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Abstract. The performance of deep segmentation models often degrades
due to distribution shifts in image intensities between the training and
test data sets. This is particularly pronounced in multi-centre studies
involving data acquired using multi-vendor scanners, with variations in
acquisition protocols. It is challenging to address this degradation be-
cause the shift is often not known a priori and hence difficult to model.
We propose a novel framework to ensure robust segmentation in the
presence of such distribution shifts. Our contribution is three-fold. First,
inspired by the spirit of curriculum learning, we design a novel style cur-
riculum to train the segmentation models using an easy-to-hard mode.
A style transfer model with style fusion is employed to generate the cur-
riculum samples. Gradually focusing on complex and adversarial style
samples can significantly boost the robustness of the models. Second,
instead of subjectively defining the curriculum complexity, we adopt an
automated gradient manipulation method to control the hard and ad-
versarial sample generation process. Third, we propose the Local Gradi-
ent Sign strategy to aggregate the gradient locally and stabilise training
during gradient manipulation. The proposed framework can generalise
to unknown distribution without using any target data. Extensive ex-
periments on the public M&Ms Challenge dataset demonstrate that our
proposed framework can generalise deep models well to unknown distri-
butions and achieve significant improvements in segmentation accuracy.
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1 Introduction

Recent studies have witnessed the great success of deep models in medical image
segmentation [11]. However, these deep models often suffer from a drop in perfor-
mance when applied to new data distributions, different from the training data
(see Fig. 1). It is expensive and practically impossible to collect a large amount
of manually annotated data from each new distribution to retrain the model in
clinical practice. Therefore, a general and retraining-free framework that ensures
model robustness to distribution shifts is highly desired in the clinic. To date,
several approaches have been proposed to address this issue.

Fig. 1. Remarkable distribution shift between the training set and test set across differ-
ent vendors. The results of the performance drop are shown in the upper right corner.
The yellow digits denote the average DSC of the MYO (green), LV (red) and RV (blue).

Data Augmentation. Data augmentation (DA) using spatial/intensity trans-
formations is commonly employed to expand the distribution of training data
and improve model generalisation. Zhang et al. [19] proposed Mixup, where, two
inputs and their corresponding labels are proportionally interpolated to augment
the training data. Similarily, Yun et al. [18] cut and paste local patches from one
image into another. Although DA methods can mitigate model overfitting to
some degree, they cannot guarantee the ability of deep models to generalise to
multi-centre, multi-vendor data, typically encountered in real clinical scenarios.
Domain Adaptation. GAN-based domain adaptation methods often focus on
learning domain-invariant representations [4,8] or aligning the feature space of
different distributions [17,21] and have shown promise for dealing with variations
in data distributions. Curriculum-based domain adaptation methods typically
define curriculum complexity subjectively, such as using the average distance
of the domain feature space [13] and developing a ’simpler‘ task than semantic
segmentation [20]. As these methods rely on the availability of unlabelled target
data, they are restricted to the task of domain-mapping/adaptation. Hence, they
may not generalise well to new ‘unseen’ data distributions.
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Distribution Generalisation. Compared to the domain adaptation setting,
distribution generalisation methods tested on unseen data distributions, are bet-
ter suited to address the challenges encountered in real clinical scenarios. Some
studies employ style transfer methods to remove the distribution shift in test
data [12,14]. Although these approaches are novel, the selection of style data
is subjective. Other studies have utilised adversarial training to augment the
training set [2,16]. Forcing networks to learn from the most difficult samples can
enhance model robustness to a certain degree. Still, it also makes the training
more difficult to optimise, even causing catastrophic overfitting [9].

This work proposes a retraining-free and general framework to improve the
ability of segmentation models to generalise to unknown distributions. Our con-
tribution is three-fold. First, inspired by the advantages of curriculum learning in
improving model generalisation, we design a novel style curriculum, structured in
an easy-to-hard adversarial learning strategy, to train the model. Gradually forc-
ing the model to learn from progressively harder adversarial samples allows the
model to generalise well to new distributions. Specifically, a style transfer model
with style fusion is adopted to generate samples for the curriculum. Second, in-
stead of defining the complexity order subjectively, we employ a novel gradient
manipulation method to automatically control the sample generation process fol-
lowing the increasingly harder direction. Third, since the gradient manipulation-
based training is difficult to optimise, we propose Local Gradient Sign (LGS),
which locally aggregates the gradient to increase the complexity of the generated
samples gradually, thus making the training more stable. Extensive experiments
on public data from the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac
Segmentation (M&Ms) Challenge [3] show that our method outperforms all 2D
methods, and is on par with the top performing approaches of the challenge.

2 Methodology

Our framework is shown in Fig. 2. First, we adopt a style transfer model with a
style fusion operation to generate the curriculum samples zi. Then, we employ
the gradient manipulation method to update the learning weight Γ , so the cur-
riculum samples are arranged from easy to hard. To stabilise the training, we
further propose Local Gradient Sign to operate the gradient locally.

2.1 Curriculum Learning for Robustness

Deep neural networks are typically trained using a sequence of unordered sam-
ples. Curriculum learning methods [1,6,20] can guide the model to learn better
by organising the training samples in a meaningful order. A common curricu-
lum needs to address three challenges: (1) Decide the curriculum samples. (2)
Arrange the samples in an easy-to-hard order. (3) Ensure model stability dur-
ing training. Using curriculum learning, deep models can leverage information
learned from easy examples, to ease learning of new and harder samples. Grad-
ually concentrating on learning the harder tasks can make the deep model more
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Fig. 2. Schematic view of our proposed framework.

robust. Creating an effective curriculum is critical to design a reasonable samples
generator, a meaningful learning strategy, and a stable learning method.

2.2 Style Transfer based Sample Generation

Many works [7,10] argued that the images’ style could be described as the distri-
bution of colours, edges, smoothness, etc. Since style transfer (ST) methods are
powerful tools to render one image’s style onto another, we employ this approach
to produce large sets of stylised images. This expands the training set and in-
creases the richness of the information available for training the segmentation
model. ST is only an optional module of our system to generate initial samples.

A reasonable samples generator of the curriculum requires the ST method to
balance transfer quality and efficiency. Therefore, we follow WaveCT-AIN [12]
and re-implement their high-quality ST. To better control the stylised degree,
we propose a style fusion operation to modulate the content of training images
and the style of stylised images. The style fusion weight is updated during back-
propagation to control the degree of stylisation.

2.3 Gradient Manipulation based Learning Strategy

ST is a powerful technique that can expand style curriculum samples, but the
random transformation lacks control for generating samples in a progressive,
easy-to-hard fashion. Following the work from Goodfellow et al. [5], we adopt a
novel gradient manipulation adversarial strategy to phase curriculum learning in
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Fig. 3. (a) The loss statistics of curriculum samples at different iterations in training.
(b) The absolute difference of samples zi between iter 0 and 1, iter 1 and 2.

increasing order of complexity. They proposed the Fast Gradient Sign Method
to generate adversarial examples through the following formula.

x′ = x+ ǫsign(∇xJ(fθ(x), y)) (1)

Where θ are the parameters of the model, x is the input of the model, y is the
label of x, ǫ is a small perturbation vector, x′ is the generated adversarial sam-
ples, and J(fθ(x), y) is the loss function used to train the model. The method
adjusts the input data by a small step (ǫ) in the gradient direction of the cost
function that maximises the loss. With this adversarial approach, the method
can quickly generate more difficult samples for the deep models. Similarly, we
iteratively accumulate the gradient of the cost function to produce increasingly
harder adversarial samples (see step 7 in Algorithm 1). Moreover, in contrast
with the typical gradient manipulation adversarial methods [5,9,16], which add
the perturbation into the samples directly, we use it as the learning weight to
modulate the training image and stylised image. This ensures control over the
adversarial samples generated using our approach (see step 5 in Algorithm 1).
To verify the effectiveness of our method, we visualise the loss of three curricu-
lum samples iteratively generated by each training sample (Fig.3 (a)) and the
image differences of the adjacent curriculum samples (we perform pseudo-color
processing in Fig.3 (b) for better visualisation). The increase of the training loss
shows that the method generates harder samples as the iterations progress.

2.4 Local Gradient Smoothing for Stability

Although the proposed gradient manipulation method guarantees the curricu-
lum’s learning order, it is not easy to optimise the model by introducing the
whole adversarial perturbations. Therefore, we further propose Local-Gradient-
Sign (LGS), to reduce the influence of adversarial perturbations on the model.
The LGS formula is defined as follows.

LGS(Φ, ǫ, size) = US(ReLu(ǫ ∗ sign(AP (∇ziΦ, size)))), i = 0, 1, · · · , n (2)
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Here, US(·) is an UpSample operation, AP (·) is an AvgPooling operation, zi
is curriculum sample and ǫ is a decimal from 0 to 1. In our curriculum setting, we
set the max learning iter n to 3, learning step ǫ to 0.25 and the pooling size to 4
× 4. The LGS operation first uses the AvgPooling operation to average the gra-
dient matrix locally for smoothing the perturbations and then performs partial
truncation using the ReLu function. Finally, it uses the UpSample operation to
restore the original size of the gradient matrix. The proposed LGS operation can
alleviate the perturbations to make the training more stable. In our design, the
ST and LGS operations are only required during training for data augmentation
and attack mitigation of hard samples, respectively. During testing, the trained
model is lightweight and efficient without using these two modules.

Algorithm 1 Local Style Curriculum Learning (LSCL)

Notation: Segmentation model f(·); Style transfer model S(·); max iter n; learning
rate α; segmentation model parameters θ; full zeros matrix O and full ones matrix I

Input: Content data Xc ∈ R
b×h×w and label Yc ∈ R

b×h×w; style data Xs ∈ R
b×h×w

Output: Optimal θ∗

1: for (xc, yc) ∈ (Xc, Yc), xs ∈ Xs do

2: Initialization: z = S(xc, xs), Γ0 = O ∈ R
h×w

3: for i = 0, . . . , n do

4: Update stylised learning sample: zi = Γi ∗ z + (I − Γi) ∗ xc

5: Compute loss function: Φ = J(f(zi, θ), yc)
6: Accumulate learning weight: Γi+1 = Γi + LGS(∇zi

Φ)
7: Update model parameters: θ ← θ − α∇θΦ

8: return θ as θ∗

3 Experimental Results

Our experimental data came from the M&Ms Challenge. This challenge cohort
had 375 patients scanned in clinical centres using four different magnetic reso-
nance scanner vendors (A, B, C and D). The training set contained 150 images
from two different vendors (75 each of vendor A and B), in which only the end-
diastolic (ED) and end-systolic (ES) phases are annotated. The images have been
segmented by experienced clinicians from the respective institutions, including
contours for the left (LV), right ventricle (RV) blood pools, and the left ventric-
ular myocardium (MYO). All experiments are evaluated on 50 new studies from
vendor A, B, C and 50 additional studies from the unseen vendor D.

We totally obtained 3,284 training slices from the annotated ED & ES phases
and 10,607 style slices cross the short-axis view of vendor A and B. We first
used the training slices to train the segmentation model [15], employing Adam
optimiser (learning rate of 10−3

∼ 10−5). Based on the well-trained segmentation
model and pre-trained style transfer model, we randomly sampled the slices of
vendors A, B as content-style input. Then we adopted the LSCL algorithm to
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finetune the segmentation model for 10 epochs using SGD-momentum optimiser
(learning rate of 10−5). To further improve the model robustness, we finally
adopted the Test-time Augmentation (TTA), including three rotation operations
(90◦, 180◦, 270◦) to aggregate the multiple predictions. We used a segmentation
loss comprising cross-entropy loss (weight of 0.6) and dice loss (weight of 0.4).

3.1 Result Details

We performed the comparative experiment and ablation experiment using in-
dicators of Dice similarity coefficient (DSC), Jaccard index (JAC), Hausdorff
distance (HD, [mm]) and Average symmetric surface distance (ASSD, [mm]). In
all experiments, we adopted the same evaluation criteria and ranking method
as the M&Ms Challenge performs [3], including the Min-max Score. Due to the
space limitations, we computed the averaged metrics over the LV, RV and MYO.

Table 1. The mean (std) results of DSC and HD on different vendors of all patients.

Methods
Vendor A Vendor B Vendor C Vendor D DSC

Score
HD
Score

Min-max
ScoreDSC ↑ HD ↓ DSC ↑ HD ↓ DSC ↑ HD ↓ DSC ↑ HD ↓

U-net
0.858 17.113 0.835 13.392 0.822 17.616 0.835 17.153

0.8345 16.674 0.000
(0.034) (13.218) (0.056) (7.541) (0.067) (13.544) (0.045) (14.328)

Mixup
0.872 10.441 0.859 11.483 0.837 12.596 0.837 11.904

0.8465 11.821 0.528
(0.034) (3.315) (0.047) (3.605) (0.065) (6.010) (0.040) (4.506)

P3
0.878 12.587 0.887 9.872 0.865 10.461 0.864 13.969

0.8705 11.887 0.779
(0.042) (12.279) (0.053) (3.607) (0.055) (6.499) (0.050) (16.845)

LSCL
0.877 9.888 0.865 10.746 0.857 11.224 0.866 11.479

0.8647 11.007 0.789
(0.033) (3.042) (0.051) (3.315) (0.063) (5.445) (0.036) (5.027)

P2
0.884 12.461 0.892 9.796 0.870 9.548 0.867 13.432

0.8750 11.370 0.869
(0.039) (12.237) (0.051) (3.369) (0.046) (3.294) (0.049) (14.845)

LSCL-TTA
0.884 9.802 0.876 10.238 0.865 10.592 0.868 11.195

0.8710 10.602 0.890
(0.032) (3.529) (0.047) (2.979) (0.059) (5.192) (0.034) (4.890)

P1
0.889 12.072 0.893 9.482 0.876 9.465 0.877 13.091

0.8813 11.111 0.958
(0.042) (12.641) (0.046) (3.343) (0.042) (3.562) (0.042) (14.838)

Table 2. Training and inference time of different methods.

Method Training time Inference time GPU Device

LSCL-TTA 5 h 0.2 s GTX 1080 Ti
P1 60 h ≈ 1s Titan XP
P2 48 h 4.8 s Tesla V100
P3 4-5 days N/A TITAN V100

Method Comparison. The quantitative comparisons among our methods and
others on M&Ms data are shown in Tab.1. U-net is the baseline and Mixup is
a common data augmentation method. P3-P1 are the top three methods on the
leaderboard of the M&Ms Challenge. Tab.1 shows our method helps the U-net
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Table 3. Ablation experiment on ED and ES volumes.

Methods
ED ES

DSC ↑ JAC ↑ HD ↓ ASSD ↓ DSC ↑ JAC ↑ HD ↓ ASSD ↓

WaveCT-AIN 0.847 0.747 11.469 1.146 0.827 0.713 12.386 1.413
SCL 0.861 0.766 10.743 1.038 0.843 0.736 11.042 1.159
LSCL 0.876 0.787 10.543 0.920 0.853 0.751 11.459 1.146
LSCL-TTA 0.882 0.797 10.246 0.870 0.861 0.762 10.898 1.077

significantly improve the performance by 3.65% and 6.072 mm in terms of the
DSC and HD metrics. Smaller standard deviations show that our method is more
robust and stable against distribution shifts. Tab.1 and Tab. 2 show that our
proposed method (LSCL-TTA) achieves competitive performance among the top
ranking methods, while presents the lowest computational costs.

Fig. 4. Visualisation of ablation methods at different vendors.

Ablation Experiment. To thoroughly evaluate our proposed framework, we
conducted two ablation experiments. The first experiment uses only the style
transfer method WaveCT-AIN [12] to generate random style transformations
and then feeds the stylised outputs to train the segmentation model. The second
experiment does not introduce the LGS method, which we name SCL. As shown
in Tab. 3, the WaveCT-AIN shows the worst performance since the model learns
the stylised samples arbitrarily, causing the model to be trapped in local minima.
SCL, instead, can make the model learn increasingly harder tasks. We further
proposed LSCL to stabilise the adversarial training. Fig.4 visualises the segmen-
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tation results of test samples corresponding to different ablation methods. The
proposed LSCL-TTA shows the best segmentation results on each vendor.

4 Conclusion

This paper proposes a novel style curriculum learning framework to ensure seg-
mentation models are robust against the distribution shift. Extensive experi-
ments show that our proposed framework can significantly improve the general-
isation. The proposed framework is universal and retraining-free, which makes
it compelling for use in clinical practice.
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