genes determine the capacity for soil inorganic phosphate solubilization. Different letters indicate significant differences between particular
treatments. (d) Correlation between soil available phosphorus (AP) and genetic potential for soil inorganic phosphate solubilization.
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(13, 27–29). Furthermore, the taxonomic assignments of gcd reads to Chitinophagales,
Cytophagales, Sphingomonadales, and Xanthomonadales strengthens the above findings on
the taxon-specific distribution of phosphate-solubilizing capacities among bacteria (Fig. 6).

The gcd gene is the determinant predictor of soil AP. Phosphate solubilization
was found to be the most essential and significant microbial functional trait in various
soils, due to the prevalence of phosphate in complex inorganic and organic forms that
may be inaccessible (4, 30). Correspondingly, the PQQGDH enzyme was shown to be
the most important indicator for inorganic phosphate solubilization in microbial com-
munities (6, 20). In our study, the gcd gene encoding PQQGDH was found to be a
prominent and significant predictor for soil AP and microbial phosphate solubilization
capacity in both agricultural and reforestation soils, which is consistent with previous
results obtained for microbiomes in postmining soils (13). However, the abundance of
the gcd gene varied up to 3-fold between reforestation and agricultural soils. This is
striking as previous studies have found that, regardless of the C:N:P stoichiometry dif-
ferences, the microbial potential to solubilize phosphate is highly stable (7, 31). An
increase in gcd gene abundance does not necessarily provide final proof for an
increase in the phosphate solubilization activity of microbial communities. However,
the strong positive correlation between gcd gene abundance and soil AP provides
additional evidence that phosphorus bioavailability is regulated by microbial phos-
phate solubilization (Fig. S4). The high importance of the gcd gene as a biomarker for
soil phosphorus cycling is reasonable given that inorganic phosphate solubilization
has been proposed to be a dominant process in phosphorus-rich soils (13, 20).

Functional traits in phosphorus metabolism. Microbial phosphorus transforma-
tion processes are regulated by soil phosphorus bioavailability (9, 20). The microbial
genes encoding phosphorus cycling in the reforestation and agricultural soils indicate
distinct metabolic pathways of uptake of and competition for phosphorus resources.
Soil microorganisms have a number of physiological strategies to access phosphorus
nutrients, including production of organic acids to solubilize recalcitrant forms of

FIG 5 The normalized abundance of the gcd, ppa, and ppx genes (phosphate solubilization) as well as ugpB, ugpC, and ugpQ
genes (glycerol-3-phosphate transporter) in agricultural and reforestation soils. Asterisks indicate significant difference in gene
abundance between the two ecosystems (*, P , 0.05; ***, P , 0.001).
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phosphorus and efficient phosphate transport systems (32). Indeed, the microbial com-
munities residing in agricultural soil were shown to invest in inorganic phosphate solu-
bilization by organic acid synthesis (gcd) or enzymatic activity (ppa and ppx). We define
these traits as a phosphate solubilization strategy. Thus, in the agricultural soils, this
bacterial strategy was governed by the bioavailability of soil phosphorus, which was
positively correlated to the abundance of genes encoding phosphate solubilization. In
contrast, the microbial genes encoding the glycerol-3-phosphate transporter (ugpB,
ugpC, and ugpQ) are highly indicative of a fierce competition for bioavailable phospho-
rus, which we refer to as a phosphate transport strategy.

In agreement with our hypotheses, microbial phosphorus acquisition in agricultural
and reforestation soils can thus be attributed to two distinct strategies, namely, (i)

FIG 7 (a) Maximum likelihood tree of 14 MAGs based on a concatenated alignment of 120 marker genes from GTDB-Tk. The phylogenetic tree was
visualized in the i-Tol platform. The bar plot displays the gcd gene copy numbers in our 14 MAGs, while the heat map shows the abundance of
phosphorus transformation-related genes among the 14 MAGs. The taxonomic affiliation of the MAGs is based on GTDB-Tk classification. (b) Correlation
between Cyclobacteriaceae abundance in the metagenomic data sets and soil available phosphorus (AP) content.

FIG 6 Taxonomic assignments of the gcd, ppa, ppx and ugpQ genes at the order level. (a) The bar plot displays the number of reads that are assigned to
the gcd, ppa, ppx, and ugpQ genes. (a and b) The taxonomic assignment of the gcd, ppa, ppx, and ugpQ genes (a) and their abundance in agricultural and
reforestation soils (b). Different letters in panel a (a and b) represent significant difference in the normalized read numbers obtained from the agricultural
and reforestation soils, respectively.
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inorganic phosphate solubilization and (ii) high-affinity transport of phosphate. Micro-
bial phosphorus acquisition by synthesis of organic acids was shown to be a slow
process and requires a major investment in metabolic resources (9). Microorganisms
thriving in agricultural soils with organic fertilizer input favor the synthesis of organic
acids for inorganic phosphate solubilization. This finding agrees well with previous
reports on phosphate-solubilizing bacteria in agricultural soils (17, 24). Soil micro-
biomes are competitive for bioavailable phosphorus rather than for phosphate solubili-
zation in resource-limited environments. This has been proposed according to the
optimal foraging theory (33). To survive under unfavorable soil conditions, an efficient
microbial community should acquire resources (e.g., phosphorus) with minimal energy
investment by efficient transporters (34, 35). The higher abundance of genes encoding
high-affinity phosphate transporters in the reforestation soils than in the agricultural
soils and the negative correlation of their gene abundance to soil AP suggest that
phosphorus deficiency stimulates competition for phosphorus. This may also explain
why phosphorus was more depleted in R40 soils (1.53 mg kg21) than in R10 soils
(3.35 mg kg21). Indeed, the gene abundance of ugpB, ugpC, and ugpQ was significantly
higher in the reforestation soils than in the agricultural soils. This phosphate trans-
porter was shown to empower the soil microbiome to efficiently compete for phos-
phorus resources with other biota when bioavailable phosphorus is scarce (16).

Functional traits of MAGs between agricultural and reforestation soils. The dis-
tinct phosphorus acquisition strategies operating in reforestation and agricultural soils
were further evidenced by the specific MAGs. The taxonomic identity of the gcd-con-
taining MAGs revealed that phosphate-solubilizing bacteria are associated with poorly
characterized families, such as Cyclobacteriaceae (Cytophagales), Gemmatimonadaceae
(Gemmatimonadales), Vicinamibacteria (Vicinamibacterales), and Binatia (Fig. 7). The
CyclobacteriaceaeMAG was found to harbor as many as five gcd genes encoding PQQGDH
(Fig. 7). These findings further corroborate the enrichment of Cyclobacteriaceae to agricul-
tural soils (Fig. S3), which is consistent with a previous report that Cyclobacteriaceae mem-
bers thrive in environments with high phosphorus content (36). In addition, there is a sig-
nificantly positive correlation between Cyclobacteriaceae abundance and soil AP (R = 0.9;
P, 0.001). Thus, it is reasonable to propose that Cyclobacteriaceae is one of the key taxa in
contributing to the solubilization and bioavailability of soil inorganic phosphorus in phos-
phorus-rich environments (37). We further found that Vicinamibacterales-associated MAGs
(CFM_bin.6) harbor three gcd gene copies and a single pit gene copy, which provides evi-
dence that certain bacteria have great phosphate solubilization capacity coupled with low-
affinity transporters. The absence of genes (pst and ugp) encoding high-affinity transporter
systems suggests that, compared with other biota, these bacteria have no competitive
advantage in the acquisition of soil AP under phosphorus-depleted conditions, while they
rely on their inorganic phosphate solubilization potential to meet the needs for cellular
growth and reproduction.

In contrast, MAGs retrieved from the reforestation soils harbor genes encoding effi-
cient phosphate uptake systems, including the glycerol-3-phosphate transporter (ugp).
This gene pattern was confirmed by three MAGs affiliated with the Microtrichales
(R40_bin.93, R40_bin.33, and R40_bin.27) and five MAGs affiliated with Burkholderiales
(R10_bin.28, R10_bin.37, R10_bin.68, R40_bin.88, and R40_bin.53). Burkholderiales able
to produce extracellular phosphatases were found to be beneficial microbes involved
in phosphate solubilization (23, 24). In our study, microbial phosphorus uptake was
mainly governed by glycerol-3-phosphate transporters in the reforestation soils. This
observation agrees well with our finding that ugp genes showed a significantly higher
abundance in the reforestation soils than in agricultural soils. It is thought that the
ugp-encoded transporters facilitate bacteria to utilize alternative phosphorus sub-
strates (e.g., phosphate esters) to cope with phosphorus starvation conditions (38).
Phosphate esters, like glycerol-3-phosphate, have been shown to be acquired by
microorganisms through ugpBAECQ-encoded transporters (39). Among the genes in
the ugp gene cluster, ugpQ, encoding glycerol-3-phosphodiesterase, can further
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release glycerol-3-phosphate (38). Microorganisms in phosphorus-depleted reforesta-
tion soils may take up glycerol-3-phosphate as an alternative to maintain basic cellular
activities. Collectively, the metabolic traits encoded by the retrieved MAGs further sup-
port a phosphate transport strategy, as we proposed for microorganisms inhabiting
the reforestation soils.

Conclusions. The different phosphorus acquisition strategies between agricultural
and reforestation soils in our field study may have site-specific reasons but are more
likely due to a widely distributed land use change effect. This view is strongly sup-
ported by the results of our meta-analysis. These land use change effects are summar-
ized in a conceptual diagram in Fig. S5c. The diagram highlights that agricultural farm-
ing practices shape soil microbiomes toward inorganic phosphate solubilization. The
microbial phosphate solubilization potential was significantly greater in the agricul-
tural soils than in the reforestation soils. Cyclobacteriaceae and Vicinamibacterales were
indicative of the phosphate solubilization strategy in agricultural soils. In contrast, the
major strategy employed by microorganisms in the phosphorus-depleted reforestation
soils was to efficiently acquire and compete for phosphorus by high-affinity phosphate
transport systems. Finally, our reconstructed MAGs improve our knowledge of the mi-
crobial mechanisms that govern the acquisition of soil AP. Our findings may help to
improve phosphorus availability for sustainable agriculture by harnessing microbial
communities.

MATERIALS ANDMETHODS
Study site and soil sampling. All soil samples were taken from a National Observation and

Research Station of Agriculture Green Development located in Quzhou, China (115.94°E, 36.78°N). The
soil is calcareous fluvo-aquic. The farmland sampling site was a typical wheat (Triticum aestivum L.)-
maize (Zea mays L.) rotation cropping system with a temperate continental monsoon climate. Two refor-
estation sites have been naturally restored from this wheat-maize rotation farmland since 1978 (R40)
and 2008 (R10) without anthropogenic disturbance. The major plants growing in the restored forests are
elms (Ulmus pumila L.). The mean annual temperature and precipitation are 13.2°C and 490 mm, respec-
tively. Three farmland treatments were set as follows: a control without fertilization (CK), chemical fertil-
izer (CF), and chemical fertilizer plus organic manure (CFM) with a wheat-maize rotation system. The
chemical fertilizer was applied at concentrations of 185 kg ha21 nitrogen, 120 kg ha21 phosphorus, and
100 kg ha21 potassium in the wheat season and 185 kg ha21 nitrogen, 45 kg ha21 phosphorus, and
90 kg ha21 potassium in the maize season. The cattle manure was amended at a rate of 12 Mg ha21

each year. Soil available phosphorus in the cattle manure was 11.8 g kg21.
The topsoil (2 to 20 cm) was sampled during the wheat season of May 2020. In the case of the refor-

estation soils, the upper litter layer (0 to 2 cm) was manually removed. Soil samples were taken in an S-
type sampling trajectory, and 4 soil cores were collected and pooled to make a composite sample. A
total of 30 soil composite samples were collected from 5 treatments with 6 replicates. The rocks and
plant residues in the soil samples were manually removed. The fresh soil samples were immediately
transported to the laboratory in an ice box. Soil samples were randomly subdivided into two parts for
molecular and chemical analyses, respectively. Soil samples for molecular analysis were stored at 220°C.

Soil chemical analyses. Soil samples were air-dried for 2 weeks and sieved through 0.25-mm-pore
mesh before chemical analysis. Soil ammonium (NH4

1-N) and nitrate (NO3
2-N) were extracted by 0.01 mol

L21 CaCl2 and then measured by continuous flow analysis (TRAACS 2000; Bran & Luebbe, Norderstedt,
Germany). Soil available phosphorus (AP) was extracted by shaking at 200 rpm for 30 min with 0.50 mol L21

NaHCO3 (40). Soil available potassium (AK) was extracted by 1 mol L21 CH3COONH4 and then measured by
flame photometry. Soil organic carbon (SOC) and total nitrogen (TN) were measured by CN analyzer after
treatment with 1 mol L21 HCl to remove carbonate (Elementar, Langenselbold, Germany).

DNA extraction and amplicon sequencing. DNA was extracted from 2 g of soil using a FastDNA
spin kit (MP Biochemicals, LLC) following the manufacturer’s instructions. DNA concentration was meas-
ured by Qubit 2.0 fluorometer. PCR primers 505F (59-GTGCCAGC(A/C)GCCGCGGTAA-39) and 909R (59-
GGACTACHVGGGTWTCTAAT-39) were used for amplification of bacterial 16S rRNA genes (41). ITS3 (59-
GCATCGATGAAGAACGCAGC-39) and ITS4 (59-TCCTCCGCTTATTGATATGC-39) were applied for amplifica-
tion of the fungal ITS region (42). The amplicon libraries were generated with the TruSeq DNA PCR-free
sample preparation kit. PCR conditions for the bacterial 16S rRNA gene and ITS regions were as
described previously (43). The PCR products were purified with the AMPure XP system and sequenced
on an Illumina MiSeq PE 150 platform (Novogene, Tianjin, China). Barcodes and primers were deleted
using FLASH (version 1.2.7, http://ccb.jhu.edu/software/FLASH/). Quality control was performed by
removing singletons and chimeras. Effective tags were clustered into operational taxonomic units
(OTUs) with a cutoff of 97% sequence similarity in UPARSE (version 7.0.1001). Bacterial and fungal OTU
annotation was performed by searching against SILVA 138 and UNITE (version 7.0) databases, respec-
tively (44, 45). Reads were normalized to 40,000 reads in each sample for subsequent analysis. OTUs that
were unidentified at the kingdom level or assigned to archaea were filtered for further analysis.
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Metagenomic sequencing. Sample aliquots of total DNA (mentioned above) were used for prepara-
tion of metagenomics libraries. Sequencing was done on an Illumina Hiseq 2000 platform (Illumina, Inc.,
San Diego, CA, USA) with 2 � 150-bp paired-end reads. Data analysis was carried out using the pipeline
described previously (29). Quality control was performed by removal of low-quality reads and undeter-
mined bases relying on a minimum Q score of 30 in Trimmomatic (46). A total of 722.6 GB of clean reads
were obtained. High-quality sequences in each of the 30 samples were individually de novo assembled
into contigs by Megahit assembler (-k-min 21 -k-max 141 -k-step 12) (47). Protein-encoding genes were
queried in Prokka (version 1.14.6) (48) and BLAST against the NCBI non-redundant (nr) protein database
using Diamond with default settings (49). Gene profiles of the 30 samples were obtained using the
KEGG database in MEGAN6 Ultimate Edition (version 6.20.5) (50, 51). Genes involved in phosphorus me-
tabolism were queried by KEGG ortholog (KO) numbers based on published literature (13, 52). Gene
abundances were rarefied to the smallest number of sequences among the metagenomic samples. The
gcd gene sequences were extracted from both metagenomics data sets and MAGs by performing
queries against the KEGG database using the KEGG ortholog no. K00117. This EC number includes both
membrane-bound PQQGCD (EC 1.1.5.2) and soluble PQQGCD (EC 1.1.99.35). InterProScan was used to
differentiate gene-driven amino acid sequences of membrane-bound gcd and soluble gcd (13, 53).
Soluble gcd is not involved in inorganic phosphate solubilization and therefore was excluded from fur-
ther analysis. Using this approach, a total of 455 PQQGDH-encoding gcd genes were identified across
the 30 metagenomic samples. To achieve the taxonomic assignment of particular KEGG-annotated
genes, their sequences were extracted and blasted against NCBI’s non-redundant (nr) protein database
using Diamond with default settings. MEGAN6 Ultimate Edition was used for parsing and downstream
analysis of the BLAST output (54).

Taxonomic assignment and functional annotation of MAGs. Metagenome-assembled genomes
(MAGs) were obtained using metaWrap (55). The completeness and contamination of the MAGs were
assessed by CheckM (version 1.1.2) (56). Only MAGs with more than 70% completeness and less than
10% contamination were selected for further analysis. Their taxonomic classification was done with
GTDB-Tk (version 1.3.0) (57). Prokka (version 1.14.6) was used to predict protein-encoding genes. The pu-
tative amino acid sequences were further subjected to a BLAST search against the NCBI-nr database
using Diamond with an E value threshold of 1025 (49). A maximum likelihood tree of 14 MAGs was con-
structed based on a concatenated alignment of 120 marker genes identified in GTDB-Tk. InterProScan
was applied to differentiate between gcd genes encoding membrane-bound PQQGDH and soluble
PQQGDH in 14 MAGs (13, 53). The phylogenetic tree was subsequently visualized by the iTol (58).

Statistical analyses. The R environment (version 3.6.1) was used to perform all statistical analyses
(http://www.r-project.org/). Significant differences between different treatments were tested by analysis
of variance (ANOVA), and the P value was false-discovery rate (FDR) adjusted. Microbial beta diversity,
which was represented by Bray-Curtis distance, was calculated using the vegan package. Principal-coor-
dinate analysis (PCoA) was performed to quantify the variance in microbial community composition and
function of the five treatments. Random forest analysis was further used to evaluate contributions of soil
chemical properties to microbial beta diversity by the R package randomForest. The importance of each
predictor was evaluated by the increase in mean squared error (MSE). The significance of each predictor
was determined in the R package rfPermute.

OTU abundances that significantly varied among the five different treatments were identified using
the package edgeR at an FDR-corrected value of P , 0.05. We then adopted indicator species analysis to
identify the OTUs that were positively associated with specific treatments using 104 permutations in the
R package indicspecies (59). Only OTUs whose abundances significantly differed between one or more
treatments were further cross-selected as microbial indicators (60). To avoid single-read OTUs, only
those OTUs with a total of at least 20 reads across the 30 samples were selected for analysis. Based on
microbial community composition and niche differentiation, the indicators shared by both R40 and R10
treatments were considered as representative microbial indicators for reforestation soil. Indicators
shared by CK, CF, and CFM treatments were defined as the representative microbial indicators for agri-
cultural soil. A significant correlation between microbial indicators and soil chemical properties was cal-
culated by Spearman correlation (P , 0.05) and visualized in the Gephi platform. The co-occurrence net-
work was constructed to assess microbial interactions using a total of more than 20 indicator OTUs. Only
robust and significant Spearman correlations between OTUs were included (r . 0.80, P , 0.05). The co-
occurrence network was visualized by the igraph package using the Frucherman Reingold layout with
104 permutations. The abundance of microbial genes involved in phosphorus transformation and identi-
fied in our metagenomic data sets were Z-score transformed and visualized in the heat map by the R
package pheatmap. The meta-analysis was conducted by collecting the results of soil phosphorus meas-
urements and microbiome composition published for 120 agricultural soils (maize) and 72 forest soils
(61, 62). The sampling sites covered various soil types and climatic zones across China. The 16S rRNA
gene sequence data of the 192 soil samples were processed through the same analysis pipeline as
described above.

Data availability. Both amplicon and metagenomic raw sequence data were deposited in the NCBI
Sequence Read Archive (SRA) under project no. PRJNA727951 and PRJNA700129.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 1 MB.
FIG S2, TIF file, 2 MB.

P Acquisition Strategies of Soil Microbiome

January/February 2022 Volume 7 Issue 1 e01107-21 msystems.asm.org 11

https://www.ncbi.nlm.nih.gov/nuccore/K00117
http://www.r-project.org/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA727951
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA700129
https://msystems.asm.org


FIG S3, TIF file, 1.9 MB.
FIG S4, TIF file, 1.7 MB.
FIG S5, TIF file, 2.9 MB.
TABLE S1, TIF file, 0.2 MB.
TABLE S2, TIF file, 0.5 MB.
TABLE S3, TIF file, 0.7 MB.
TABLE S4, XLSX file, 0.02 MB.
TABLE S5, TIF file, 0.18 MB.

ACKNOWLEDGMENTS
This study was financially supported by the Research and Application of Key

Technologies for Soil Quality Improvement and Agricultural Green Development
(Z191100004019013), the National Key Research and Development Program of China
(2021YFD1900100), the National Natural Science Foundation of China (41977038), and the
2115 Talent Development Program of China Agricultural University.

We declare no conflict of interest.

REFERENCES
1. George TS, Hinsinger P, Turner BL. 2016. Phosphorus in soils and plants

facing phosphorus scarcity. Plant Soil 401:1–6. https://doi.org/10.1007/
s11104-016-2846-9.

2. Ding W, Cong W, Lambers H. 2021. Plant phosphorus-acquisition and -use
strategies affect soil carbon cycling. Trends Ecol Evol https://doi.org/10
.1016/j.tree.2021.06.005.

3. Vitousek PM, Porder S, Houlton BZ, Chadwick OA. 2010. Terrestrial phos-
phorus limitation: mechanisms, implications, and nitrogen phosphorus
interactions. Ecol Appl 20:5–15. https://doi.org/10.1890/08-0127.1.

4. Stutter MI, Shand CA, George TS, Blackwell MSA, Dixon L, Bol R, MacKay RL,
Richardson AE, Condron LM, Haygarth PM. 2015. Land use and soil factors
affecting accumulation of phosphorus species in temperate soils. Geoderma
257–258:29–39. https://doi.org/10.1016/j.geoderma.2015.03.020.

5. Su JQ, Ding LJ, Xue K, Yao HY, Quensen J, Bai SJ, Wei WX, Wu JX, Zhou JZ,
Tiedje J, Zhu YG. 2015. Long-term balanced fertilization increases the soil
microbial functional diversity in a phosphorus-limited paddy soil. Mol
Ecol 24:136–150. https://doi.org/10.1111/mec.13010.

6. Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR,
RyanMH, Veneklaas EJ, Lambers H, Oberson A, Culvenor RA, Simpson RJ. 2011.
Plant and microbial strategies to improve the phosphorus efficiency of agricul-
ture. Plant Soil 349:121–156. https://doi.org/10.1007/s11104-011-0950-4.

7. Grafe M, Goers M, von Tucher S, Baum C, Zimmer D, Leinweber P, Vestergaard
G, Kublik S, Schloter M, Schulz S. 2018. Bacterial potentials for uptake, solubili-
zation and mineralization of extracellular phosphorus in agricultural soils are
highly stable under different fertilization regimes. Environ Microbiol Rep 10:
320–327. https://doi.org/10.1111/1758-2229.12651.

8. McRose DL, Newman DK. 2021. Redox-active antibiotics enhance phos-
phorus bioavailability. Science 371:1033–1037. https://doi.org/10.1126/
science.abd1515.

9. Yao Q, Li Z, Song Y, Wright SJ, Guo X, Tringe SG, Tfaily MM, Paša-Toli�c L,
Hazen TC, Turner BL, Mayes MA, Pan C. 2018. Community proteogenom-
ics reveals the systemic impact of phosphorus availability on microbial
functions in tropical soil. Nat Ecol Evol 2:499–509. https://doi.org/10
.1038/s41559-017-0463-5.

10. Wen Z, Li H, Shen Q, Tang X, Xiong C, Li H, Pang J, Ryan MH, Lambers H,
Shen J. 2019. Trade-offs among root morphology, exudation and mycor-
rhizal symbioses for phosphorus-acquisition strategies of 16 crop species.
New Phytol 223:882–895. https://doi.org/10.1111/nph.15833.

11. Mooshammer M, Hofhansl F, Frank AH, Wanek W, Hämmerle I, Leitner S,
Schnecker J, Wild B, Watzka M, Keiblinger KM, Zechmeister-Boltenstern S,
Richter A. 2017. Decoupling of microbial carbon, nitrogen, and phospho-
rus cycling in response to extreme temperature events. Sci Adv 3:
e1602781. https://doi.org/10.1126/sciadv.1602781.

12. Hsieh YJ, Wanner BL. 2010. Global regulation by the seven-component Pi
signaling system. Curr Opin Microbiol 13:198–203. https://doi.org/10
.1016/j.mib.2010.01.014.

13. Liang J, Liu J, Jia P, Yang T, Zeng Q, Zhang S, Liao B, Shu W, Li J. 2020.
Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling

following ecological reforestation of land degraded by mining. ISME J 14:
1600–1613. https://doi.org/10.1038/s41396-020-0632-4.

14. Liu W, Ling N, Luo G, Guo J, Zhu C, Xu Q, Liu M, Shen Q, Guo S. 2021. Active
phoD-harboring bacteria are enriched by long-term organic fertilization. Soil
Biol Biochem 152:108071. https://doi.org/10.1016/j.soilbio.2020.108071.

15. Wei X, Hu Y, Cai G, Yao H, Ye J, Sun Q, Veresoglou SD, Li Y, Zhu Z,
Guggenberger G, Chen X, Su Y, Li Y, Wu J, Ge T. 2021. Organic phosphorus
availability shapes the diversity of phoD-harboring bacteria in agricultural soil.
Soil Biol Biochem 161:108364. https://doi.org/10.1016/j.soilbio.2021.108364.

16. Goldstein AH. 1995. Recent progress in understanding the molecular
genetics and biochemistry of calcium phosphate solubilization by Gram
negative bacteria. Biol Agric Hortic 12:185–193. https://doi.org/10.1080/
01448765.1995.9754736.

17. Rodríguez H, Fraga R, Gonzalez T, Bashan Y. 2006. Genetics of phosphate solu-
bilization and its potential applications for improving plant growth-promoting
bacteria. Plant Soil 287:15–21. https://doi.org/10.1007/s11104-006-9056-9.

18. Song H, Dharmasena MN, Wang C, Shaw GX, Cherry S, Tropea JE, Jin D, Ji X.
2020. Structure and activity of PPX/GppA homologs from Escherichia coli and
Helicobacter pylori. FEBS J 287:1865–1885. https://doi.org/10.1111/febs.15120.

19. Wanner B. 1993. Gene regulation by phosphate in enteric bacteria. J Cell
Biochem 51:47–54. https://doi.org/10.1002/jcb.240510110.

20. Bergkemper F, Schöler A, Engel M, Lang F, Krüger J, Schloter M, Schulz S.
2016. Phosphorus depletion in forest soils shapes bacterial communities
towards phosphorus recycling systems. Environ Microbiol 18:1988–2000.
https://doi.org/10.1111/1462-2920.13188.

21. Oliverio AM, Bissett A, McGuire K, Saltonstall K, Turner BL, Fierer N. 2020.
The role of phosphorus limitation in shaping soil bacterial communities
and their metabolic capabilities. mBio 11:e01718-20. https://doi.org/10
.1128/mBio.01718-20.

22. Long XE, Yao H. 2020. Phosphorus input alters the assembly of rice (Oryza
sativa L.) root-associated communities. Microb Ecol 79:357–366. https://
doi.org/10.1007/s00248-019-01407-6.

23. Pastore G, Kernchen S, Spohn M. 2020. Microbial solubilization of silicon
and phosphorus from bedrock in relation to abundance of phosphorus-
solubilizing bacteria in temperate forest soils. Soil Biol Biochem 151:
108050. https://doi.org/10.1016/j.soilbio.2020.108050.

24. Shao J, Miao Y, Liu K, Ren Y, Xu Z, Zhang N, Feng H, Shen Q, Zhang R, Xun
W. 2021. Rhizosphere microbiome assembly involves seed-borne bacteria
in compensatory phosphate solubilization. Soil Biol Biochem 159:108273.
https://doi.org/10.1016/j.soilbio.2021.108273.

25. Fierer N. 2017. Embracing the unknown: disentangling the complexities
of the soil microbiome. Nat Rev Microbiol 15:579–590. https://doi.org/10
.1038/nrmicro.2017.87.

26. Jansson JK, Baker ES. 2016. A multi-omic future for microbiome studies.
Nat Microbiol 1:16049. https://doi.org/10.1038/nmicrobiol.2016.49.

27. Wang R, Sun Q, Wang Y, Liu Q, Du L, Zhao M, Gao X, Hu Y, Guo S. 2017.
Temperature sensitivity of soil respiration: synthetic effects of nitrogen
and phosphorus fertilization on Chinese Loess Plateau. Sci Total Environ
574:1665–1673. https://doi.org/10.1016/j.scitotenv.2016.09.001.

Wu et al.

January/February 2022 Volume 7 Issue 1 e01107-21 msystems.asm.org 12

https://doi.org/10.1007/s11104-016-2846-9
https://doi.org/10.1007/s11104-016-2846-9
https://doi.org/10.1016/j.tree.2021.06.005
https://doi.org/10.1016/j.tree.2021.06.005
https://doi.org/10.1890/08-0127.1
https://doi.org/10.1016/j.geoderma.2015.03.020
https://doi.org/10.1111/mec.13010
https://doi.org/10.1007/s11104-011-0950-4
https://doi.org/10.1111/1758-2229.12651
https://doi.org/10.1126/science.abd1515
https://doi.org/10.1126/science.abd1515
https://doi.org/10.1038/s41559-017-0463-5
https://doi.org/10.1038/s41559-017-0463-5
https://doi.org/10.1111/nph.15833
https://doi.org/10.1126/sciadv.1602781
https://doi.org/10.1016/j.mib.2010.01.014
https://doi.org/10.1016/j.mib.2010.01.014
https://doi.org/10.1038/s41396-020-0632-4
https://doi.org/10.1016/j.soilbio.2020.108071
https://doi.org/10.1016/j.soilbio.2021.108364
https://doi.org/10.1080/01448765.1995.9754736
https://doi.org/10.1080/01448765.1995.9754736
https://doi.org/10.1007/s11104-006-9056-9
https://doi.org/10.1111/febs.15120
https://doi.org/10.1002/jcb.240510110
https://doi.org/10.1111/1462-2920.13188
https://doi.org/10.1128/mBio.01718-20
https://doi.org/10.1128/mBio.01718-20
https://doi.org/10.1007/s00248-019-01407-6
https://doi.org/10.1007/s00248-019-01407-6
https://doi.org/10.1016/j.soilbio.2020.108050
https://doi.org/10.1016/j.soilbio.2021.108273
https://doi.org/10.1038/nrmicro.2017.87
https://doi.org/10.1038/nrmicro.2017.87
https://doi.org/10.1038/nmicrobiol.2016.49
https://doi.org/10.1016/j.scitotenv.2016.09.001
https://msystems.asm.org


28. Mason LM, Eagar A, Patel P, Blackwood CB, DeForest JL. 2021. Potential
microbial bioindicators of phosphorus mining in a temperate deciduous
forest. J Appl Microbiol 130:109–122. https://doi.org/10.1111/jam.14761.

29. Wu X, Peng J, Liu P, Bei Q, Rensing C, Li Y, Yuan H, Liesack W, Zhang F, Cui
Z. 2021. Metagenomic insights into nitrogen and phosphorus cycling at
the soil aggregate scale driven by organic material amendments. Sci Total
Environ 785:147329. https://doi.org/10.1016/j.scitotenv.2021.147329.

30. Alori ET, Glick BR, Babalola OO. 2017. Microbial phosphorus solubilization
and its potential for use in sustainable agriculture. Front Microbiol 8:971.
https://doi.org/10.3389/fmicb.2017.00971.

31. Neal AL, Rossmann M, Brearley C, Akkari E, Guyomar C, Clark IM, Allen E,
Hirsch PR. 2017. Land-use influences phosphatase gene microdiversity in
soils. Environ Microbiol 19:2740–2753. https://doi.org/10.1111/1462-2920
.13778.

32. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. 2013. Phosphate solubilizing
microbes: sustainable approach for managing phosphorus deficiency in
agricultural soils. Springerplus 2:587. https://doi.org/10.1186/2193-1801
-2-587.

33. Tilman D. 1982. Resource competition and community structure. Monogr
Popul Biol 17:1–296. https://doi.org/10.2307/4549.

34. Allison SD, Vitousek PM. 2005. Responses of extracellular enzymes to sim-
ple and complex nutrient inputs. Soil Biol Biochem 37:937–944. https://
doi.org/10.1016/j.soilbio.2004.09.014.

35. Malik AA, Martiny JBH, Brodie EL, Martiny AC, Treseder KK, Allison SD.
2020. Defining trait-based microbial strategies with consequences for soil
carbon cycling under climate change. ISME J 14:1–9. https://doi.org/10
.1038/s41396-019-0510-0.

36. Remmas N, Melidis P, Voltsi C, Athanasiou D, Ntougias S. 2017. Novel hydro-
lytic extremely halotolerant alkaliphiles frommature landfill leachate with key
involvement in maturation process. J Environ Sci Health A Tox Hazard Subst
Environ Eng 52:64–73. https://doi.org/10.1080/10934529.2016.1229931.

37. Jangir PK, Singh A, Shivaji S, Sharma R. 2012. Genome sequence of the alkali-
philic bacterium Nitritalea halalkaliphila type strain LW7, isolated from Lonar
Lake, India. J Bacteriol 194:5688–5689. https://doi.org/10.1128/JB.01302-12.

38. Yang K, Wang M, Metcalf WW. 2009. Uptake of glycerol-2-phosphate via
the ugp-encoded transporter in Escherichia coli K-12. J Bacteriol 191:
4667–4670. https://doi.org/10.1128/JB.00235-09.

39. Brzoska P, Boos W. 1988. Characteristics of a ugp-encoded and phoB de-
pendent glycerophosphoryl diester phosphodiesterase which is physi-
cally dependent on the ugp transport system of Escherichia coli. J Bacter-
iol 170:4125–4135. https://doi.org/10.1128/jb.170.9.4125-4135.1988.

40. Murphy J, Riley JP. 1962. A modified single solution method for the deter-
mination of phosphate in natural waters. Anal Chim Acta 27:31–36.
https://doi.org/10.1016/S0003-2670(00)88444-5.

41. Tamaki H, Wright CL, Li X, Lin Q, Hwang C, Wang S, Thimmapuram J,
Kamagata Y, Liu WT. 2011. Analysis of 16S rRNA amplicon sequencing
options on the Roche/454 next-generation titanium sequencing platform.
PLoS One 6:e25263. https://doi.org/10.1371/journal.pone.0025263.

42. Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. 2010.
ITS as an environmental DNA barcode for fungi: an in-silico approach reveals
potential PCR biases. BMC Microbiol 10:189. https://doi.org/10.1186/1471
-2180-10-189.

43. Wu X, Liu Y, Shang Y, Liu D, Liesack W, Cui Z, Peng J, Zhang F. 2021. Peat-ver-
miculite alters microbiota composition towards increased soil fertility and
crop productivity. Plant Soil https://doi.org/10.1007/s11104-021-04851-x.

44. Abarenkov K, Henrik Nilsson R, Larsson K-H, Alexander IJ, Eberhardt U,
Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS,
Tedersoo L, Ursing BM, Vrålstad T, Liimatainen K, Peintner U, Kõljalg U.
2010. The UNITE database for molecular identification of fungi—recent
updates and future perspectives. New Phytol 186:281–285. https://doi
.org/10.1093/nar/gky1022.

45. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Glöckner FO.
2012. The SILVA ribosomal RNA gene database project: improved data
processing and web-based tools. Nucleic Acids Res 41:590–596. https://
doi.org/10.1093/nar/gks1219.

46. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10
.1093/bioinformatics/btu170.

47. Li D, Liu CM, Luo R, Sadakane K, Lam TW. 2015. MEGAHIT: an ultra-fast sin-
gle-node solution for large and complex metagenomics assembly via suc-
cinct de Bruijn graph. Bioinformatics 31:1674–1676. https://doi.org/10
.1093/bioinformatics/btv033.

48. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinfor-
matics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153.

49. Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment
using Diamond. Nat Methods 12:59–60. https://doi.org/10.1038/nmeth.3176.

50. Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes.
Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/27.1.29.

51. Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, Ruscheweyh H,
Tappu R. 2016. MEGAN community edition—interactive exploration and
analysis of large-scale microbiome sequencing data. PLoS Comput Biol
12:e1004957. https://doi.org/10.1371/journal.pcbi.1004957.

52. Dai Z, Liu G, Chen H, Chen C, Wang J, Ai S, Wei D, Li D, Ma B, Tang C,
Brookes PC, Xu J. 2020. Long-term nutrient inputs shift soil microbial
functional profiles of phosphorus cycling in diverse agroecosystems.
ISME J 14:757–770. https://doi.org/10.1038/s41396-019-0567-9.

53. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H,
Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A,
Scheremetjew M, Yong SY, Lopez R, Hunter S. 2014. InterProScan 5: ge-
nome-scale protein function classification. Bioinformatics 30:1236–1240.
https://doi.org/10.1093/bioinformatics/btu031.

54. Peng J, Wegner CE, Bei Q, Liu P, Liesack W. 2018. Metatranscriptomics
reveals a differential temperature effect on the structural and functional
organization of the anaerobic food web in rice field soil. Microbiome 6:
1–16. https://doi.org/10.1186/s40168-018-0546-9.

55. Uritskiy GV, DiRuggiero J, Taylor J. 2018. MetaWRAP-a flexible pipeline for
genome-resolved metagenomic data analysis. Microbiome 6:158. https://
doi.org/10.1186/s40168-018-0541-1.

56. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015.
CheckM: assessing the quality of microbial genomes recovered from iso-
lates, single cells, and metagenomes. Genome Res 25:1043–1055. https://
doi.org/10.1101/gr.186072.114.

57. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. 2019. GTDB-Tk: a toolkit
to classify genomes with the Genome Taxonomy Database. Bioinfor-
matics 36:1925–1927. https://doi.org/10.1093/bioinformatics/btz848.

58. Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for
the display and annotation of phylogenetic and other trees. Nucleic Acids
Res 44:W242–W245. https://doi.org/10.1093/nar/gkw290.

59. De Cáceres M, Legendre P, Moretti M. 2010. Improving indicator species
analysis by combining groups of sites. Oikos 119:1674–1684. https://doi
.org/10.1111/j.1600-0706.2010.18334.x.

60. Hartman K, van der Heijden MGA, Wittwer RA, Banerjee S, Walser J,
Schlaeppi K. 2018. Cropping practices manipulate abundance patterns of
root and soil microbiome members paving the way to smart farming.
Microbiome 6:14. https://doi.org/10.1186/s40168-017-0389-9.

61. Tian J, He N, Kong W, Deng Y, Feng K, Green SM, Wang X, Zhou J,
Kuzyakov Y, Yu G. 2018. Deforestation decreases spatial turnover and
alters the network interactions in soil bacterial communities. Soil Biol Bio-
chem 123:80–86. https://doi.org/10.1016/j.soilbio.2018.05.007.

62. Jiao S, Yang Y, Xu Y, Zhang J, Lu Y. 2020. Balance between community as-
sembly processes mediates species coexistence in agricultural soil micro-
biomes across eastern China. ISME J 14:202–216. https://doi.org/10.1038/
s41396-019-0522-9.

P Acquisition Strategies of Soil Microbiome

January/February 2022 Volume 7 Issue 1 e01107-21 msystems.asm.org 13

https://doi.org/10.1111/jam.14761
https://doi.org/10.1016/j.scitotenv.2021.147329
https://doi.org/10.3389/fmicb.2017.00971
https://doi.org/10.1111/1462-2920.13778
https://doi.org/10.1111/1462-2920.13778
https://doi.org/10.1186/2193-1801-2-587
https://doi.org/10.1186/2193-1801-2-587
https://doi.org/10.2307/4549
https://doi.org/10.1016/j.soilbio.2004.09.014
https://doi.org/10.1016/j.soilbio.2004.09.014
https://doi.org/10.1038/s41396-019-0510-0
https://doi.org/10.1038/s41396-019-0510-0
https://doi.org/10.1080/10934529.2016.1229931
https://doi.org/10.1128/JB.01302-12
https://doi.org/10.1128/JB.00235-09
https://doi.org/10.1128/jb.170.9.4125-4135.1988
https://doi.org/10.1016/S0003-2670(00)88444-5
https://doi.org/10.1371/journal.pone.0025263
https://doi.org/10.1186/1471-2180-10-189
https://doi.org/10.1186/1471-2180-10-189
https://doi.org/10.1007/s11104-021-04851-x
https://doi.org/10.1093/nar/gky1022
https://doi.org/10.1093/nar/gky1022
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btu153
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1093/nar/27.1.29
https://doi.org/10.1371/journal.pcbi.1004957
https://doi.org/10.1038/s41396-019-0567-9
https://doi.org/10.1093/bioinformatics/btu031
https://doi.org/10.1186/s40168-018-0546-9
https://doi.org/10.1186/s40168-018-0541-1
https://doi.org/10.1186/s40168-018-0541-1
https://doi.org/10.1101/gr.186072.114
https://doi.org/10.1101/gr.186072.114
https://doi.org/10.1093/bioinformatics/btz848
https://doi.org/10.1093/nar/gkw290
https://doi.org/10.1111/j.1600-0706.2010.18334.x
https://doi.org/10.1111/j.1600-0706.2010.18334.x
https://doi.org/10.1186/s40168-017-0389-9
https://doi.org/10.1016/j.soilbio.2018.05.007
https://doi.org/10.1038/s41396-019-0522-9
https://doi.org/10.1038/s41396-019-0522-9
https://msystems.asm.org

	RESULTS
	Soil properties.
	Treatment-driven changes in taxonomic and functional profiles.
	Correlation between microbial indicators and soil available phosphorus.
	Correlation between abundance of phosphorus cycling genes and soil available phosphorus.
	Linking MAGs to phosphorus acquisition strategy.

	DISCUSSION
	Microbial indicators and functional responses driven by soil available phosphorus.
	The gcd gene is the determinant predictor of soil AP.
	Functional traits in phosphorus metabolism.
	Functional traits of MAGs between agricultural and reforestation soils.
	Conclusions.

	MATERIALS AND METHODS
	Study site and soil sampling.
	Soil chemical analyses.
	DNA extraction and amplicon sequencing.
	Metagenomic sequencing.
	Taxonomic assignment and functional annotation of MAGs.
	Statistical analyses.
	Data availability.

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

