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How Can Autonomous Road Vehicles Coexist with Human-Driven 
Vehicles? An Evolutionary-Game-Theoretic Perspective 

Isam Bitar a, David Watling b and Richard Romano c 
Institute for Transport Studies, University of Leeds, 34-40 University Rd, Leeds, LS2 9JT, U.K. 
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Abstract: The advent of highly automated vehicles in the form of autonomous road vehicles (ARVs) is bound to bring 
about a paradigm shift in road user interaction, especially that between ARVs and human-driven vehicles 
(HDVs). Previous literature on the game-theoretic interaction between ARVs and HDVs tends to focus on 
working out the best possible strategy for a single interaction, i.e. the Nash equilibrium. This position paper 
sets out to demonstrate the importance and potential impact of applying evolutionary game theoretic principles 
to what is effectively a dynamic population driven by evolutionary forces – the population of road users. We 
demonstrate using theoretical scenarios that simply maintaining Nash equilibria does not guarantee 
evolutionary success. Instead, ARVs must enjoy a demonstrable advantage over other road users when few 
in numbers. Otherwise, their uptake will slow down and eventually reverse. We argue that the same selection 
factors which influence the success of living populations in the natural world also influence the success of the 
different vehicle types and driving styles in the road user population, including ARVs. We demonstrate this 
by assigning an expected fitness score to each vehicle in a one-to-one interaction, such as at a junction. This 
fitness score is dependent on driver, rider and economic costs incurred by the vehicle and/or its occupant(s) 
during interaction.  In turn we show that ARV and transport system designers need to ensure that the fitness 
score of their systems create evolutionary stability. 

1 INTRODUCTION 

Road transport is a highly interactive activity in 
which road users must compete for space and priority. 
This is done through a vast array of competitive, 
cooperative, and communicative behaviours in which 
road users engage to facilitate their distribution in 
space and time. These behaviours are defined as road 
user interactions (Markkula et al., 2020). As 
autonomous road vehicles (ARV) reach market 
maturity and begin using the road network, their 
interaction with human-driven vehicles (HDV) will 
strongly influence the success of ARVs in the short 
and long term. In this position paper, we argue that 
this extends beyond the one-on-one interaction 
between ARVs and HDVs to include the population-
level interaction between the two distinct groups of 
road users, each with their own inherent properties. 

 
a  https://orcid.org/0000-0002-5130-0148 
b  https://orcid.org/0000-0002-6193-9121 
c  https://orcid.org/0000-0002-2132-4077 

There are fundamental differences between 
ARVs and HDVs that set them apart as distinct road 
user populations. These differences include 
differences in the decision-making mechanism 
(Elvik, 2014; Fox et al., 2018; Harris, 2017; Kang & 
Rakha, 2020; Meng, Su, Liu, & Chen, 2016), 
attention span, driving behaviour (Millard-Ball, 
2018; van Loon & Martens, 2015) and over-all 
communication and interaction capabilities (C. Liu, 
Lin, Shiraishi, & Tomizuka, 2018). Many researchers 
believe that HDVs and human road users in general 
are likely to learn the nuances of ARV behaviour and 
subsequently take advantage of them to force ARVs 
to yield at every interaction (Cooper et al., 2019; Fox 
et al., 2018; Millard-Ball, 2018). Indeed, experiments 
on humans and AI have demonstrated that whilst 
humans expect cooperative behaviour from 
machines, they are rarely willing to reciprocate 
(Karpus, Krüger, Verba, Bahrami, & Deroy, 2021). If 
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ARVs are pushed to yield at most interactions, they 
will be unable to make significant progress on the 
road network (Cooper et al., 2019; Fox et al., 2018; 
Millard-Ball, 2018). This would in turn cause 
significant traffic safety and efficiency issues and 
damage the uptake of ARVs. 

Various solutions have been proposed in the 
literature, including building larger, more imposing 
ARVs or mounting loud sirens or water pistols to 
“punish” transgressors (Fox et al., 2018). Going 
further, some suggested programming ARVs with a 
non-zero probability to cause collision as a form of 
credible threat to dissuade would-be exploiters 
(Camara, Dickinson, Merat, & Fox, 2019). Others 
have programmed a Stackelberg game in which the 
bullied virtual ARV actively punishes the human 
player if they behaved antisocially in previous 
interactions (Cooper et al., 2019). Setting aside their 
ethical and practical ramifications, such measures 
merely offer reactionary solutions to a fundamental 
problem and are unlikely to work in the long term. 

Instead, one must look to other environments in 
which we can observe competition and cooperation 
between fundamentally different populations. One 
such environment is the natural world. There, 
members of different animal species (and within the 
same species) interact, compete, and cooperate with 
each other to share limited resources. Such resources 
include food, shelter, and mates. These are resources 
each individual needs to maximise its own fitness and 
ensure survival and reproduction. Yet, despite the 
prevalent scarcity of these resources in most natural 
settings, cooperative behaviour is widely spread in 
animal populations and fatal conflicts are rare outside 
of predation (J. Maynard Smith & Price, 1973; 
Wilkinson, 1984). 

Animal cooperation in nature can evolve and 
persist through means of natural selection (Hamilton, 
1964). Evolutionary game theory provides the ideal 
theoretical framework for understanding the 
dynamics that lead to the evolution of cooperation 
(Bendor & Swistak, 1995; John Maynard Smith, 
1982). Once evolved, cooperation persists through 
means of evolutionary stability. Evolutionary 
stability is a state in which most or all members of a 
population of individuals interact in a way where a 
new, small group of mutant individuals cannot invade 
and dominate the population (John Maynard Smith, 
1982). A set of behaviours that fits this description is 
known as an evolutionarily stable strategy (ESS). 

ESSs have been used to describe emergent 
cooperative and competitive behaviours in animal 
populations (Sirot, 2000; Wilkinson, 1984). The 
classic Hawk-Dove game provides a conceptual 

illustration of the evolution of cooperation (J. 
Maynard Smith & Price, 1973). Many animal 
behaviours in nature have been shown to conform to 
the categorical paradigm of Hawk-Dove games. 
Examples include nesting habits of digger wasps 
(Brockmann, Grafen, & Dawkins, 1979), food 
sharing in vampire bats (Wilkinson, 1984) and 
territorial conflicts in funnel web spiders 
(Hammerstein & Riechert, 1988). 

Beyond the natural world, several studies exist on 
the applicability of ESSs in other disciplines. One 
such example is the work of Altman, El-Azouzi, 
Hayel, and Tembine (2009) who use a variant of the 
Hawk-Dove game to predict the success and 
evolutionary stability of different Internet transport 
protocols (TCPs) and provide guidelines for the 
introduction and upgrade of evolutionarily-stable 
TCPs. Other such studies exist in the fields of 
economics (Friedman, 1991; Kandori, 1996), policy 
making (da Silva Rocha & Salomão, 2019; Xu, 
Wang, Wang, & Ding, 2019) and stakeholder conflict 
(L. Liu, Zhu, & Guo, 2020; Yu, Zhao, Huang, & 
Yang, 2020). 

Several studies have also been conducted in the 
field of transport. Some applications include route 
and mode choice modelling (Lei & Gao, 2019; Wu, 
Pei, & Gao, 2015).  Others have used evolutionary 
game theory as a predictor and facilitator of effective 
implementation of government subsidies and 
compliance monitoring in transport. Examples 
include new-energy vehicles (Wang, Fan, Zhao, & 
Wu, 2015) and public transport (Zhang, Long, Huang, 
Li, & Wei, 2020). Some road user interaction models 
have also made use of evolutionary game theory to 
predict driver attention, simulate driver cooperation 
and address social dilemmas (Chatterjee & Davis, 
2013; Iwamura & Tanimoto, 2018). One exploratory 
study has investigated the aggressiveness of driving 
behaviour from a Hawk-Dove standpoint (Free, 
2018). To the authors’ knowledge, however, this 
concept is yet to be expanded to draw larger-scale 
conclusions on the evolutionary stability of road user 
populations. More specifically, evolutionary game 
theory has not yet been used as a framework for 
ARVs’ interaction with HDVs. 

2 CONCEPTUAL 
DEMONSTRATION 

There are parallels to be drawn between the 
competition for resources in nature and the interaction 
between vehicles on the road network. Whilst animals 
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in nature compete for food, territory and mates, 
vehicles (both human-driven and autonomous) 
compete for road space and priority on the road 
network. In both worlds, competitors can either 
cooperate to share the contested resource or expend 
energy fighting for it. Only the “fittest” individuals 
will succeed in reproduction and proliferation. This 
fitness can be loosely defined by the individual’s 
success in securing a viable amount of the contested 
resources without compromising one’s viability. 
Thus, the use of the concept of fitness ensures that 
strategies adopted do not endanger the safety of the 
agent (and by extension, its opponent). This is crucial 
for ARVs since one of the main motivations for their 
development is the elimination of human-related 
safety risks. In terms of reproduction, animals 
reproduce genetically via procreation, whereas 
vehicles and driving styles “reproduce” memetically 

(Dawkins, 2016) through increased sales and 
imitation, respectively. This parallel is possible 
because as far as behaviour is concerned, an ARV is 
a living organism, whose goal is to “reproduce” 
through selling more models (copies) of itself, which 
it can achieve by being successful in the road space 
and enticing potential customers to buy in. 

Game-theoretic ARV models in the literature are 
often validated against opponents playing by the same 
rules (Kang & Rakha, 2020; Meng et al., 2016) In 
reality, such results are only valid against a static, 
homogenous population. The road user population, 
however, is dynamic, varied and constantly evolving. 
More importantly, road users have the capacity to 
adjust their behaviour based on the characteristics of 
their opponents. This is known as a conditional 
strategy in game theory (Gross & Repka, 1998). We 
envisage that, unlike model simulations in the 
literature, HDVs will react to the introduction of 
ARVs by adjusting their behaviour to maximise their 
benefit. Primarily, HDVs will look to exploit ARVs’ 
propensity to be risk averse and their ability to 
maintain permanent rationality and attention. Unless 
ARVs can adapt in turn, they risk developing 
strategies that are evolutionarily unstable and thus fail 
in penetrating the population of road users. 

2.1 Theoretical Formulation 

As ARVs mature and make their way to the market, 
they will begin their entry into the road user 
population gradually. These ARVs will likely operate 
within a connected environment in which ARV-ARV 
interactions are concluded more efficiently and 
effectively (Hancock, Nourbakhsh, & Stewart, 2019; 
Wadud, MacKenzie, & Leiby, 2016). 

As with the traditional Hawk-Dove game, 
vehicles interact to share road space. Interaction costs 
energy. Conceptually, there are three elements to an 
interaction cost function: the economic costs (fuel 
consumption, tyre wear, etc.), the driver costs 
(increased demand on attention, planning, decision-
making, etc.) and the rider costs (safety, delay, ride 
comfort, etc.). All costs traditionally apply to an 
HDV. In contrast, ARVs arguably bear no driver 
costs since ARV controllers are expected to be ever-
attentive and ever-processing. Thus, it makes no 
difference to an ARV whether an interaction is 
required and to what level of sophistication. 

There are two key concepts to understand in how 
vehicle interactions are represented in this paper. 
Vehicles can either choose to facilitate an interaction 
(Dove-like behaviour) or escalate in a bid to win 
priority (Hawk-like behaviour). Facilitation can be 
thought of as cooperation between the two vehicles to 
conclude the interaction with the maximum (Pareto 
efficient) payoff for both vehicles. Escalation, on the 
other hand, constitutes competitive behaviour whose 
aim is to maximise individual payoff at the expense 
of the other vehicle. Therefore, if both vehicles 
choose to facilitate, they interact to share priority 
equitably, i.e., it goes to the vehicle which, by 
convention, has right of way. We assume that, on 
average, a vehicle would have right of way half of the 
time. This is conceptualised as an interaction reward 𝑅 ൌ 0.5 . If one vehicle escalates and the other 
facilitates, the escalating vehicle forcibly takes 
priority ( 𝑅 ൌ 1 ). If both escalate, both vehicles 
attempt to forcibly win priority, expending 
considerable energy in the process, but will determine 
priority by convention in the end ( 𝑅 ൌ 0.5 ). 
Facilitation incurs the least interaction cost ( 𝐶 ), 
typically thought of as the mere cost of engaging in 
an interaction with another vehicle. Escalation incurs 
greater cost as that would likely involve aggressive 
manoeuvring or excessive acceleration. Mutual 
escalation incurs the greatest cost as both vehicles are 
assumed to maintain their escalation for longer. 
Table 1 below demonstrates the concepts discussed. 

Table 1: Normal-form the road user interaction game. 

Veh 2 
Veh 1

Facilitate 
(F)

Escalate 
(E) 

Facilitate 
(F) 0.5 - 𝐶ிி, 0.5 - 𝐶ிி 0 - 𝐶ிா, 1 - 𝐶ாி 

Escalate 
(E)

1 - 𝐶ாி, 0 - 𝐶ிா 0.5 - 𝐶ாா, 0.5 - 𝐶ாா 𝐶ிி ൌ 𝐶ிா ൏ 𝐶ாி ൏ 𝐶ாா 
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John Maynard Smith (1982) established two 
conditions that a strategy must meet in order to be 
evolutionarily stable. For a resident strategy, this 
means the ability to resist invasion by new strategies. 
For a new strategy, this means the ability to invade a 
population of resident strategies. 
 The subject strategy must do better against 

itself than any other strategy could 
 If a strategy exists which could do equally well 

against the subject strategy, the subject strategy 
must do better against the other strategy than 
the other strategy could against itself 
 

This can be mathematically expressed as follows 
 𝐸ሺ𝑆 , 𝑆ሻ  𝐸൫𝑆 , 𝑆൯ OR (1)𝐸ሺ𝑆 , 𝑆ሻ ൌ 𝐸൫𝑆 , 𝑆൯ AND 𝐸൫𝑆 , 𝑆൯  𝐸൫𝑆 , 𝑆൯ (2)

where 𝑆 , 𝑆  are the subject strategy and the set of all 
other strategies, respectively 𝐸൫𝑆 , 𝑆൯  is the total expected payoff for 𝑆 
against 𝑆 

These broad conditions can be adapted and 
applied to the situation where ARVs are introduced to 
the market. The current resident population in the 
road network is that of HDVs. As of 2022, they 
comprise well over 99% of all vehicular road traffic. 
Therefore, any new fleet of ARVs which wish to 
establish a meaningful foothold in the road user 
network must satisfy one of the below two conditions 

 𝐸ሺ𝑆ோ , 𝑆ோሻ  𝐸ሺ𝑆ு, 𝑆ோሻ  OR (3)𝐸ሺ𝑆ோ , 𝑆ோሻ ൌ 𝐸ሺ𝑆ு , 𝑆ோሻ  AND 𝐸ሺ𝑆ோ , 𝑆ுሻ  𝐸ሺ𝑆ு , 𝑆ுሻ (4)

where 𝑆ோ , 𝑆ு  are the interaction strategy sets 
available to ARVs and HDVs, respectively 𝐸ሺ𝑆௫, 𝑆௬ሻ  is the total expected payoff for each 
strategy in Strategy Set 𝑥  against each strategy in 
Strategy Set 𝑦 and can be calculated as follows 
 𝐸൫𝑆௫, 𝑆௬൯ ൌ   𝑢ሺ𝑖ሻ ൈ 𝜎ሺ𝑖ሻ

ୀଵ  (5)

where 𝑖 ∈  ሼ1, 2, 3, … , 𝑛ሽ is an outcome of the normal-
form game between Strategy Sets 𝑆௫ and 𝑆௬ 𝑢ሺ𝑖ሻ is the utility (payoff) of Outcome 𝑖, which is 
calculated as 𝑅 െ 𝐶 𝜎ሺ𝑖ሻ is the probability of Outcome 𝑖 

Looking back at Table 1, 𝑖 in this scenario can be 
one of four outcomes: 𝑖 ∈  ሼ𝐹𝐹, 𝐹𝐸, 𝐸𝐹, 𝐸𝐸ሽ . As 
such, the total expected payoff for ARVs can be 
thought of as the weighted sum of the ARV payoff of 
each of these four outcomes weighted against each 
outcome’s probability. This probability will depend 
on the strategy employed by both ARVs and HDVs. 

Substituting Equation 5 into the inequalities in 3 
and 4 yields the following inequalities 

 ሺ𝑅 െ 𝐶ሻ ൈ 𝜎ሺ𝑖ሻସ
ୀଵ  ൫𝑅 െ 𝐶൯ ൈ 𝜎ሺ𝑗ሻସ

ୀଵ  (6)

where 𝑖 ∈  ሼ𝐹𝐹, 𝐹𝐸, 𝐸𝐹, 𝐸𝐸ሽ is an outcome of the game 
between Strategy Sets 𝑆ோ and 𝑆ோ 𝑗 ∈  ሼ𝐹𝐹, 𝐹𝐸, 𝐸𝐹, 𝐸𝐸ሽ is an outcome of the game 
between Strategy Sets 𝑆ு and 𝑆ோ 
 ሺ𝑅 െ 𝐶ሻ ൈ 𝜎ሺ𝑖ሻସ

ୀଵ  ൫𝑅 െ 𝐶൯ ൈ 𝜎ሺ𝑗ሻସ
ୀଵ  

AND ሺ𝑅 െ 𝐶ሻ ൈ 𝜎ሺ𝑘ሻସ
ୀଵ  ሺ𝑅 െ 𝐶ሻ ൈ 𝜎ሺ𝑙ሻସ

ୀଵ  

(7)

where 𝑘 ∈  ሼ𝐹𝐹, 𝐹𝐸, 𝐸𝐹, 𝐸𝐸ሽ is an outcome of the game 
between Strategy Sets 𝑆ோ and 𝑆ு 𝑙 ∈  ሼ𝐹𝐹, 𝐹𝐸, 𝐸𝐹, 𝐸𝐸ሽ is an outcome of the game 
between Strategy Sets 𝑆ு and 𝑆ு 

Fulfilling the inequalities in 6 and 7 require the 
optimisation of three variables 
 Maximisation of 𝑅/𝑅 
 Minimisation of 𝐶/𝐶 
 Maximisation of 𝜎ሺ𝑖ሻ/𝜎ሺ𝑘ሻ  where 𝑅 െ 𝐶/𝑅 െ 𝐶 is at a maximum 

 
The solution(s) to this optimisation problem will 

vary greatly in the real world based on ARV 
application, the driving culture of the local existing 
road user population, traffic rules and regulations, and 
other considerations. However, the approaches 
available to implement such solutions can generally 
be grouped into three categories. 
 External measures to provide greater incentive 

for customers to adopt ARVs 
 Capitalisation on inherent ARV behavioural, 

computational, and sensory strengths 
 Creation of a cooperative ARV subcommunity 

where ARVs work together to maximise the 
subcommunity’s over-all fitness 

In the following section, we provide an example 
of how some of these categorical solutions can be 
used to optimise the problem. 

 

How Can Autonomous Road Vehicles Coexist with Human-Driven Vehicles? An Evolutionary-Game-Theoretic Perspective

379



Table 2: Reward and cost parameters for road user interaction demonstration. 

 ARV HDV 𝐶ிி 𝐶ிா 𝐶ாி 𝐶ாா 𝐶ிி 𝐶ிா 𝐶ாி 𝐶ாா
0.2 0.2 0.55 0.85 0.3 0.3 0.65 1.05𝑅ிி 𝑅ிா 𝑅ாி 𝑅ாா 𝑅ிி 𝑅ிா 𝑅ாி 𝑅ாா

vs ARV 0.5 0 1 0.5 0.5 0 1 0.8
vs HDV 0.5 0 1 0.2 0.5 0 1 0.5

 
2.2 Demonstrative Example 

We continue with the set-up described in Section 2.1 
with an initial introduction of a small population of 
ARVs. Table 2 gives an overview of the chosen 
parameters which correspond to the different costs 
and rewards associated with vehicle interaction. 

These values are simplified to illustrate the 
concept of evolutionary stability. In the real world, 
the parameters would be subject to a range of traffic, 
policy, vehicle, and human factors which would 
together make up the cost and reward functions. 

The cost parameters outlined in Table 2 for ARVs 
are lower than the cost parameters for HDVs. This is 
to account for the fact that ARVs bear no driver costs 
associated with the interaction. Hence, the over-all 
cost for interacting with other vehicles is smaller. 

Table 3: Normal-form of the ARV-ARV game (top), HDV-
HDV game (middle) and HDV-ARV game (bottom). 
Fractions under actions denote each action’s probability 
based on the game’s Nash equilibrium. 

ARV 2 
ARV 1 

F 
0.5 

E 
0.5

F 
0.5 0.3, 0.3 -0.2, 0.45 

E 
0.5 0.45, -0.2 -0.35, -0.35 

   
HDV 2 

HDV 1 
F 

0.5 
E 

0.5
F 

0.5 0.1, 0.1 -0.4, 0.35 

E 
0.5 0.35, -0.4 -0.65, -0.65 

   
ARV 

HDV 
F 
1 

E 
0

F 
0 0.1, 0.3 -0.4, 0.45 

E 
1 0.35, -0.2 -0.35, -0.65 

The reward parameter for mutual escalation for 
HDVs ( 𝑅ாா ሻ has been increased from 0.5 (equal 
distribution of priority) to 0.8 (80-20 distribution of 
priority to HDVs’ benefit). The reason for this is that 
this scenario echoes the research findings discussed 

in the introduction with regards to HDVs taking 
advantage of and pushing ARVs to yield at most 
interactions. The result of this asymmetry creates a 
game matrix in which HDVs’ best strategy against 
ARVs is to escalate with 100% probability. In turn, 
this pushes ARVs to adopt a 100% probability to 
facilitate. This creates a unique Nash equilibrium in 
HDV-ARV interactions of EF. Table 3 illustrates this 
in normal form. 

HDVs’ exploitation of ARVs puts ARVs at an 
immediate disadvantage. This is clearly demonstrated 
in Figure 1, which illustrates the average expected 
payoff profile for each of the two populations across 
all possible proportions of ARVs out of the entire 
population. 

 
Figure 1: Average expected payoff profile for ARVs and 
HDVs under the conditions set out in Table 3. 

Under the currently set circumstances, HDVs 
enjoy a significant advantage over ARVs across the 
board. At lower proportions, ARVs receive the least 
possible expected payoff. This will result in ARVs 
failing to enter the road user population. Using the 
figures in Table 3, we can calculate the total expected 
payoff for each strategy pair at 𝑝𝐴𝑅𝑉 ൌ 0 as follows 𝐸ሺ𝑆ோ , 𝑆ோሻ = 0.05  𝐸ሺ𝑆ு, 𝑆ோሻ = 0.35 𝐸ሺ𝑆ோ , 𝑆ுሻ = -0.2  𝐸ሺ𝑆ு, 𝑆ுሻ = -0.15 

Therefore 𝐸ሺ𝑆ு , 𝑆ுሻ  𝐸ሺ𝑆ோ , 𝑆ுሻ 
Which means that the current set of HDV 

strategies is evolutionarily stable, thus ARVs will not 
be able to invade the population. 

To combat this, we introduce two measures 
inspired by the three solution categories outlined in 
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Section 2.1. Namely, we allow ARVs to 
communicate with each other via V2V channels. This 
allows ARVs to adopt a 100% probability to facilitate 
when interacting with one another, thus maximising 
the payoff for both vehicles (Pareto efficient). 
Second, we introduce a subsidy function which 
offsets the economic costs of operating an ARV. 
Subsidies can take many different forms and have 
varying effects on both ARVs and HDVs in the target 
population. Evolutionary game theory has already 
been used to model the likely reaction of new-energy 
car manufacturers to government subsidies and 
penalties (Zhang et al., 2020). In this paper, we focus 
on modelling the effect of a hypothetical subsidy on 
the over-all fitness of ARVs in the population. The 
subsidy is granted in a manner that is inversely 
proportional to the proportion of ARVs in the 
population so that maximum subsidy is given when 
ARV population is at a minimum. Equation 8 
illustrates how the subsidy is applied in this example. 𝐶ா ൌ  𝐶ாሺ1 െ 𝑄 ൈ 𝑝𝐴𝑅𝑉ሻ (8)

where 𝐶ா is the ARV’s economic cost of interaction 𝐶ா  is the ARV’s economic cost of interaction 
after subsidy 𝑝𝐴𝑅𝑉 is the proportion of ARVs in the population 𝑄 is a constant which determines the magnitude 
of the subsidy and its effect on the given cost. For 
example, a 𝑄 equal to 𝐶ா offsets the entire economic 
cost of interaction at 𝑝𝐴𝑅𝑉 = 0 

We choose a 𝑄 value of 0.75, which provides a 
net economic benefit (incentive) to ARVs. The 
subsidy is terminated once the ARV proportion 
reaches one half (𝑝𝐴𝑅𝑉 ൌ 0.5). The resultant change 
in normal-form payoffs is shown in Table 4. 

Figure 2 illustrates the average expected payoff 
profile for each of the two populations following the 
application of the two measures. 

 
Figure 2: Average expected payoff profile for ARVs and 
HDVs under the conditions set out in Table 4. 

Table 4: Normal-form of the ARV-ARV game (top), HDV-
HDV game (middle) and HDV-ARV game (bottom) after 
applying V2V communication and government subsidy. 
Fractions under actions denote each action’s probability 
based on the game’s Nash equilibrium. 

ARV 2 
ARV 1

F 
1

E 
0 

F 
1 0.413, 0.413 -0.09, 0.75 

E 
0 0.75, -0.09 0.1, 0.1 

 

HDV 2 
HDV 1

F 
0.5

E 
0.5 

F 
0.5 0.1, 0.1 -04., 0.35 

E 
0.5 0.35, -0.4 -0.65, -0.65 

 

ARV 
HDV

F 
1

E 
0 

F 
0 0.1, 0.413 -0.4, 0.75 

E 
1 0.35, -0.09 -0.35, -0.2 

The application of V2V communication has the 
positive effect of improving the average expected 
payoff for ARVs as their numbers grow. This helps 
close the gap between ARVs and HDVs in terms of 
over-all fitness. Applying the subsidy has the added 
benefit of offsetting some of the costs incurred by 
ARVs. This in turn offsets the average expected 
payoff for ARVs to levels above that of HDVs across 
the population proportion to which a subsidy applies. 

Using the figures in Table 4, we can calculate the 
total expected payoff for each strategy pair at 𝑝𝐴𝑅𝑉 ൌ 0 as follows 𝐸ሺ𝑆ோ , 𝑆ோሻ = 0.41  𝐸ሺ𝑆ு, 𝑆ோሻ = 0.35 𝐸ሺ𝑆ோ , 𝑆ுሻ = -0.09 𝐸ሺ𝑆ு , 𝑆ுሻ = -0.15 

Therefore 𝐸ሺ𝑆ோ , 𝑆ோሻ  𝐸ሺ𝑆ு, 𝑆ோሻ 

Which means that the new set of ARV strategies 
is evolutionarily stable, thus ARVs will be able to 
invade the population and reach an evolutionarily 
stable state at the population proportion at which the 
average expected payoff of ARVs equals that of 
HDVs. This can be graphically identified in Figure 2 
as the point of intersection between the two curves, at 
approximately 𝑝𝐴𝑅𝑉 ൌ  0.5. 
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3 CONCLUSIONS 

The relationship between ARVs and HDVs is a 
complex, dynamic, and evolving one. Evolutionary 
game theory gives us a nature-based understanding of 
a living, constantly evolving population: the 
population of road users. Members of this population 
interact with one another and compete for the finite 
resources of space and priority. A vehicle or driving 
style’s over-all performance in the daily task of 
interactive driving dictates whether it continues to be 
adopted or gets dropped in favour of an alternative. 
This process of memetic reproduction is analogous to 
genetic reproduction (Dawkins, 2016). Therefore, 
without proper understanding of the evolutionary 
dynamics of this population, ARV manufacturers and 
policymakers may find that their ARVs are unable to 
keep a meaningful presence within the road user 
population. Cooperative behaviour between selfish 
individuals in the natural world can only be 
adequately explained using evolutionary game theory 
(John Maynard Smith, 1982; J. Maynard Smith & 
Price, 1973). Similarly, we argue that cooperative 
behaviour in a naturally evolving road user 
population with autonomous entities can only be 
ensured if these entities are programmed in line with 
the principles of evolutionary game theory. 

The fitness and therefore success of ARVs is 
governed by a cost and reward function. The 
particulars of such a function vary greatly and depend 
on the class of ARV in question, the prevalent driving 
culture and road etiquette, and the traffic rules and 
policies in place. For example, heavy goods vehicles 
will skew considerably towards faster, more efficient 
transport, whilst passenger vehicles may be more 
sensitive to passenger comfort and satisfaction. The 
values used in the examples described in this paper 
have been chosen to demonstrate how the dynamic 
may look under certain conditions and behavioural 
patterns. However, if the road user population were to 
behave differently or the network conditions be 
different, it is highly probable that the resulting 
dynamic will not produce evolutionarily stable 
outcomes that allow for a viable ARV sub-
population. The topic of characterising and tuning the 
reward and cost functions of ARVs is a subject that 
requires further research. 

Future research will investigate developing a 
methodology by which ARVs can dynamically adapt 
to changes in policy, HDV strategies, and other 
factors to ensure evolutionary stability is maintained 
throughout the course of ARV introduction and 
beyond. 
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