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Abstract 

There is evidence that tree mortality is accelerating in some regions of the tropics 1,2, with profound 

consequences for the future of the tropical carbon sink and the global anthropogenic carbon 

budget left to limit peak global warming below 2 °C. However, the mechanisms that may be driving 

such mortality changes and whether particular species are especially vulnerable remain unclear 
3–8. We analyse a 49-year record of tree dynamics from 24 old-growth forest plots encompassing 

a broad climatic gradient across the Australian moist tropics and find that annual tree mortality 

risk has, on average, doubled across all plots and species over the last 35 years, indicating a 

potential halving in life expectancy and carbon residence time. Associated biomass losses were 

not offset by gains from growth and recruitment. Plots in less moist local climates presented higher 

average mortality risk, but local mean climate did not predict the pace of temporal increase in 

mortality risk. Species varied in the trajectories of their mortality risk, with the highest average risk 

found nearer the upper end of species’ atmospheric vapour pressure deficit niches. A long-term 

increase in vapour pressure deficit was evident across the region, suggesting thresholds involving 

atmospheric water stress, driven by global warming, may be a primary cause of increasing tree 

mortality in moist tropical forests.
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Tropical forests are critical to the global carbon cycle, and shifts in their long-term dynamics can 

influence the pace of climate change. There are indications of slowing carbon accumulation in 

some tropical forests primarily due to changes in mortality 1,2, but uncertainty remains in the scope, 

severity, and mechanisms that might result in global tropical forest structure and dynamics 

changes 3–8. If the tropical forest carbon sink (estimated at 1.2 Pg C year-1 for recent decades 9) 

declines rapidly to zero, the available anthropogenic emissions “carbon budget” to stay below 1.5 
oC by mid-century declines from 120 Pg C to about 100 Pg C, and to stay below 2 oC by 2100 it 

declines from 374 Pg C to about 320 Pg C 10,11. Hence, the causes and future of tropical forest 

tree mortality have important consequences for our prospects to stabilise global climate within 

safe limits.  

 

Predicting tree mortality is especially challenging given the multiple pathways through which 

climate can induce mortality and the ways in which different species respond to climate change. 

Specifically, mortality due to water limitation can result from long-term shifts in climate, specific 

extreme events, or their interaction 2,4,12,13. For example, temperature could increase tree mortality 

directly by increasing physiological thermal stress 14,15 or indirectly by increasing atmospheric 

evaporative demand (i.e. vapour pressure deficit, VPD) 7,16–19, while increasing seasonality in the 

tropics and subtropics would increase soil water stress and decrease dry season water supply 20. 

These processes increase the probability of death through a series of potential mechanisms (e.g., 

hydraulic failure, carbon starvation 7,12,13,21,22). In particular, some studies suggest that tropical 

forests on the drier edge of the biome’s range may be closer to a tolerance threshold and hence 

more vulnerable to water stress as revealed by reductions of growth 23, increases in mortality 24,25, 

and decreases in population size 26,27. However, other work suggests that compositional diversity 

in forests near this dry edge might provide buffers against forest dieback, with some taxa or 

regions suffering less from water stress 3,6. Improving our understanding of mortality dynamics 

requires quantifying mortality patterns along climatic gradients with an explicit consideration of 

taxon-level vulnerability to environmental constraints. As such, long-term demographic datasets 

along these gradients are uniquely capable of disentangling patterns in mortality from their 

potential mechanisms in a way that can inform predictions 28. However, analyses of the infrequent 

and stochastic nature of mortality require sustained, long-term monitoring, which is rare, 

especially in the tropics.  

 

Using tropical forest demographic data spanning 49 years, we analysed temporal patterns of tree 

mortality for 81 dominant tree species encompassing 74,135 observations of stems above 10 cm 
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diameter across 24 tropical moist forest plots along an elevation gradient in North Queensland, 

Australia (Tables S1, S2). We estimated the probability of mortality (hereafter, ‘mortality risk’) 

across stems, species, plots and years (eqs. 1 in Methods; Figs. S1, S2). Analysing the yearly 

distribution of mortality risk across all plots and species from 1971 through 2019 (model M1; see 

Methods), we show that after a period of slight mortality risk decline, the baseline risk increased, 

with several years standing out as high-risk years. A change-point analysis on these data 

confirmed a transition from moderately decreasing to increasing mortality risk occurring in the 

mid-1980’s (the analysis indicating 1984) (model M2; Tables S3, S4). This modelled shift is also 

evident in the observed mortality rates across plots and census intervals (Fig. 1b). The 

mechanisms responsible for the increase in mortality risk are associated with secular long-term 

climate change (notably an increase in temperature and atmospheric water vapour pressure 

deficit, VPD) (Fig. 1c) and wind-disturbance events due to cyclones (black triangles in Fig. 1b).  

 

The mortality risk estimated per stem and year from the census data were used as response 

variables in a series of Bayesian multilevel analyses (models M1-M6; Table S4) to test temporal 

patterns of mortality risk after 1984 across plots and species and investigate potential underlying 

mechanisms associated with those patterns. We focused on the effect of VPD and maximum daily 

air temperature (Tmax) to explain differences in both average mortality risk and its rates of change 

over time among plots, as both VPD and temperature have increased in all 24 plots in the past 

49 years and have reduced tree growth (Fig. 1c; Bauman et al. 23), and are candidates in 

increasing forest stress globally 2,29,30. To capture the potential influence of soil water supply on 

tree water stress and rainfall seasonality, we also used maximum climatological water deficit 

(MCWD) as an additional predictor. Specifically, we used Tmax and VPD of the year's driest 

quarter, and MCWD, averaged over 35 years (1984-2019; M3, see Table S4).  

 

We found an increase in plot-level average mortality risk between 1984 and 2019 in 21 of the 22 

plots with at least three censuses (Figs. 2, 3a, Table S5; grand ‘year’ slope (eqs. 3): b0 = 0.23 

[0.29, 0.17], median and 95%-highest posterior density interval (HPDI)) with a five-fold difference 

in the rate of mortality risk change over time along the climate gradient (‘among-plot’ variation in 

‘year’ slope: sb = 0.16 [0.12, 0.21]; Fig. 3a; see eqs. 3 in Supp. Methods S1). Model predictions 

indicated a doubling in average mortality risk across plots between the 1980s and 2010s (model 

M3; Fig. 3a), corresponding to a potential halving of tree life expectancy and carbon residence 

time 31. None of the mean climate predictors explained the variation in the slope of temporal 

change of mortality risk among plots (Table S5, Fig. S3); drier plots were no more vulnerable to 
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increased mortality risk than more moist plots. The overall plot-specific average mortality risk (ak, 

eqs. 3), however, was higher in warmer and drier plots (Fig. 2, Fig. S3; a1 (VPD): 0.30 [0.49, 0.12], 

and a1 (Tmax): 0.37 [0.52, 0.23]). Plot average MCWD showed no evidence of an association 

with mortality risk (Table S5). Cyclones occurred in a subset of plots (triangles in Fig. 1b), so we 

tested whether the mortality risk increase could be due to cyclone occurrence alone. We 

performed two re-analyses of the full model construction using a) all plots, but with any census 

interval with observed cyclone occurrence removed, and b) only plots with no cyclone 

disturbances in the past 50 years. In both cases, there remained a marked increase in mortality 

risk across years following 1984 (Fig. S4, Table S6), suggesting that another mortality cause was 

driving, and possibly interacting with wind disturbance events, to increase mortality risk across 

the plots.  

 

To evaluate whether some taxa were particularly vulnerable to changing climate, we tested how 

species mortality risks changed after 1984 in model M4, and examined how their local 

distributions related to their total geographic range (model M5), and if some traits correlated with 

their average mortality risk or rate of mortality risk increase (model M6). Model M4 confirmed a 

general increase in mortality risk over time across species (b0 = 0.17 [0.21, 0.14]; Fig. 4a,b, Table 

S4), with 70% of the species presenting the trend (Fig. 3b) and substantial variability across 

species (sb: 0.19 [0.16, 0.21], see eqs. 4) (Fig. 3b). Species average annual mortality risk varied 

between 0.007 and 0.051 (mean of 0.021; Table S2).  

 

Although the increasing mortality trend across species and plots in our analysis is clear, attributing 

this trend to specific causes is challenging. Mortality can lag its cause by months to years 32–36 

and any single mortality event can be due to multiple interacting causes 33,35,37–39. Available 

meteorological data cannot perfectly capture the mortality mechanisms due to spatial and 

temporal precision, or accurate representation of the driving mechanism (i.e., the disconnect 

between high VPD, embolism, vascular failure, and crown death). Finally, observations of 

mortality in censuses do not represent the exact year of death. We attempted to extend our 

inference from the observed mortality risk pattern to possible attribution in three ways: (1) linking 

geographical ranges to plot-level patterns among species, (2) testing trait relationships to the 

mortality shift, and (3) investigating cyclone occurrence and the plot- and species-specific 

mortality risk trends.  
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Many of the species in our plots are widespread across tropical southeast Asia, offering a robust 

assessment of climate niche. Climate niches were approximated for 56 of the 81 species that 

occurred in at least four of the 24 plots, using a projection of presences across climate space built 

by combining all recorded species occurrences with a 30-year climatology of maximum VPD, 

temperature, and MCWD. We then expressed each of our plot mean climate metrics in terms of 

quantiles on each species’ total univariate climatic niche, yielding variables of study species 

position on their broader geographical climate niche (VPDniche, Tmaxniche, MCWDniche; Fig. 4). 

Model M5 regressed mortality risk after 1984 on these three niche-related covariates, with ‘year’ 

to control for the temporal increase and with species-level slopes for all covariates (see eqs. 5). 

The average mortality risk was higher the closer species were to the drier edge of their range (i.e. 

upper limit of their VPD niche; b3,0: 0.40 [0.27, 0.52]; Figs. 2, 4, Table S5). This increase of average 

mortality risk with VPDniche affected 79% of the 56 species (Fig. 4). A similar, though-less-marked, 

increase in average mortality risk occurred closer to the upper edge of the Tmaxniche when 

considering a 90%-HPDI (b2,0: 0.13 [0.01, 0.24]; eqs. 5). This Tmaxniche effect increased when 

removing VPDniche from the model, indicating that Tmaxniche is associated with mortality risk 

indirectly through VPDniche (see sensitivity analysis in Supp. Methods S1 and Table S5). The 

position on the MCWD niche had no clear effect across species (Table S4).  

 

Functional traits may indicate distinct mortality vulnerabilities among species. Forty of our study’s 

species had functional trait measurements, including morpho-anatomical features such as leaf 

mass per area and wood density, chemical traits such as leaf C stable isotope ratio, leaf nitrogen 

and phosphorus, and gas exchange traits such as stomatal conductance and maximum 

photosynthetic capacity (Table S7, Fig. S5). To test for physiological mechanisms potentially 

underlying interspecific differences in the pace of mortality risk change over time, we used the 

subset of 40 species with trait data in a modified version of M4 to see if species mean trait values 

predicted a species’ average risk and the temporal change in that risk post 1984 (models M6, 

Table S4). Wood density (a proxy for mechanical strength and embolism resistance 40,41) showed 

a clear negative relationship with average mortality risk (a1: -0.21 [-0.38, -0.05]; eqs. 6). No traits, 

however, predicted the variation among species in the temporal change (i.e. the slope) of the 

mortality risk (Fig. 2, Fig. S6). This lack of a signal could be due to using species average traits 

or limited sample sizes in focusing on species across plots as well as the potential for a null or 

minor effect 33,42.  
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Wind damage contributes to tree mortality and carbon cycling in other tropical forests 43–45, and 

the prevalence of cyclone impacts recorded in a number of plots here indicate that wind may have 

contributed to the increase in mortality risk directly or indirectly. Whereas wind-related events 

often determine the moment of tree death, other abiotic and biotic risk factors are key in 

determining tree vulnerability to storms, highlighting the importance of interactions among multiple 

risk factors in determining tree death 21,33,35,39. In particular, VPD is likely to increase tree 

vulnerability to wind damage, as well as to other risk factors such as biotic agents 33,35, in addition 

to its direct water-related stress 16,46.  

 

Mortality changes in tropical forests have been associated with climate events such as droughts, 

which will impact long-term forest dynamics if they become more pervasive 1,47,48. Here, MCWD 

did not explain average mortality risk across plots nor showed any clear temporal trend associated 

with mortality risk (Fig. S11, Bauman et al. 23). Further exploring how chronically increasing VPD 

(presses 49) interacts with heat waves, drought events and more frequent extreme VPD anomalies 

(pulses 49) to affect long-term mortality trends will be important to better quantify a causal link 

between climate change and tree mortality. Our study indicates, whether due to particular events 

or accumulated vulnerability, a consistent increase in mortality. When compounded over large 

areas for long periods of time, this mortality increase can result in changes in forest dynamics, 

structure, composition, and carbon residence time 31,50. Increasing a typical tree mortality rate 

from 1% to 2% per year, for instance, halves tree life expectancy, carbon residence time and, in 

the absence of increases in forest-wide productivity, long-term biomass stocks 31.  

 

To test potential impacts of the mortality increase on stand structure, we tested whether 

decreases in plot-level basal area (BA; as a proxy for above-ground biomass) were offset by 

subsequent BA increases due to growth and recruitment into the census. We found a clear decline 

in BA over the monitoring period, in line with Murphy et al. 51 (Fig. 3c,d; Fig. S7). The change in 

BA between censuses (i.e., drops or gains) showed an increasing number and extent of drops 

(Fig. 3c), and these were not offset by gains (Fig. 3c,d). Over the period studied, plots lost ~230.2 

m2 ha-1 but gained only 113.7 m2 ha-1, a 12.2% decline from the BA of the first census of each 

plot, converting these forests into biomass carbon sources. Although some studies have 

suggested that large trees are more vulnerable to water stress due to height-driven hydraulic 

extension, which could have disproportionate consequences for biomass change 13,52, we found 

no evidence of this here (Fig. S8), in line with recent works 33.  
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Our study shows that (1) mortality risk increased across plots and species, (2) tropical cyclones 

alone cannot explain the pattern, (3) average mortality risk is higher in drier plots and at the drier 

edge of most species geographical ranges, (4) VPD displays a temporal increase in all plots that 

corresponds to the mortality risk increase (unlike MCWD), and is a known physiological stressor 

and mortality risk factor 8,16, and (5) there is no evidence that the mortality risk increase is driven 

by increases in growth rates (see Supp. Methods S1; Fig. S9). Tree growth was also recently 

shown to be reduced by positive VPD anomalies in the region, with fast-growing species as well 

as drier plots being more suppressed 23. While acknowledging the contribution of wind 

disturbances and other unaccounted for mortality risk factors such as lightning, the above 

elements provide evidence that a chronic long-term increase in atmospheric evaporative demand 

may increase mortality risk in moist tropical forests of Australia. This is supported by similar 

findings in the Amazon and African tropical forests 1,2 and when comparing key climate variables 

across our plots to the climate of moist tropical forest globally: VPD, Tmax, annual precipitation 

and climatic water deficit at our plots encompassed 53%, 18%, 78%, and 31% of global-scale 

tropical moist forest climatic space, respectively (Fig. S10). The near ubiquitous nature of 

temperature and VPD rise across the tropics suggests that this phenomenon may be responsible 

for, and may in the future drive, an acceleration of tree mortality and concomitant decrease of 

living biomass across the tropics.  

 

One potential buffer to climate change impacts on diverse forests could be the variety of ways 

different species tolerate shifts in the conditions that lead to water 53,54 or temperature stress 55. 

These strategies may be represented by species functional traits 13,41,54. Higher wood density 

correlated with reduced average annual mortality risk, indicating potential roles for enhanced 

wood strength or resistance to embolism 40,41. Here, none of the measured traits explained the 

interspecific variation in the temporal increase in mortality risk. However, we cannot rule out that 

other traits (e.g., hydraulic safety margin and xylem vulnerability to embolism 5,33,54) might better 

explain mortality risk changes across species. Australian moist tropical forest species, in 

particular, have been shown to have narrower hydraulic safety margin than species growing in 

drier forests 41.  

 

Some of the challenges in attributing mechanisms to mortality observations are unavoidable, such 

as the lag between cause and consequence of death, but intensified monitoring protocols and 

new technologies should improve attribution 35,38,56. In addition to long-term plot monitoring, 

mortality attribution can be improved with focused collections of environmental stressors at high 
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frequency (e.g., micrometeorology, soil moisture at depth), as well as higher-frequency monitoring 

individual tree death (e.g., annual or even seasonal mortality surveys 35,38,56). Better assessment 

of tree health through methods as focused as sap flux or as broad as remote sensing of leaf 

function, could also improve our ability to assign cause to individual mortality events. Such 

intensified monitoring programs should improve representation of mortality risk in vegetation 

models, a crucial advance to better predict the future pathway of the tropical forest carbon sink, 

and hence the remaining anthropogenic carbon budget available to stay well below 2 °C peak 

global warming.  
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Figure legends 

Figure 1: Temporal increase of modelled annual mortality risk, annualised observed 

percentage of tree death, and atmospheric vapour pressure deficit across the 24 studied 

plots. a: Temporal variation of the modelled latent mortality risk per year across all 24 plots and 

81 species, with a change-point identified in 1984 marking the beginning of an increase (see 

Table S3). Circles and intervals are median and 95%-highest posterior density intervals of the 

year-level mortality risk (see M2, Table S4). b: Annualised percentage of tree death per plot and 

census interval, indicating a temporal increase across all plots, partly but not only related to wind 

damage from cyclones (black triangles). c: Predicted temporal increase of maximum annual 

vapour pressure deficit (VPD) across all 24 plots. Line and shaded areas are median and 95%-

highest posterior density intervals (HPDI) for VPD predicted from the model fit (see Methods). 

 

Figure 2: Temporal increase of tree mortality risk and influence of plots’ mean climate, 

species’ position on their climatic niche, and functional traits on mortality risk. Results 

displayed from the Bayesian multilevel models M3 to M6 investigating different aspects of the 

mortality risk pattern (Table S4). Red and blue arrows represent clear negative and positive 

effects on mortality risk, respectively, while grey arrows indicate that no clear effect was detected  

(i.e. slope coefficients whose posterior 95%-highest posterior density intervals, HPDI, 

encompasses zero). Plain and dashed arrows illustrate direct and indirect effects on tree mortality 

risk respectively, where indirect effects affect mortality risk by accentuating or attenuating the 

direct effect of ‘year’ (details in Supp. Methods S1). VPD: vapour pressure deficit. MCWD: 

Maximum climatological water deficit. Tmax: Maximum daily air temperature. WD: Wood density. 

Coefficients from different models cannot be directly compared, as they arise from models using 

different subsets of the dataset (see Methods; Table S4). Palm vector created by kjpargeter - 

www.freepik.com. 

 

Figure 3: Plot- and species-level temporal changes of annual mortality risk (1984-2019) and 

change of plot basal area between consecutive censuses. a,b: Circles and intervals are 

median and 95%-highest posterior density intervals (HPDI) of plot-level (a) and species-level (b) 

‘year’ slope coefficient posteriors (bk and bj, respectively; see eqs. 3 and 4), from models M3 and 

M4, respectively. Plots and species whose 95%-HPDI encompassed zero are half-transparent. 

Blue and red circles indicate clear temporal increases and decreases in mortality risk, 

respectively, at a 95% level of confidence (HPDI). The black vertical solid and dashed lines are 

the median and 95%-HPDI of the grand ‘year’ slope (i.e. ‘year’ effect across plots (a) and species 
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(b); b0 in eqs. 3 and 4). Insets: Model prediction of mortality risk per year for the period 1984-

2019, showing the median (line) and 95%-HPDI (shaded area) of the posterior distributions for 

the grand effect. Model posterior predictions show ca. a doubling of mortality risk between 1984 

and 2019 (2.1-fold and 1.7-fold increases at plot- and species level, respectively). c: Variation of 

ΔBA per plot over time, where ΔBA is the change of basal area between consecutive censuses 

in a given plot (ΔBAt = BAt - BAt - 1), such that positive values indicate an increase in BA from 

census t - 1 to census t, and negative values indicate a decrease. Each circle is the ΔBA of a plot 

at the beginning of a census period, and lines connect consecutive observations for each plot. d: 

Density distribution of the annualised ΔBA based on consecutive plot censuses, before and after 

the change-point of 1984. Figs. c and d show that BA losses due to mortality were not offset by 

BA gains related to growth and recruitment into the census. 

 

Figure 4: Spatial effect of species’ proximity from the upper limit of their VPD niche on 

average mortality risk (model M5). The upper part of the figure illustrates for one species 

(Cryptocarya densiflora Blume) the calculation of species’ VPD niche quantiles (VPDniche) in the 

study plots where the species occur (red circles), on the basis of its total biogeographic distribution 

(sum of black and red circles), its climatic niche calculated based on 30-year climatology (map 

background) of the locations where the species was observed (density plot), and the mean 

VPDmax in the studied plots where the species is (red bars at bottom of density plot). The lower 

part of Fig. 4 shows the effect of VPDniche on average mortality risk per species and across species 

(vertical solid and dashed lines; see legend of Fig. 3 for circles and bars, and eqs. 5 in Supp. 

Methods S1 for model details). Species at the upper end of their VPD niche are more likely to 

experience increased mortality risk. 

 

Methods 

Site and species data: The dataset encompasses 49 years of inventory data from 24 tropical 

rainforest plots distributed along an elevation gradient ranging between 15 and 1500 m a.s.l., and 

censused on average 12 times, in northern Queensland, Australia, between -12.73 to -21.25 and 

143.25 to 148.55 (see details in Table S1 and 23). Each census consisted of the measurement of 

all trees above 10 cm diameter at breast height (DBH). Twenty plots (0.5-ha, 100 × 50 m) were 

established between 1971 and 1980 to provide long-term ecological and demographic data 57, 

while four plots were established more recently along the same elevation gradient (Table S1). 
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With two exceptions, the plots were established in unlogged forest; at establishment, EP9 and 

EP38 showed localised evidence of disturbance due to selective logging at least 20 years prior 
57. Cyclonic disturbance contributes to the dynamics of the forests 51, with at least one plot affected 

by cyclones in 1986, 1989, 1999, 2006, 2011, 2014, 2017, and 2019 (Fig. 1b). The gradient covers 

a wide range of mean annual temperatures (19°C to 26.1°C), precipitation (1213 to 3563 mm), 

and mean vapour pressure deficit (6.5 to 11.8 hPa) (Table S1). All trees with stems ≥ 10 cm 

diameter at breast height (DBH) were mapped, identified to species level and measured for 

diameter. The 20 long-term plots were re-measured every two years for ten years, and then at 

three- to four-year intervals, with diameter, recruits and deaths recorded, summing up to 11 to 17 

censuses per plot. The remaining four plots were established more recently, between 2001 and 

2012, and were resampled one to three times (Table S1).   

The initial dataset comprised 110,551 observations, from 13,513 individual stems from 535 

species, in 54 genera, and 79 families (details in Table S2 of Bauman et al. 23). We used a cutoff 

of a minimum of 400 observations per species to model the functional size-dependence of survival 

of a species (see Data analysis), to ensure sufficient statistical power (species list and sampling 

features in Table S2). This resulted in a dataset of 81 tree species, 8,314 individual stems, 74,135 

observations, and 492 death events over the 49 years across the 24 forest plots. Species were 

found in between 1 to 16 plots, with a mean of 6.1, and individual stems were censused two to 

17 times (mean 10.4) over periods of two to 44 years (mean: 13 years) (Table S2). 

Estimating tree survival across size, space, and time: The basis of all downstream analyses 

was the estimation of the yearly probability of survival (a latent, or unobserved, variable) from 

fitting a survival function to each species separately in a multilevel model framework, with ‘plot’ 

and ‘year’ as varying effects (also often referred to as ‘random effects’). The first step of our 

approach consisted of estimating size-dependent tree survival by fitting a functional form to every 

species separately, across the multiple censuses and forest plots where it occurred. The model 

we developed to characterise tree survival built upon recent work by Johnson et al. 58 and 

Needham et al. 59, combining the same five survival parameters into an S- and inverse S-shaped 

logistic function of survival probability (Fig. S1; eqs. 1.4, 1.5; see model details in Supp. Methods 

S1). These correspond to the baseline survival probability per year (K; survival probability for most 

of the adult life of an individual), the rate of survival increase until reaching the arbitrary size where 

the survival probability becomes K (r1), the size corresponding to the inflexion point of the first S-

shaped portion of the functional form (p1), and the corresponding r2 and p2 parameters for the 

inverse-S-shaped portion of the functional form, corresponding to the yearly rate of survival 
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decrease when the species approaches its maximum size, and the inflexion point corresponding 

to the size at which the yearly survival probability is 50% (species stature), respectively (Fig. S1; 

illustration for four species in Fig. S2).  

In this study, we sought to investigate temporal changes in the survival probability per year (K) 

over the past 50 years, whether they vary across space (forest plots along a climatic gradient) 

and species, and test whether long-term climate, species’ biogeographic range, and species traits 

mediate these temporal patterns.   

For each species separately, we modelled the logit-scaled K as a function of a species-specific 

mean K (K_µ) from which deviations arise from different plots (K_P) and years (K_T) (Fig. S1; eq. 

1.2). Instead of modelling the survival rate over the actual census period (mostly between two to 

five years, see 23), we took advantage of having different plots whose starting and ending census 

years differed and partly overlapped (Fig. 1b) to generate a latent variable of logit-scaled 

probability of survival K per plot and year (hereafter K_lat, Fig. 1; eq. 1.2). The real observations 

of binary survival outcomes (eq. 1.1) per stem per census t were thus used to generate latent 

probabilities of survival for every year encompassed by the period between consecutive 

censuses. Our Bayesian framework allowed estimating a posterior distribution of K_lat for each 

latent observation (i.e. stem per plot per year; Fig. S9), as: 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙!,#,$	~		𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃)																					(1.1)     [Likelihood of survival for obs. i in plot k, interval t] 𝑓𝑜𝑟	(𝑥	𝑖𝑛	𝑦𝑒𝑎𝑟_0! ∶ 𝑦𝑒𝑎𝑟_1! 	)		{                              [Loop through years encompassed by the time interval] 							𝐾_𝑙𝑎𝑡 = 𝐾_𝜇 + 𝐾_𝑃! 	+ 	𝐾_𝑇!,% +	𝜖! 			(1.2)							[Latent logit-survivorship per year] 							𝐾 = 𝑖𝑛𝑣_𝑙𝑜𝑔𝑖𝑡(𝐾_𝑙𝑎𝑡)																												(1.3)      [Inverse logit of latent survivorship per year] 

							𝜃 = F &

'(	*%+("#$	×'()*+",$-)
, 𝑑𝑏ℎ! < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑				(1.4)

&

'(	*%+("#/	×'()*+",/-)
, 𝑑𝑏ℎ! ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑				(1.5)    [Logistic functions of survival] 

}           𝐾_𝜇	~	𝑁𝑜𝑟𝑚𝑎𝑙(2, 1)																																					(1.6)        [Prior for average logit-survivorship]       𝐾_𝑃	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎,)																																			(1.7)        [Adaptive prior for plots] 𝐾_𝑇	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎-)																																			(1.8)	       [Adaptive prior for years] 𝜖	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎.)																																									(1.9)        [Adaptive prior for residual error] 

 

where survival outcomes were modelled through either one of the logistic functions corresponding 

to the S-shaped or inverse S-shaped functions (eqs. 1.4 and 1.5, respectively), depending on 

whether the corresponding individual presented a DBH smaller or bigger than a threshold, here 

set as the mean DBH of the species (see Supp. Methods S1 for prior specifications).  
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We extracted the median of the K_lat posterior distribution per latent observation (i.e. survival 

probability of a given stem on a given year). The resulting distribution of median K_lat values 

combined across all 81 species and 24 plots was used as the main response variable in the 

following models to investigate temporal patterns of survival.   

We focus on the variation across groupings (species, plot and year) with K_lat as it best 

summarises mortality of trees through most of their lives (Figs. S7, S8). Although the other 

parameters that offer insights into early and late mortality are very powerful for certain questions, 

allowing that the data are available, we decided against focusing on differential mortality of small 

individuals due to the minimum size threshold of 10 cm DBH, a size above which most stems 

function similarly (i.e., seedling and sapling drought vulnerability would fall well below this 

threshold). We do, however, acknowledge that non emergent trees above 10 cm DBH may 

experience buffered variations in VPD and other variables related to their below canopy position, 

which we do not account for here.  

All following analyses were performed on the latent logit-survivorship (K_lat), model results and 

coefficients are reported in terms of mortality probability (hereafter “mortality risk”), where annual 

mortality risk is defined as 1 - survival probability, and the coefficient signs from the models 

presented below had their sign inverted (e.g. a negative effect on survivorship becomes a positive 

effect on mortality risk). Note that as our approach focuses on linking mortality to ontogeny 

through size, it precludes accounting for census-interval length biases that emerge when longer 

intervals miss mortality events of individuals that grow into the census diameter and die before 

being recorded 60. As these biases will tend to increase mortality estimates for shorter census 

interval lengths and become more pronounced for smaller size classes, our study has, if anything, 

underestimated mortality after the census interval increased in the early 1980’s (see Fig. 1b). 

Statistical analyses 

Our statistical analyses followed from our initial hypotheses about tropical forest survival patterns, 

but also from our initial findings as related to those patterns. Therefore, our analysis proceeded 

through different models that relied on different subsets of the data depending on the questions 

asked. We began by investigating trends in mortality risk across plots and species and then 

focused on aspects that included species subsets occurring in multiple plots, plot communities 

independent of species, and biogeographic inference about the species across the plots. The six 

models used are summarised in Table S4 and the next section (detailed model explanations and 

all equations are in Supp. Methods S1). Because mortality events are rare and stochastic, 
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requiring a lot of data for inference, and because the six models have different requirements (see 

below), we settled on maximising inference from each model over reducing the data set to the 

smallest common dataset allowing model comparison at the cost of statistical power. Different 

subsets of the data were therefore used for models M3 to M6 (see Tables S2, S4). 

 

Temporal trends in survival: We first generated an unconditional multilevel model of K_lat 

across all 81 species (model M1 in Table S4), for a visual assessment of a temporal trend in the 

average survivorship per year (see eqs. 2 for model details in Suppl. Methods S1). M1 used 

varying intercepts (also known as “random” intercepts) to model mortality risk (K_lat; i.e. overall 

intercept, or grand mean) and species-level, plot-level and year-level deviations from the grand 

mean. Because an increasing trend in tree mortality risk was apparent in the 1980s (Fig. 1a), we 

tested for a changepoint year. 

 

Changepoint: We used a changepoint analysis to statistically test whether our time series of 

latent logit-survival probabilities (K_lat) has shifted in mean value and, if so, to identify the most 

likely year when this change occurred 31,61 (model M2, Table S4). A change point from slightly 

negative to clearly positive temporal trend in mortality risk was identified in 1984, across all plots 

and species (Fig. 1a). All further analyses focused on the structure and potential causes of the 

increase in tree mortality risk in the 1984-2019 35-year period.  

 

Explaining the ‘post-change point’ survivorship decline: Causes of individual tree mortality 

are difficult to assess directly due to time lags between mortality and its cause, tree deaths being 

most often attributable to multiple mechanisms 33,39,62–64, and delays between the mortality event 

and its detection 35,65,66. Because of this, direct causal relationships between tree mortality and 

specific weather events or average climatic conditions of a census interval are not possible. 

Instead, we use different datasets and approaches in order to best attribute known potential 

drivers of tree mortality with the patterns identified in the long-term data.  

 

Plot-level changes and local mean climate: We built a Bayesian hierarchical model exploring 

the post-1984 mortality risk increase within and across plots to test the proportion of plots showing 

an increase in mortality risk through time, and to test whether average mortality risk and mortality 

risk changes over time depended on the local mean climate (model M3 in Table S4; details in 

eqs. 3, Supp. Methods S1). To do so, we used plot mean climate, defined as a 35-year local 

average per climatic variable (1984-2019, to match the main period of interest). We specifically 
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considered the effect of the 30-year average of the VPD of the year driest quarter and maximum 

temperature of the year warmest quarter (Tmax) as both VPD and temperature have markedly 

increased in all 24 plots during the past 49 years and are important drivers of tree growth in these 

plots 23. Additionally, we examined the effect of maximum climatological water deficit (MCWD), a 

metric that serves as a proxy for the annual accumulated water stress over the dry season 

estimated as the cumulative deficit between precipitation and evapotranspiration 20,67,68. These 

variables can all have an impact on survival through water stress or heat-related impairment of 

biochemical reactions (which are not captured explicitly in this study). The VPD and temperature 

data were collected from ANUClimate v.2.0 between 1971 and 2019 69, and the MCWD was 

calculated using precipitation data from ANUClimate v.2.0 and evapotranspiration data from 

TerraClimate 70.  

 

Species-level changes and biogeographic expectations: We used a similar Bayesian 

multilevel model specification as the previous one, without climate variables, to focus on species-

specific mortality risk change trajectories and test the proportion of species showing an increase 

in mortality risk over time (model M4; Table S4).  

We then used a space-for-time substitution to test whether the temporal increase in mortality risk 

could be driven by the marked temporal increase of temperature and VPD (see Results). 

Specifically, we tested whether species had lower average survival rates in plots closer to the 

drier edge of their geographical range (upper limit of their total VPD niche). Similarly, MCWD was 

used to approximate species’ rainfall seasonality niche. This approach takes into account general 

eco-physiological constraints as well as the evolutionary history of each species, as captured 

through the biogeographic range of conditions where they occur 71,72. For example, a difference 

of 2°C in the mean temperature of two plots could be associated with a higher baseline mortality 

for one species for which the warmer plot falls close to the edge of its temperature niche, whereas 

baseline mortality would remain the same for a species for which both plots are near the species’ 

niche center. This biogeographic niche approach allowed us to investigate potential mechanisms 

underlying temporal trends 73, while also providing potential eco-physiological mechanisms 

underlying the temporal and spatial pattern 72,74,75.  

To generate approximate univariate climate niches for each species and define the relative 

location of the studied plots in these niches, we first extracted all known occurrences of 78 species 

(see next section) from the Global Biodiversity Information Facility (GBIF) online database (Table 

S8). Our goal was to balance the simplicity of a presence-only analysis while avoiding biases that 

might underestimate niche breadth. We therefore first filtered out multiple occurrences of a 
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species to keep only one sample per radius of 1 km, to reduce the risk of oversampling 76 (a 3 km 

radius filter yielded very similar results; results not shown). The filtered spatial locations of the 78 

species occurrences were matched to a 1/24° map of the 30-year climatology (average over 1981-

2010) of maximum annual VPD, maximum daily air temperature (Tmax), and MCWD, obtained 

from TerraClimate 70. Species’ univariate climate niches were defined separately for Tmax, VPD 

and MCWD as the distribution of 30-year mean values from the pixels corresponding to each 

species’ biogeographic distribution (including our plots) (see upper part of Fig. 4). The local 30-

year average climate of our 24 plots were then expressed in terms of quantiles for each species 

separately, based on the species-specific climatic niches generated, yielding Tmaxniche, VPDniche, 

and MCWDniche, that is, species’ position on their total niche for the corresponding variable. The 

resulting quantiles are species-specific expressions of how close the 30-year mean climate 

variables in our plots are from the upper limit of species’ total climatic niche. We tested the 

robustness of our quantile approach with respect to potential imperfect sampling in part of the 

biogeographic area by rerunning the M5 model using a coarser index of the distance from the 

niche maximum expected to show little sensitivity to uneven sampling effort across species’ total 

distribution area (details in Supp. Methods S1). 

 

Species-level changes and functional traits: To investigate potential eco-physiological 

mechanisms underlying the species-level variability in the post-1984 change of survivorship 

through time, we used a modified version of model M4 only considering the 40 species with 

measured functional trait data (M6, Table S4), instead of all 81 species. Model M6 allowed testing 

whether the differences in both average mortality risk and the pace of risk change over time could 

be explained by species traits (model details in Supp. Methods S1).  

The functional traits were measured between July and September 2015 on 81 dominant, canopy 

trees in seven of the 24 plots (Table S7; Table S1 and S2 for plots and species with trait data). 

For each plot, species were chosen with the aim of sampling those that made up 80% of the 

standing biomass for the most recent census. The details of trait data collection and 

measurements are presented in Bauman et al. 23 and are summarised here. Measured traits and 

their functions are presented in Table S3 and Fig. S5. The traits were measured on three 

individuals per species, and included leaf photosynthesis and stomatal conductance at a 

reference CO2 concentration of 400 µmol mol-1 and irradiance of 1500 µmol photons m-2 s-1 (Asat 

and gsat, respectively), dark respiration (Rd) at the same CO2 concentration, the CO2-saturated 

photosynthesis and stomatal conductance (Amax and gmax), measured at 1200 µmol mol-1 CO2. 

Estimates of leaf maximum carboxylation rate (Vcmax) and maximum light-driven electron flux 
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(Jmax) normalized to 25°C were obtained from the photosynthesis model of Farquhar et al. 77 

fitted to the A-ci curves (‘plantecophys’ R package 78). The one-point method 79 was used to 

estimate Vcmax for each individual from net photosynthesis measured at 400 µmol mol-1 CO2, 

and Jmax from net photosynthesis measured at 1200 µmol mol-1 CO2 80. We also measured leaf 

area, leaf mass per area (LMA), leaf thickness, wood density (from branches, after bark removal), 

leaf nutrient concentrations, and stable carbon isotope ratio (d13C). All traits were averaged at the 

species level for the analyses.  

 

Sensitivity analyses for the risk trend: We ran four sensitivity analyses to test the robustness 

of the temporal trend in mortality risk increase after removing major influences of wind damage-

related disturbances from cyclones. To do so, we created two subsets of the initial raw survival 

dataset by filtering out (1) any census interval affected by a cyclone (see black triangles in Fig. 

1b), or (2) any plot having had at least one cyclone disturbance, even minor, since 1971. The 

resulting datasets had respectively 23 and five plots, and 69 and 15 species presenting over 400 

observations. We generated the latent survival probabilities per stem per year (K_lat) for each 

species separately, on the basis of these two datasets (see eqs. 1), and ran models M3 and M4 

to test for plot-level and species-level temporal trends in mortality risk. All four resulting sensitivity 

analyses indicated the mortality risk trend remained clear across plots and species, even after 

removing the main impact of major wind-related disturbances (Fig. S4, Table S6). 

 

Modelling climate over time: To explore the implications of the differences in mortality risk with 

long-term mean climate and species’ position on their climatic niche, we built a separate set of 

models to investigate temporal trends in Tmax, VPD, and MCWD from 1971 to 2019. To do so, 

we used Bayesian generalised additive models, modeled the monthly values of the three climate 

variables separately with B-splines and a maximum of four basis functions to constrain the 

wiggliness of the relation 81, and added varying intercepts for the different plots. The resulting 

trends indicated a strong increase of Tmax and VPD over time across all plots (consistent with 

results from Bauman et al. 23), but no directional increase in MCWD (Fig. 1c, Fig. S11). 

Bayesian updating of the parameters: The parameter probability posteriors of the size-

dependent survival models were fitted separately for each species in Stan, using the No-U-Turn-

Sampler (NUTS; 5000 iterations on three chains), with the ‘rstan’ R package 82. For the models 

M1 and M3 to M6, Bayesian updating of the parameter probability distributions were fitted with 

the NUTS in Stan, by running 6000 iterations on four chains, with 1000 ‘warmup’ steps, using the 



22 

R package ‘brms’ 83 (R code in Supplementary Methods S2). Chain convergence was checked 

through Rhat values, ensuring they all were within 0.01 from 1, and mixing of all chains was 

assessed visually. Coefficient posteriors were summarised through their median and 95%-highest 

posterior density interval (HPDI) (i.e. the narrowest posterior interval encompassing 95% of the 

probability mass, corresponding to the coefficient values most consistent with the data; 81). Model 

covariates were considered important when their coefficient 95%-HPDI did not encompass zero, 

indicating a strong-enough level of confidence to report the effect as positive or negative. All 

analyses were carried out in the R statistical environment 84 with R code available in Supp. 

Methods S2. 

 

Data availability statement: The raw demographic data that supported the findings are available 

in Bradford et al. (2014; see References), in CSIRO Data Access Portal  

[https://doi.org/10.4225/08/59475c67be7a4], and the survival dataset used for the 81 studied 

species was archived on the platform of the Terrestrial Ecosystem Research Network (TERN) 

infrastructure [https://doi.org/10.25901/rxtc-th28], which is enabled by the Australian 

Government’s National Collaborative Research Infrastructure Strategy (NCRIS). The climate data 

used in the models are openly available under the same DOI, and trait data will be made available 

upon reasonable request. 

 

Code availability statement: A detailed and commented R code supporting the findings is in 

Supplementary Methods S2 as well as on the same TERN repository as the data 

[https://doi.org/10.25901/rxtc-th28]. 
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Extended data legends 

Fig. S1: Schematic illustration of the size-dependent multilevel survival model and its 

parameters. Survival probability per year (theta) for a given species is defined by either one of  

two similar logistic functions, depending on a DBH threshold, only changing in the sign of r (r1 > 

0, r2 < 0), yielding two S-shaped logistic function related through their common plateau K. This 

size-dependent model of survivorship was fitted separately for each of the 81 studied species. 

p1 and p2 are the inflection points of the two curves, with p2 characterising the species DBH at 

50% survival per year. r1 and r2 are rates of survival change per year in the corresponding 

portions of the survival curve. While K was initially the background survival rate of the species 

during most of the tree live 58,59, our model decomposes K into a species-specific average 

survival rate per year across all the sites and years (K_µ), a site-specific deviation from the 

average (K_P), a year-specific deviation from the average (K_T), and an error term (not 

represented, here). Because nearly all species occurred in multiple plots, and because different 

plots were recensused on different years, every two to five years mostly, the overlap of census 

years across plots allowed us to infer a latent survival probability per year, between 1971 and 

2019 (K_lat). K_lat, the latent logit-survival probability per year, generated separately for each 

species through this survival model, was used as the response variable of all subsequent 

analyses (M1 to M6, see Table S4) to study how species’ mortality risk (i.e. 1 - survivorship, or 1 

- K) changed through the years, whether this change varied among species and sites, and how 

climate, species’ climatic niche, and species functional traits related to mortality risk changes 

through time. Examples of the above theoretical curve from some of the studied species are 

presented in Fig. S2. 

Fig. S2: Illustration of the interspecific variability of survival probability as a function of 

tree diameter. The figures represent species-specific survival probability predictions between 

10 and 160 cm DBH for four of the 80 species of the study, across forest plots and years, based 

on the species-specific Bayesian multilevel models of survival (eqs. 1; Fig. S1). The red line is 

the posterior survival probability per year median, and the dark and light grey shaded areas are 

the 50%- and 90% posterior credibility intervals, respectively. Vertical dashed lines correspond 

to the observed maximum DBH for the corresponding species (Acacia celsa Tindale, 
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Acronychia laevis J.G.Forest & G.Forst, Cardwellia sublimis F.Muell., and Flindersia bourjotiana 

F.Muell.). 

Fig. S3: Effects of local climate on average mortality risk and mortality risk temporal 

change across plots (models M3). Model M3 tests the effect of ‘year’, and either Tmax and 

MCWD, or VPD and MCWD on mortality risk (see eqs. 3; Tmax and VPD tested in separate 

models to limit collinearity, see Supp. Methods S1). Climate variables influence the model grand 

intercept (average mortality risk across plots, a0) and grand ‘year’ slope (mortality risk increase 

over time, b0), through coefficients a1-2 and b1-2, respectively. Average mortality risk is higher in 

plots presenting on higher long-term mean monthly Tmax and VPD during the warmest/driest 

quarter (95%-HPDI of a1 encompass positive values only). Mean climate does not clearly 

predict how steep the temporal increase in mortality risk is among the plots (95%-HPDI 

encompass zero). 

Fig. S4: Sensitivity analyses of the mortality risk increase over time: Species-level and 

plot-level slopes of change of mortality risk per year (1984-2019) without influence of 

cyclones. a, c: Plot-level (a) and species-level (c) slopes of mortality risk change per year (bk 

and bj, respectively; eqs. 3 and 4), obtained with models M3 and M4 on the basis of the subset 

of survival data obtained from the first approach to remove the effect of cyclones: Any census 

interval in a plot damaged by a cyclone was removed from the initial dataset, and the Bayesian 

size-dependent survival model (eqs. 1) was run for the species that presented > 400 

observations in the reduced dataset. Models M3 and M4 were then run on the resulting latent 

survival probabilities K_lat (see eqs. 1, 3, 4) to test for temporal changes in mortality risk across 

plots and species, with plot-level and species-level slopes. b, d: The second approach to 

remove the influence of cyclones consisted of only keeping the plots that remained totally 

unaffected by cyclones in the last 49 years (see Suppl. Methods S1), then selecting the species 

that had > 400 observations in the remaining plots, generating the latent survival probability per 

year (K_lat; eqs. 1), and running models M3 and M4 as for the first approach. a-d: Species and 

plots whose 95%-highest posterior density interval (HPDI) encompassed zero are half-

transparent. Blue and red circles indicate clear mortality increase and decrease through time, 

respectively (intervals not encompassing zero). The black vertical solid and dashed lines are the 

median and 95%-HPDI of the grand ‘year’ slope (i.e. generalisable effect across plots (a, b) and 

species (c; d)). The two approaches to test the robustness of the mortality risk temporal change 

without the main influence of cyclones (removal of intervals, or removal of plots) respectively 

had 69 and 15 species, and 23 and five plots The percentage and number of plots and species 
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whose mortality risk increased between 1984 and 2019 for approach 1 and 2 respectively were 

96% (22) and 100% (5) of the plots, and 81% (56) and 92% (11) of species. 

Fig. S5: Illustration of functional trait relationships among the 40 species with trait data, 

used in the M6 models of mortality risk over time. The figures represent the functional space 

occupied by the 40 tree species on the first four ordination axes of a correlation PCA, together 

describing 71.4% of the trait values (see Table S3 for trait abbreviations). 

Fig. S6: Effects of species functional traits on average mortality risk and mortality risk 

change through time. a,b: Trait mediation of species-level intercept and ‘year’ slopes (a1 and 

b1, respectively, see eqs. 6 in Suppl. Methods S1). a: Positive and negative slopes indicate traits 

increasing and decreasing average mortality risk, respectively. b: Positive slopes correspond to 

traits that accentuate the rate of mortality risk change per year, while negative slopes 

correspond to attenuations of this rate. Circles and intervals are median and 95%-highest 

posterior density intervals (HPDI) for slope coefficients a1 (trait effect on average mortality risk) 

and b1 (trait mediation of ‘year’ effect on mortality risk) (see eqs. 6).  

Fig. S7: Change of stand-level basal area per hectare (BA) over time. Change of BA per 

forest plot between 1971 and 2019 (a). Each circle is a plot BA on the year beginning a census 

period. The smooth curve and shaded area are the mean and 95% confidence interval of a 

generalised additive model (GAM), showing a decrease in plot BA across plots, and within most 

plots. The circle colour is proportional to the BA value (yellow to blue for low to high BA).  

Fig. S8: Living and dead tree DBH distributions for the time period 1984-2019. The histogram 

bins are 1 cm-wide. We explored the relation between increased mortality risk and tree DBH 

visually and did not detect any clear size association. A Pearson’s Chi-squared test with simulated 

p-value confirmed that no clear link could be detected between the proportions of alive and dead 

individuals in DBH bins of 1 or 5 cm (Chi-squaredbin_5cm = 0.0054, p-value = 1). 

 

Fig. S9: Changes of log-transformed absolute diameter growth rate (AGR) over time across 

and within species, for the 81 studied species. The main figure shows the species-level 

coefficients of AGR change per year, between 1971 and 2019 (species-specific ‘year’ slope; b2j 

in eqs. 7, Supp. Methods S1). Circles and horizontal bars are posterior median and 95% highest 

posterior density intervals (HPDI). Plain black circles and bars are species whose posterior 95%-

HPDI did not encompass zero; semi-transparent circles and bars are species whose HPDI 

encompassed zero (no clear AGR increase or decrease). The red dashed line marks zero, that 
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is, the separation between coefficient values indicating an increase of AGR over time (positive 

values) and a decrease of AGR over time (negative values). The vertical plain and dashed blue 

lines are the median and 95%-HPDI of the grand year slope (see inset). The inset shows the 

posterior probability distribution of the coefficient of AGR change per year across all species (i.e. 

grand ‘year’ slope mean; b2,0  in eqs. 7, Supp. Methods S1). Overall, AGR did not clearly increase 

or decrease across species (unlike mortality risk; Fig. 3). AGR increased for 14 species and 

decreased for 19 species, while remaining mostly unchanged (95%-HPDI encompassing zero) 

for 48 species (semi-transparent circles and horizontal bars). 

 

Fig. S10: Comparison of the climatic space occupied by the 24 plots of Australian 

tropical moist forests of the study with the total climatic space of tropical moist forests 

worldwide. The climatic spaces were obtained from 30-year climate averages (1981-2010) 

extracted from TerraClimate 70, combined with the spatial locations of the grid cells belonging to 

the biomes “Tropical and subtropical moist broadleaf forests” (including tropical montane 

forests) (85; see https://ecoregions2017.appspot.com/). 

 

Fig. S11: Overall temporal trends in climate across the environmental gradient. Three 

Bayesian B-spline models with varying plot intercept and four basis functions were used to 

model monthly VPD, Tmax and MCWD over time across all 24 plots (see Methods). Both 

temperature and VPD showed a strong increase across all plots. MCWD did not show any clear 

directional trend across plots (more details in Bauman et al. 2021).
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be addressed to David Bauman. Reprints and permissions information is available at 
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