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A Study on the Effects of Cognitive
Overloading and Distractions on
Human Movement During
Robot-Assisted Dressing
Antonella Camilleri 1*, Sanja Dogramadzi 2 and Praminda Caleb-Solly 3

1Bristol Robotics Laboratory, University of The West of England, Bristol, United Kingdom, 2Department of Automatic Control and

Systems Engineering, University of Sheffield, Sheffield, United Kingdom, 3School of Computer Science, University of Nottingham,

Nottingham, United Kingdom

For robots that can provide physical assistance, maintaining synchronicity of the robot and

human movement is a precursor for interaction safety. Existing research on collaborative

HRI does not consider how synchronicity can be affected if humans are subjected to

cognitive overloading and distractions during close physical interaction. Cognitive

neuroscience has shown that unexpected events during interactions not only affect

action cognition but also human motor control Gentsch et al. (Cognition, 2016, 146,

81–89). If the robot is to safely adapt its trajectory to distracted human motion, quantitative

changes in the human movement should be evaluated. The main contribution of this study

is the analysis and quantification of disrupted human movement during a physical

collaborative task that involves robot-assisted dressing. Quantifying disrupted

movement is the first step in maintaining the synchronicity of the human-robot

interaction. The human movement data collected from a series of experiments where

participants are subjected to cognitive loading and distractions during the human-robot

interaction, are projected in a 2-D latent space that efficiently represents the high-

dimensionality and non-linearity of the data. The quantitative data analysis is supported

by a qualitative study of user experience, using the NASA Task Load Index to measure

perceived workload, and the PeRDITA questionnaire to represent the human

psychological state during these interactions. In addition, we present an experimental

methodology to collect interaction data in this type of human-robot collaboration that

provides realism, experimental rigour and high fidelity of the human-robot interaction in the

scenarios.

Keywords: human movement, safety, human robot interaction, close proximity, assistive dressing, cognition,

collaborative behaviour

INTRODUCTION

Physical human-robot interactions are complex and require synchronized human-robot movements.
Synchronicity requires intention recognition and prediction of the human movement. Research in
cognitive neuroscience has shown that disruption in human movements can occur with external
disturbances, not only affecting action cognition but also motor control Gentsch et al. (2016). In
order for the robot to safely adjust and adapt its trajectory in response to distracted human behaviors,
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prior knowledge of quantitative changes in the humanmovement
can be essential. If the behavior of the human is disrupted, then
this disruption needs to be investigated further to ensure safe and
timely adaptive interactions. Such prior knowledge would benefit

from ensuring that anymovement adaptation is implemented in a
safe context and not in an instance in which the collaborative state
of the human is disrupted. Understanding how a change in
behavior (due to cognitive overloading and distractions) affect
human movement in the context of robot-assisted dressing is an
important research problem that could lend insight for improving
physical HRI and addressing safety concerns. It is difficult to
predict how the movement will be disrupted, but we can monitor
deviations from the expected trajectory and the loss of the
human-robot synchronicity. While there is other research in
this area investigating similar interaction contexts, such as

Pignat and Calinon (2017), Erickson et al. (2019) and Koganti
et al. (2017), these do not consider the effect of unexpected events
on human behavior, and adaptation of the robot movements
assumes consistent human behavior at all times.

Robot-assisted dressing in our study involves the bi-manual
Baxter robot helping a person put on a jacket. Tracking human
arms just before physical contact with the garment ensures a
correct starting position for dressing. When the hand is in the
sleeve, the robot trajectory can be guided by, e.g. force feedback as
described by Chance et al. (2016). However, before the hand
enters the sleeve, it can be hard to achieve physical coupling

between the opening of the sleeve and the human hand. At this
initial stage of the dressing task, when humans can move their
arms freely in a shared workspace, the coupling relies only on
trajectories executed by the robot and human. At this point,
disruptions in human movement, which could be due to external
disturbances, need to be modeled so that the robot can adapt
appropriately. Even though it is possible to do adaption through
feedback control when there is no direct physical contact
Erickson et al. (2019), identifying these non-collaborative
instances has a priority transcending the execution of the
reference dressing trajectory. Related works about the

psychology of humans performing joint tasks show the
importance of synchronicity to achieve cooperation Sebanz
et al. (2003), Sebanz et al. (2006), Ciardo and Wykowska
(2018). Such literature state that poor synchronization (non-
collaborative instances) between movements is perceived as an
uncooperative partner, and as a result, it affects the representation
of the shared task. Therefore, it is crucial to identify how human
motor control is affected in the instance where external
disturbances are to occur during an assistive task.

To study the effect of the disruption, we designed a controlled
experiment to obtain a reliable set of data andmodel the impact of

various external disturbances. These disturbances were created in
the form of unexpected events, carefully timed to disrupt the
human movement before the hand makes contact with the jacket
and deviates from the expected trajectory. From recording the
human and robot movements, we evaluated differences between
the expected and disrupted human trajectory. This allowed us to
analyze and quantify the disrupted human movement, producing
data that we used to model lack of collaboration. The NASA Task
Load Index (TLX) was used to measure perceived workload and

the PeRDITA to represent participants’ perceived experience.
These two sets of qualitative user experience results support the
quantitative data of human movements. This research is the first
step towards prediction and adaptation in close physical human-

robot interaction during realistic situations where the human
could be distracted. This paper provides the following
contributions: 1) Design of an experimental HRI methodology
which includes timed interruptions to expose changes in the
collaborative interaction during a robot-assistive dressing task; 2)
An analysis of the changes comprising qualitative evaluation of
the user experience showing how cognitive overloading and
distractions increased the cognitive workload; and 2) The
quantitative analysis of the effect of the change in
collaborative behavior on human movement when exposed to
unexpected events during a robot-assisted dressing task.

The paper is organized as follows: In Section 2, we review
related literature regarding human movement, adaptation in the
context of physically assistive Human-Robot Interactions (HRI)
and the relationship between action cognition and motor control.
Section 3, describes the experimental procedure and
methodology used to collect data during the controlled HRI
experiment. In Section 4, we present qualitative and
quantitative results obtained from the HRI experiment. Finally,
in Section 5, we discuss our findings, main contributions and
recommendations for future work.

2 RELATED WORKS

2.1 Human Movement in Close-Proximity
Collaborative Tasks
Synchronized human and robot motion is essential for the success
of collaborative tasks, but it can be disrupted by external factors.
Humans have capabilities and limitations that can either
complement or hinder the completion of physically
collaborative tasks. The work of Haddadin et al. (2011)
suggests that the robot’s collaborative mode can only be

deemed safe if the human’s collaborative intention is taken
into account during the task. Potential disruptions of the
collaborative human state need further investigation to ensure
safe and graceful disruption recovery and, facilitate adaptive
robot behavior. The existing literature reviewed assumes that
human behavior either correctly adapts to robot movements or
remains consistent during interactive tasks. Our concern is that
collaborative human movement can lead to disruptions and loss
of synchronicity in certain situations. Literature on close-
proximity interactions focuses on task completion through
continuous adaptation to human movements without

considering its potential discontinuity, which can be expected
in different dynamic environments.

Collaborative human-robot interactions are typically
addressed through prediction and adaptation by the robot,
whereas the human collaborative state is assumed constant
Ben Amor et al. (2014), Ewerton et al. (2015), Pignat and
Calinon (2017), Vogt et al. (2017). Prediction in HRI relies on
evaluating the current interaction state and choosing correct
actions Hoffman (2010), Schydlo et al. (2018). In Hoffman
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(2010) a reactive and anticipatory action selection is compared.
The anticipatory approach combines the current state with a
probabilistic view of the temporal activity, providing better
efficiency over the reactive approach Hoffman (2010). The

work presented by Ben Amor et al. (2014) involves interaction
primitives that combine the probabilistic temporal view of the
movement variation with performed adaptation. Both Hoffman
(2010) and Ben Amor et al. (2014) state that the robot is
interacting with an engaged human. Therefore, in these works,
the correct anticipatory action can only be selected with high
confidence if there is mutual responsiveness and commitment to
the collaborative task; if not, the human’s non-collaborative state
can pose a safety risk.

In other related studies, which are focused on physical contact,
Erickson et al. (2019), adaptation of the robot movements

considers changes in human movement, but changes in
human behavior (distinct to specific movements) due to
distractions or cognitive loading are not addressed. In an
assistive dressing task, human movement is in close proximity
with the robot, and for safety, it requires high confidence in
predicting and adapting the robot’s movement. Distractions and
failure are very likely in a real-life context, and therefore needs to
be a clear understanding of changes to human engagement and
movement. Robot-assisted dressing failures have been considered
by Chance et al. (2016), but analysis and modeling of the human’s
collaborative state in the presence of disruptions were not

included. In this paper, we visualize and model discontinuity
of the human’s collaborative state through human movement
observations. Through a series of controlled HRI experiments, we
observed variations, limitations, and differences in human
movements in the presence of disruptions during a
collaborative task. Disruptions included in the experiment
were based on relevant literature on human behavior, action
cognition and motor control. In a robot-assisted dressing context,
physical interactions start as soon as human limbs are inside the
dressing garment. When humans are exposed to distractions and
cognitive overloading, their collaborative state can change even

before the physical interaction starts and impact their
movements. The change to the synchronicity cannot be
modeled using a probabilistic approach or be recognized as yet
another movement primitive, as shown in Dermy et al. (2017),
especially if the probabilistic models are not trained on a
disrupted human movement data set as shown in Wang et al.
(2013). Similarly, modeling of human motion uncertainty has
only been performed for collaborative tasks. The works of
Yamazaki et al. (2014), Gao et al. (2015), Yu et al. (2017),
Joshi et al. (2019) and Koganti et al. (2019) model this
uncertainty in close-proximity collaborative tasks in specific

scenarios in which either a global trajectory is learned or
motor skills are encoded. However, the human movement
modeled in these studies are for general skills to perform a
task without any considerations of disrupted human movement.

The non-linearity and high dimensionality features comprising
human behavior can be challenging to investigate. For human
movement analysis, dimensionality reduction is used to express
the limb-based characterization in a more readable space. This
methodology takes advantage of visualization to spot disruption

within the human movement as a change in the collaborative
behavior. Latent variable models (Orrite-Urunuela et al., 2004)
are used to address these challenges (Zhang et al., 2017; Joshi
et al., 2019) to model limitations in human movement or to

personalize human movements. This paper, will use a related
approach to model the human movement and highlight any
disruptions associated with the change in collaborative behavior.
The method used is the Gaussian Process Latent Variable Model
(GP-LVM), which is a bayesian non-parametric model which acts as
a dimensionality reduction method by using a Gaussian Process
(GP) to learn a low-dimensional representation of high-dimensional
data. The advantage of using such a method is using the non-linear
learning characteristic of GP, which is ideal for human movement
Zhang et al. (2017). The non-parametric model properties allow a
distribution-free form model with a flexible structure that can scale

to accommodate the complexity of the dataset.

2.2 Human Behavior, Action Cognition and
Motor Control
To instigate a lack of collaboration and observe its effect on the
interaction, understanding human cognition and mental model is
necessary. In this paper, we hypothesize that a change in a
human’s collaborative state can lead to a change in human
movement. This hypothesis is based on neuroscience research
defined as action cognition that amalgamates human motor

control, perception, and cognition Gentsch et al. (2016) and
can be mathematically formulated to describe human adaptive
behavior as a resistance to a natural tendency to disorder. One
principle is the free-energy principle which states that the
human brain actively makes observations while concurrently
minimizing the world’s model Friston (2010). When an
unexpected event occurs, the equilibrium obtained from the
minimized free-energy model will be disrupted. The human
reaction would be to minimize the differences between their
free energy world model and the world updates brought by
their senses and associated perception. The work presented in

Friston (2010) suggests that human movement gets disrupted
in such a case to minimize the differences in the interaction.
Disruptions during task performance, and hence the world
model, can be due to cognitive overloading and/or
environment distractions as defined by Orru and Longo
(2019). Cognitive load is the amount of information that a
person can hold in their working memory at a given time
Friston (2010), Gentsch et al. (2016), Orru and Longo (2019).
Memory can be classified into short-term, long-term, working
and sensory memory. Sensory memory perceives and
preserves auditory and visual cues in the short term

memory. On the other hand, working memory takes new
information and organizes it among already learned
information that is stored in the long-term memory Friston
(2010), Gentsch et al. (2016), Orru and Longo (2019). Long-
term memory is effectively limitless, unlike the working
memory, which is essential for learning and performing a
task. When unexpected events occur during a physically
assistive task, the working memory has to process new
information, which consequently increases the cognitive load.
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We hypothesize that cognitively overloading humans in
human-robot collaborative tasks will result in disrupted
synchronicity of their physical interaction. We consider how
cognitive overloading, as well as distractions will unbalance the
overall cognitive load made up of intrinsic, extraneous and
germane loads. As such we also consider how the timing of
unexpected events should be staged to trigger increased mental
effort. Our HRI experiments explore this hypothesis, and

Figure 1 shows their temporal layout. The distractions (staged

unexpected events) were based on the mental models and loads
further explained in Section 3.

3 METHODOLOGY

3.1 Experiment Setup and Procedure
Our controlled HRI experiment was set up to demonstrate and
study disruptions to collaboration during a robot-assisted

FIGURE 1 | One dressing task timeline. Markers from (1) to (4) highlight the different stages during the assistive task. The first image on the far LHS shows the

moment in the dressing task when the right arm is unrestricted. The following two images show the dressing with the left arm unrestricted. The two images between

Markers (2) and (3) show the instance where the left hand becomes restricted, followed by an image where both hands become restricted. After Markers (3), the robot

drags the jacket back down the arms of the participant. The orange block represents the time during which cognitive overloading occurred. The yellow block

represents the time during which distractions occurred. For all three parts of the experiment the dressing task was repeated ten times.

FIGURE 2 |Overall experiment timeline after marker one: 1) teaching phase followed by Part 1 made of ten dressing tasks, 2) Part 2 consisting of ten dressing tasks

with cognitive overloading and 3) Part 3 again consisting of ten dressing tasks with distractions. Markers from one to four represent the same instances in the dressing

task as shown in Figure 1.
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dressing task in the presence of cognitive overloading and
distractions (unexpected events). Our experimental procedure
is shown in Figure 1 and Figure 2. We used a bi-manual Baxter
research robot to perform pre-recorded dressing trajectories

while a jacket was held by the gripper. The jacket was moved
from the participant’s hand to their elbow. Subsequently, the
jacket was pulled towards the participant’s left-hand side to allow
them to insert their left hand/arm in the left sleeve. All dressing
iterations are shown in Figure 1. One iteration of the dressing
task is completed when the jacket reaches the participants’
shoulders. The robot then pulls the jacket down and prepares
for the next dressing iteration. The whole process is shown in
Figure 1 and will be referred to as one dressing iteration in this
paper. The researcher chose when to start the first dressing
iteration.

The entire experiment is divided into three parts with an initial
learning sequence of one dressing iteration to familiarize
participants with the task. The overall temporal layout of the
experiment is shown in Figure 2. In the Parts Two and Three, we
introduced unexpected events to disrupt human collaborative
state. In Part Two the disruption to the collaborative task is the
cognitive overloading, whereas in, Part Three the disruption is in
the form of environment distractions. A monitor was placed in
front of the participants to display letters that participants had to
memorize as part of the cognitive overloading. The letters
appeared at four different positions (from the LHS to the

RHS) on the monitor, and participants had to memorize four
consecutive letters as they appear (and then disappear) from the
monitor.When the fourth letter was displayed, they had to say the
four letters in their order of appearance. The letters that appeared
on the monitor were always different. In Part Three of the
experiment, there were two types of distractions, one was
created by sounding a fire alarm, and the other was random
questioning of the participants. In total, each participant had two
distractions that occurred during one dressing iteration, as shown
in Figure 2. The color-coded markers, numbered one to four, in
Figure 1 represent different sequences of one dressing task and

are also shown in the overall temporal layout in Figure 2. Marker
one represents an initial position of the jacket at the right-hand
side of the participant when participants were inserting the right
arm in the jacket sleeve. Marker two represents the robot
positioning the jacket close to the participant’s left hand and
inserting the left arm until it becomes constrained in the jacket.
The cognitive overloading was applied until marker two, as
highlighted in Figure 1 because the participant’s arms were
still not entirely restricted by the jacket at that stage. Marker
three shows when the robot end-effector reached both shoulders.
At marker four, the robot starts to pull the jacket down and out of

the participant’s hands.
As noted earlier in Section 2, our working memory is used to

recover already learned knowledge stored in the long-term
memory. In Part One, participants used relevant knowledge on
how to collaborate in the assistive dressing task acquired in the
initial learning stage. In Part Two, new information related to the
unexpected events had to be processed, which increased their
cognitive load and led to disruption in the collaborative state
(Orru and Longo, 2019). Part Two and Three further unbalanced

this cognitive load and disrupted the efficient storage of the new
information (Orru and Longo, 2019). Participants had to
continuously modify their collaborative task plan based on the
initially acquired knowledge of the task. To efficiently process

new information in our working memory, we have to balance the
cognitive load. For effective learning, the intrinsic cognitive load
must be managed, extraneous cognitive load minimized, and
germane cognitive load maximized. These three loads make the
overall cognitive load. Intrinsic cognitive load is related to new
information that needs to be processed to complete a task. The
extraneous cognitive load Orru and Longo (2019) involves
searching for information while trying to learn a task. The
cost of processing information goes against the process of
learning. Whereas, the germane cognitive load is described as
an effort to construct a mental model of the task.

The Intrinsic cognitive load is often managed by good
instructional sequencing, and in our controlled experiment, it
is prompted by instructing participants to carry out an additional
task during the collaborative dressing task. In Part Two, the letters
appearing on the monitor were continuously changing with no
obvious pattern. This increased intrinsic cognitive load due to a
lack of proper instructional sequencing since it required a higher
mental effort to process new information. The distractions in Part
Three that included a fire alarm further increased intrinsic
cognitive load. It was hypothesized that cognitive overloading
and distractions would lead to inefficiency in performing the task

since the intrinsic load was not managed. In our experiment,
extraneous loading is triggered by asking participants to
remember and say the four letters in the order of appearance,
marked as cognitive overloading. In Part Three, this was
implemented by posing questions to the participants and
triggering a new information process. These distractions
introduced new tasks that prevented using the initially
acquired knowledge of the collaborative task. Therefore, the
extraneous load was not minimized at these instances,
requiring a higher mental effort from the participants. The
temporal layout of the experiment was constructed to

manipulate the germane load. The unexpected events do not
allow participants to use an already built mental model of the task
from Part One therefore, the maximization of the germane load
got disrupted. This overall experimental structure allowed us to
analyze the change in the human’s collaborative state through
quantitative data collection of the human movement.

3.2 Human Movement Data Collection
Participants performed the dressing task in ten iterations in each part
of the experiment as shown in Figure 1. An experiment information
sheet was provided before the start, explaining the dressing task and

the cognitive overloading of part two. The distractions used in Part
Three were not included in the information sheet. In total, 18
participants took part in the experiment, aged 18 to 24 (4
participants) and aged 25 to 34 (14 participants). All of them had
completed higher education. The experiments generated a data set of
540 dressing tasks. The dataset includes the right and left robot end-
effector poses, forces and torques, and participants’ pose features. The
data recorded from the robot and participants resulted in a time-
series data set with a dimension size of 753,910 by 206 features.

Frontiers in Robotics and AI | www.frontiersin.org May 2022 | Volume 9 | Article 8158715

Camilleri et al. Human Movement in Robot-Assisted Dressing



We recorded humanmovement using a motion capture XSens
suit Roetenberg et al. (2007) to obtain 23 joint positions and
orientations on the participant’s body. The XSens suit provides a
set of inertial measurement units that, together with bio-
mechanical models and sensor fusion algorithms, can instantly
validate data output. The joints recorded were the pelvis, spine,
sternum, neck, head, collar bones, shoulders, elbows, hands, hips,

knees, heels and toes, creating a data set of 161 features (7
readings per joint) at the frequency of 50 Hz. Participants
were asked to take part in the calibration of the motion
capture suit before the start of each part. For the calibration
process the height, shoulder width, arm lengths, knees height and
hip height were measured for each participant. Since this
experiment’s focus was to record human movement
disruptions, the XSens suit was used instead of RGB-D
cameras to alleviate occlusion problems. The robot joint
positions, orientations, forces and torques were streamed as
message data in a ROS environment synchronized with

the published motion capture suit data. Participants were
instructed not to move their feet outside the marked area on
the floor in front of them. The two joint frames of the
feet were used as fixed reference frames with respect to the
robot base.

From the time-series data collected, the data until marker
three on Figure 1 were extracted from the rest of the data. This
segment of one dressing iteration is represented in the first five
images in Figure 1. The position (x, y, z) and the quaternion
orientation (x, y, z, w) of the right and left arms were used for the
human movement projection in a latent space. Figure 3 shows an

example of how one of the participants moved during one
collaborative dressing task. Sub-Figure 3A shows the human
movement recording in Part One. Sub-Figure 3B shows the
human movement recording during one dressing iteration with
cognitive overloading. There is a clear visual difference in the
human movement in Sub-Figure 3B when compared to Sub-

Figure 3A. The orange and green markers are the features of
interest to identify any disruptions in the human movement due
to a change in collaborative behavior. The orange markers

represent the hands, elbows, and shoulder movement, whereas
the green markers represent the collar bones, head, neck, spine,
pelvis, and sternum. The upper body movement was considered
for the analysis of the type of movements and visualization on a
projected latent space. The orange (shoulders, elbows and hands)
and green markers (collar bones, head, neck, spine, pelvis and
sternum) features were used from the dataset to generate the

comparison in the latent space.
A comparison between human and robot movements was

implemented to evaluate synchronicity in the collaborative task.
Changes in observed parameters during cognitive overloading
and distractions can be captured by comparing trajectories during
collaboration. The relative entropy Kullback–Leibler (KL)
divergence between robot and human arm trajectories is
generated from the probability distribution using the sliding
window approach. This requires generation of a probability
distribution of the right end-effector trajectory p(τr) and the
right human arm trajectory representations p(τh). The mean and

covariance of each dimension of a trajectory p(τ) = p(x1, . . . , xT)
are used to create p(xr) and p(xh) respectively. Hence the KL can
be represented as:

KL p xr( ), q xh( )( )
and

KL q xh( ), p xr( )( )
Therefore, the KL divergences is calculated as

KL p xr(( )‖q xh( ) � ∫p xr( )log
p xr( )

q xh( )
dx (1)

3.3 User Experience Data Collection
The qualitative user experience data collection is critical for

supporting our arguments based on hypothesis derived from
human behaviour, action cognition and motor control. We
evaluated the collaborative behaviour from the participant’s
feedback, particularly how they expressed their experience
when their movement was disrupted during the collaborative

FIGURE 3 | An example of the human movement recorded using the XSens motion capture suit. (Panel A) shows the movement of one participant during one

dressing iteration performed in Part One. (Panel B) shows themovement of the same participant during one dressing iteration performed in Part Two during the cognitive

overloading.
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task. After every set of ten dressing iterations, participants were

asked to evaluate their workload during each collaborative task.
This qualitative measure was collected using the NASA TLX
questionnaire which was scored based on a weighted average of
six sub-scales: 1) mental demand, 2) physical demand, 3)
temporal demand, 4) performance, (v) effort, and (vi)
frustration Hart and Staveland (1988). This measure estimates
the impact of cognitive overloading and distractions and verifies
that participants experienced an increase in the mental effort in
Part Two and Three compared to Part One of the experiment.

Additional participant feedback was gathered using the
PeRDITA (Pertinence of Robot Decisions in joinT Action)

questionnaire as presented in Devin et al. (2018). The
PeRDITA is inspired by the UX (User eXperience) model
presented by Bartneck et al. (2009) in which the interaction is
explained in terms of: “a consequence of a participant’s internal
state, the characteristics of the designed system and the context (of
the environment) within which the interaction occurs.” The user’s
internal state includes predisposition, expectations, needs,
motivation, and mood of the user, while the context of the
environment includes social setting, the meaningfulness of the
activity, voluntariness of use, and collaboration intention.

The PeRDITA questionnaire assesses several aspects of

interaction as shown in Table 1 which form part of the five
dimensions of interaction. The Interaction dimension quantifies
the participants’ behavioral intention, and this dimension is based
on the AttrakDiff questionnaire proposed by Lallemand et al.
(2015). The Robot Perception dimension evaluates how
participants perceive the robot and is based on the Godspeed
questionnaire as presented in Bartneck et al. (2009). The other

dimensions provide insights into how participants perceive joint

actions in the robot assistive task and include the Acting, Verbal
and Collaboration dimensions. Acting is a measure of the human
perception of the decisions taken by the robot. Collaboration
quantifies the cooperation with the robot in terms of
acceptability, usability, and security. No verbal communication
is used in this experiment. During dressing, people do not tend to
use clear verbal communication and instruction can be
ambiguous as shown in Chance et al. (2017).

4 RESULTS

Figure 4 shows a breakdown of the dressing failures and mistakes
during the 180 dressing iterations for each part of the experiment. In
Part One, we recorded two failed dressing iterations. In Part Two,
there were 41 failed dressing iterations, whereas in Part Three there
were nine dressing failures. In addition to the dressing failures in Part
Two some participants failed tomemorize the four consecutive letters
appearing (and disappearing) from themonitor correctly. Thismeans

that a total of 22 mistakes occurred during the rest of the 139
collaborative dressing iterations in Part Two. Three out of the 41
dressing iterations were bothmistakes in recalling the letters as well as
dressing failures. From the failures that occurred in Part three, 5 were
attributed to the fire alarm and 4 to the random questioning. The
term dressing failure means that participants missed the opportunity
to synchronize their movement with that of the robot to enable the
insertion of the right arm or left arm in the jacket. This suggests that
the cognitive overloadingmight have hindered the participant’s ability
to adapt and collaborate with the robot.

TABLE 1 | PeRDITA Questionnaire: Questions describing each dimension. Items are evaluated in a scale of 100.

Dimension Question Item

Interaction In your opinion, generally, the interaction was Negative/Positive

Complicated/Simple

Not practical/Practical

Unpredictable/Predictable

Ambiguous/Clear

Robot Perception In your opinion, the robot is rather Machinelike/Humanlike

Artificial/Living

Inert/Animated

Apathetic/Responsive

Unpleasant/Pleasant

Disagreeable/Agreeable

Stupid/Intelligent

Incompetent/Competent

Collaboration In your opinion, the collaboration with the robot to perform the task was Restrictive/Adaptive

Useless/Useful

Unsettling/Satisfactory

Annoying/Acceptable

Insecure/Secure

Verbal In your opinion, robot verbal interventions were Incomprehensible/Clear

Insufficient/Sufficient

Superfluous/Pertinent

Acting In your opinion, the robot actions were Inappropriate/Appropriate

Useless/Useful

Unpredictable/Predictable
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FIGURE 4 | Dressing failure and mistakes count in the different parts of the HRI experiment. (Panel A) shows the dressing failure in Part One. (Panel B) shows the

dressing failures that occurred in Part Three. (Panel C) shows the dressing failures and mistakes that occurred during the cognitive overloading in Part Two.

FIGURE 5 | Results of the PeRDITA questionnaire for the Acting and Robot Perception dimensions. (Panel A) shows the item ratings forming part of the Acting

dimension, and (Panel B) shows the item ratings for the Robot Perception dimension.
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4.1 Evaluation of User Experience and Work
Load

As described in Section 3, the qualitative data collection aims to
understand the participants’ experiences of the disruptions in
collaboration during the dressing task. Participants were asked to
answer the PeRDITA questionnaire, explained in Table 1 by
marking from 0 to 100 each item in the dimensions of the
interaction. The PeRDITA questionnaire aims in getting
feedback about how participants perceive their collaboration
with the robot during the dressing task. The PeRDITA results
obtained from our controlled HRI experiment is shown in
Figure 5 and Figure 6.

Sub-Figure 5A shows the box-plots for the dimension of the
interaction of Acting. Participants were asked to rate the
interaction in terms of appropriateness, usefulness and
predictability. Overall, the participants describe the
collaborative task as useful, predictable and appropriate. The
score of the item Predictable in the Acting Dimension of
Interaction suggests that participants perceived the robot’s
trajectory to be predictable in the context of the collaborative
task. Such a score was recorded even though the participants
failed to maintain a collaboration behavior during unexpected
events. Sub-Figure 5B shows the box-plots for the Robot

Perception dimension. The Baxter Research robot was
described as machine-like instead of human-like and artificial
instead of living. An average score between 50 and 60 was given to
the items of animated, responsive and pleasant. The majority of
the 18 participants described the robot as agreeable and
competent. On the other hand, the item of intelligence during
the collaborative task had the largest variance from all items. A
few participants did perceive the robot as human-like, responsive
and not competent. The robot was classified as appropriate to

carry out the collaborative task even though the robot did not
adapt to the participants’ changing behavior.

Figure 6 shows results from the rating of the Interaction and
Collaboration dimensions of interaction. Overall, the Interaction
dimension results shown in sub-Figure 6A is described as
positive, simple, practical, predictable and clear. Although the
verbal dimension was non-existent in the experiment, the
interaction dimension achieved a high score. This suggests
that verbal interaction was not considered as important in
being able to achieve this physically assistive interaction. The
trajectory executed by the robot was implemented in such a way
as to mimic humans helping each other to get dressed. The
participant’s ratings of the Collaboration dimension are shown in

Sub-Figure 6B. The collaboration dimensions in the controlled
HRI experiment were highly regarded as secure, acceptable, and
useful. A lower average and higher variance are recorded in the
Satisfactory/Unsettling item. This significant variance might be
due to the mistakes and dressing failures during the collaborative
task. An even higher variance and a lower average are seen in the
Adaptive/Restrictive item. These low ratings can be attributed to
the lack of adaptation from the robot side. The uncertainty in
participants’ ratings could be attributed to the fact that theymight
think they have failed in collaboration due to unexpected events.
The highest rating in the Adaptive item is from one of the

participants who did not have any dressing failures in Part
Two. The participants who did not let the cognitive
overloading affect their collaborative behavior might have
gotten the impression that the overall collaboration was more
adaptive. As such, these participants might perceive the robot as
more adaptive when compared to the other participants’
experience. The lowest rating of the Adaptive item is given by
the participants who failed both the dressing task and gave the
wrong answers to the cognitive overloading task. Hence, the

FIGURE 6 |Results of the PeRDITA questionnaire for the Interaction andCollaboration dimensions. (Panel A) shows the item ratings forming part of the Interaction

dimension, and (Panel B) shows the item ratings for the Collaboration dimension.
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variance in rating the Adaptive item in the PeRDITA
questionnaire could be linked to the varied effect of the
cognitive overloading on different participants. It is essential to

note that the PeRDITA questionnaire was evaluated after Part
One, Two and Three were finished. We can only argue that these
results are an overall evaluation that includes the cases with no
cognitive overloading and distractions. Any observation of these
items can indirectly be an effect of the cognitive overloading or
distraction because these were still part of the overall interaction.
Still, a direct conclusion cannot be made with respect to the
individual parts of the experiment.

In order to evaluate the participant’s perceived mental effort
during the different parts of the controlled HRI experiment, the
NASA TLX was used. After ten dressing tasks, meaning after each

part of the experiment, the participants were asked to evaluate
their mental, physical, temporal demand, effort, frustration, and
performance in collaborating with the robot for the assistive

dressing task. Figure 7 shows the results obtained from
participants after performing ten dressing iterations in Part
One of the experiment compared to the task load demanded
during Part Two of the experiment. Figure 8 shows the
participants perceived load during Part Three compared to
load perceived during Part Two of the controlled HRI
experiment.

Overall, participants described Part Two of the controlled HRI
experiment as the highest in terms of workload, particularly in
mental, temporal demand and effort in executing the
collaborative task. Initially, participants struggled to balance

FIGURE 7 | Box-plots showing the NASA TLX data collection from participants. (Panel A) shows the workload in Part One compared to (Panel B) which

represents the increased workload due to cognitive distractions.

FIGURE 8 | Box-plots showing the NASA TLX data collection from participants. (Panel A) shows the workload in Part Three compared to (Panel B) which shows

the workload from participants during from Part Two.
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their attention between collaborating to perform the physically
assistive task and the cognitive overloading. This cognitive
overload caused the participants to focus less on when and
how to move to maintain a collaborative behavior with the

robot. The occurrences of the failures and mistakes in Part
Two suggest that when participants could not manage the
intrinsic cognitive load, they seem to prioritize either the
collaborative tasks or memorize the letters on the monitor.
The controlled HRI experiment in Part Two required
participants to balance their attention between the temporal
requirements of the unexpected events and the collaborative
task. The only two participants who managed to carry out
Part Two of the experiment without dressing failures gave the
most wrong answers in comparison with all the other
participants, indicating that their priority was on the dressing

task. Furthermore, the highest measure of frustration is observed
among the participants with the highest combined dressing
failures and wrong answers count. The participants who both
made errors in the dressing task and gave a wrong answer at
different instances were also the ones who rated the temporal
demand the highest. In Part Three, the distractions reduced
control over the intrinsic cognitive load and caused
participants to deviate from the plan of performing the
assistive task.

The overall increase in the workload described by participants
from the NASA TLX supports our hypotheses for our design of

the controlled HRI experiment. The results suggest that
controlling the occurrence of the cognitive overloading and
distractions during the collaborative task managed to trigger
the unbalancing in the intrinsic, extraneous and germane
loads. The general overview of these results shows that no
matter how familiar the participants were with the task, the
cognitive overloading and distractions in Part Two and Part
Three caused disruption to the participants’ movements.
Therefore, this controlled experiment shows that in spite of an
already known interaction, unexpected events may lead to
variations in the performance of experienced users interacting

with a robot. Such disruptions in human movement will be
critical in collaborations that require synchronicity.
Consequently, this highlights the importance of analysing and
evaluating the changes in human collaborative behaviors and
human movement, particularly during assistive tasks.

4.2 Evaluation of Collaborative Human
Movement Disruptions
Through the controlled HRI experiments we were able to evaluate
the effect of action cognition on motor control to assess how the

change in the human collaborative state disrupts the human
movement under cognitive overloading and distractions. As
shown in Figure 3, there is a clear difference in disrupted
human movement between the different parts of the
experiment. From each part of the experiment, the movement
of both arm poses was extracted from the recorded data. The data
points are the joints marked as collar bones, shoulders, elbows
and hands in Figure 3. Overall, 753,910 arm poses have been
recorded from a total of 23 joints from the entire human posture.

Each joint comprises seven features (position and orientation) as
described in Section 3.2.

The human arm movement data were projected into a 2-D
latent space using the GP-LVM Gao et al. (2015). The 2-D latent

space reveals differences in human movements between different
parts of the experiment. Figure 9 shows amap of the right and left
arm poses in 2D space with three sub-spaces in different colors,
indicating three different parts of the experiment. Figures 10, 11
show right and left arm latent space, respectively, for each part of
the experiment. From Part Two in Figures 10, 11, the variation in
the right arm movement is greater than the variation in the left
arm movement. During this part of the experiment, the cognitive
overloading was overwhelming the participants because they
could not process the information presented to them while
also simultaneously participating in the assistive task. It was

observed that during the initial part of the dressing task (until
marker two in Figure 1), participants got agitated by quickly
trying to move the right arm first but failing to synchronize their
movement as they did in Part One. It was observed that
participants who failed to insert the right arm in the jacket
gave up trying to insert the left arm in the jacket, hence the
fewer variations in the latent space. The overall representation of
the projection indicates that participants used similar
movements, somewhat restricted to a particular subspace
shown in the central part of the graphs. This subspace can be
assumed to show fundamental arm poses during collaborative

behavior. Figure 12 shows density distribution of the projected
latent space from Figure 9. The lighter colors represent higher
densities of human movement during the whole experiment.
Figure 12 shows how the majority of the movement is
centered on the latent space, meaning that most of the
movement during the assistive task was consistent. Figure 4

shows that overall the success count of collaborative tasks was
higher than the failed dressing task. This higher success rate
suggests that a higher density can be attributed to a collaborative
region rather than the non-collaborative states. Hence the lower
density range areas on Figure 12 should be the regions where a

significant difference between Part One, Two and Three should
be observed, as seen in Figure 10.

A timeline of latent space changes is shown in Figure 13,
demonstrating variations in the right arm movement during all
three parts of the experiment. The latent space is divided into
quadrants for ease of analysis and comparison of the different
parts of the experiment. The first column shows the latent space
projection of the Part One of the experiment. There is a broader
distribution at the first iterations of the controlled HRI
experiment. At this stage, participants were starting to learn
how to collaborate and build a plan for the collaborative task

with the robot. In the second and third columns, the distribution
of the projected points is less spread because over time,
presumably as the participants were able to learn the task and
so undertake it in a more controlled and automated learned
manner. However, this automated or learned motion is disrupted
by cognitive overloading in Part Two depicted by projections in
column two. The main difference from the projected movement
in column one is the top right corner. The projected movement in
this quadrant is associated with the timestamp when dressing
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failures occurred during the collaborative task. In column three,
the same can be seen in all the top right quadrants. Additionally,
there is a variation in the bottom row of column three compared
to columns two and one. These outliers in the latent space in Part
Three are related to the nature of the unexpected events. For

example, the fire alarm sound caused some participants to move
away from the collaborative task; the random questioning
provoked some participants to stop collaborating and move
back to the starting position. These type of movements are
relatively different from the ones shown in columns one and two.

FIGURE 9 | The 2-D latent space representation of the 9-D right arm posture data for all participants, produced with GP-LVM. The different colored projections

denote arm movements during cognitive overload.

FIGURE 10 | Separated Latent Space representation of the right armmovements for Part One (A,D), Part Two (B,E) and Part Three (C,F). (Panels A–C) show the

2-D latent space representation for all the participants. (Panels D–F) shows the representation of ten individual participants. The participants marked with a red dot in the

legend had dressing failures in their dressing iterations.
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4.3 Synchronicity Between the Human and
Robot Arm Movement During the
Collaborative Task
Figure 14 shows the relative entropy between the robot trajectory

and the human arm. The KL(p(xr), q(xh)) and KL(q(xh), p(xr))
were calculated for two joints of the right arm of four participants
with respect to the robot’s right end-effector. Each subplot in
Figure 14 is a measure of relative synchronicity between the robot

and the human arm. The four sub-figures (A, B, C and D), show a

lower measure for a more synchronous movement between the

robot and the participants. In sub-Figure 14A, the biggest lack of

synchronicity is found in the middle box-plots associated with

Part Two of the experiment. These low synchronicity measures

(highest divergence) can be seen in all the middle box-plots of

each sub-figure in 13. The box-plots of Part Three (the third

column in sub-Figure 14A) shows an average of a more

FIGURE 11 | Separated Latent Space representation of the right armmovements for Part One (A,D), Part Two (B,E) and Part Three (C,F). (Panels A–C) show the

2-D latent space representation for all the participants. (Panels D–F) shows the representation of ten individual participants. The participants marked with a red dot in the

legend had dressing failures in their dressing iterations.

FIGURE 12 | Plot of the probability distribution function using a Gaussian 2D KDE. (Panel A) shows the density surface for the right arm of the participants. (Panel

B) shows the density surface for the left arm of the participants. Figure changed to 2D plot with color gradient instead of 3D.
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FIGURE 13 | Comparison of latent space projections during different parts of the experiments along the progression in the dressing sequence. The progression of

Part One is represented by the LHS column, Part Two by middle columns and Part Three by the RHS column.
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synchronous movement when compared to the first column

showing movement from Part One. This suggests that

participants over time are improving their ability to have an

automated plan of performing the task as mentioned in Section

2.2 and Section 3.1. The high variance in the third column of

sub-Figure 14A is due to the distractions in Part Three. Similarly,

this can also be seen in sub-Figure 14B and sub-Figure 14D. On

the other hand, the third column in sub-Figure 14C, shows the

most synchronous movement out of all the 12 sets of plots. This is

because the participant performing the collaborative task did not

have any dressing failures in Part Three of the experiment whilst

already having the experience of performing more than 20

dressing iterations in Part One and Part Two.

5 DISCUSSION

The main contribution of this study is the analysis and
quantification of disrupted human movements during a
physical HRI task. The effects of the disruptions were further
confirmed through the qualitative evaluation of the user
experience. In literature related to close-proximity robot-
assistive tasks, consistent human movement during physical
collaboration is always assumed. This assumption of a
continuous commitment to the collaborative task from the
human side can pose a safety risk in a real dynamic
environment. The research presented in this paper is an

important step towards recognizing and characterizing the
breakdown in collaborations that can occur during cognitive
overloading and distractions while performing assistive tasks.

The timeline (see Figure 1) and temporal layout (see Figure
Figure2) of the HRI experiment devised for this study are based
on the literature on human behavior, action cognition and motor
control, and therefore will be useful for other researchers

conducting similar studies. Results collected through the
NASA TLX and PeRDITA questionnaire further help validate
the HRI experiment’s methodology. The dressing failures,
mistakes (see Figure 4), and the qualitative feedback from the
participants were found to correspond to the quantitative human
motion data. Parts Two and Three of the experiment were
specifically designed to disrupt the way participants initially
learned to perform the collaborative task. The results shown in
Figures 7, 8 suggest that the cognitive overloading in Part Two can
lead to unmanageable intrinsic cognitive load and large extrinsic
cognitive loads. In Part Three of the experiment, the recorded

data shows slightly less movement than in Part Two which
demonstrates that participants managed the new information
in the environment slightly better than the first time (in Part
Two). The participants learned how to collaborate in Part One,
but the unexpected events continuously challenged the germane
load during the experiment. The NASA TLX (see Figure 7) for
Part One shows a higher temporal demand than Part Three. The
difference is most likely associated with the fact that during these
initial ten iterations of the experiment participants were still

FIGURE 14 |KL divergence is represented as ameasure of deviation between the robot end-effector and the hand (first two box plots in each subplot) and elbow of

four participants panel (A–D) in the assistive task. For each participant there is a cooperation measure computed for each part of the experiment. The brown box plots

shows a measure of the cooperation during cognitive overloading.
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trying to understand the dynamics of the collaboration, and build
their own approach to performing the task. The breakdown of
collaborative behavior is also represented in the PeRDITA results.
Although participants overall described the Interaction as simple,

predictable and clear, there was uncertainty in describing the
Collaboration as adaptive. The participants collaborating with the
robot, particularly in the Part Two, had the impression that they
failed to adapt—they learned to carry out the task in Part One but
failed to maintain synchronicity during cognitive overloading. All
participants either made a mistake or a dressing failure during the
cognitive overloading. The participants who did not fail in the
dressing task answered most questions incorrectly during the
cognitive overloading. The results confirm that even when familiar
with the task, participants can lose concentration when
unexpected events occur, resulting in a loss of interaction

synchronicity.
The failures and mistakes in Part Two and Three were caused

by the change in the human collaborative state. The projection of
the human movement on the latent space shows the learning
process over all three parts of the experiment. Despite almost no
dressing failures in Part One, there is a more significant
dispersion of points in the latent space because participants
were still trying to learn how to execute the task. The germane
cognitive load is described as an effort to construct a mental
model of the task. In Part One participants were building amental
model of the, so this load was likely to be high. This learning

process is reflected in the high variance of the temporal effort
from the NASA TLX (see Figure 7). The high temporal effort
indicates that participants were learning how to synchronize their
movements with the robot. The projections for Part Two and Part
Three show that disrupted movements moved away from the
center of the 2D latent space, which was not the case with non-
disrupted movements. The projections show that when the
cognitive loads are unbalanced (as in Part Two and Three),
the ability to retrieve the knowledge of how to perform the
task is affected, impacting human motor control. The
projected 2-D latent space has movements performed when

learning to collaborate, movements performed in synchronicity
with the robot, and movements disrupted due to unexpected
events. This change in synchronicity between the robot and the
human is also captured using the KL relative entropy shown in
Figure 13. Some form of synchronicity measure could be
calculated to separate typical movements from movements
performed while learning to collaborate or disrupted due to
unexpected events. If synchronicity can be reliably identified
and characterized then we could be confident in applying a
collaborative robot mode only when the human is in a
collaborative state. Additionally, the collaborative state of each

participant requires some form of personalization. By looking at
the user experience and mistakes as presented in Section 4, it is
evident that every participant can react entirely differently to
external disturbances. The impact of cognitive overloading and
distraction on human motor control is distinctive due to its

complex form. Therefore the collaborative and non-collaborative
state of the assistive robot would still require some form of
personalization to cater for these differences based on the
specific end-user.

Our future work will focus on creating a synchronicity
measure that quantifies the level of collaboration between the
human and robot in latent space projections. This will be followed
up by using this measure to adapt close-proximity interactions
while ensuring that collaboration is taking place. Therefore, a
synchronicity measure could ensure that robot adaptation can be
achieved safely and realistically. In general, researchers should
ensure that similar studies are run with cognitively and physically
impaired individuals and people with dementia since these are
important potential beneficiaries of such assistive technologies.
The potential risks identified in this study requires an

experimental methodology that provides realism, experimental
rigour and high fidelity of the human-robot collaboration in real
context environments and scenarios. Only in this way can we
start evaluating how safely and realistically we can deploy such
assistive technologies.
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