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Interannual variability in the global land carbon sink is strongly related to variations in 129 

tropical temperature and rainfall. This association suggests an important role for moisture-130 

driven fluctuations in tropical vegetation productivity, but empirical evidence to quantify 131 

the responsible ecological processes is missing. Such evidence can be obtained from tree-132 

ring data that quantify variability in a major vegetation productivity component: woody 133 

biomass growth. Here we compile a pantropical tree-ring network to show that annual 134 

woody biomass growth increases primarily with dry-season precipitation and decreases 135 

with dry-season maximum temperature. The strength of these dry-season climate 136 

responses varies among sites, as reflected in four robust and distinct climate response 137 

groups of tropical tree growth derived from clustering. Using cluster and regression 138 

analyses, we find that observed dry-season climate responses are amplified in regions that 139 

are drier, hotter, and more climatically variable. These amplification patterns suggest that 140 

projected global warming will likely aggravate drought-induced declines in annual tropical 141 

vegetation productivity. Our study reveals a previously underappreciated role of dry-142 

season climate variability in driving the dynamics of tropical vegetation productivity, and 143 

consequently influencing the land carbon sink. 144 

Tropical and subtropical ecosystems are primarily responsible for the large interannual 145 

variability in the global carbon land sink1-4. In cooler and wetter years in the tropics, carbon 146 

uptake by tropical vegetation is large and increases the global land sink, whereas warmer 147 

and drier years reduce this sink5-7 or flip it into a carbon source8.  The response of tropical 148 

vegetation productivity to variability in moisture availability likely contributes to these 149 

emergent global patterns6. A better understanding of the global land sink variability 150 

therefore requires quantifying the effect of climatic variation on tropical vegetation 151 

productivity. Yet, the sensitivity of key components of tropical vegetation productivity, such 152 
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as woody biomass growth, to climate variability is poorly understood. Direct, long-term, and 153 

temporally highly resolved measurements of these components are needed to reconstruct2, 154 

simulate9,10, and forecast the carbon land sink11,12.  155 

Here, we evaluate the climate responses of woody biomass growth throughout the 156 

global tropics (here defined as 30°N-30°S, including subtropics). We focus on woody biomass 157 

growth in tree stems, which constitutes a significant share of net productivity of tropical 158 

vegetation at local13,14 to continental scales15,16, contributes to the main long-term carbon 159 

reservoir in tropical biomass17, and determines the success of forest-based natural climate 160 

solutions18. Using an unprecedented compilation of tropical tree-ring data, we test three 161 

hypotheses on the association between climate and annual woody biomass growth of trees 162 

(hereafter ‘tree growth’) across tropical climate zones that vary in temperature and 163 

precipitation. (1) We expect opposite associations of tree growth with precipitation 164 

(positive) and temperature (negative), consistent with those observed for the land sink5,6. (2) 165 

We expect the magnitude of these associations to peak in the wet season, when 166 

photosynthesis19 and woody biomass growth20 in tropical vegetation are typically highest. (3) 167 

Finally, we expect climate-growth associations to amplify with site aridity, because semi-arid 168 

regions exhibit stronger climatic variability1 and contribute more to interannual variability in 169 

the land sink1,3,4,21. Hereafter, we will refer to associations between climate and tree growth 170 

as ‘climate responses’. 171 

We established a network of 415 tree-ring chronologies (i.e., time series of absolutely 172 

dated, population-level average ring width) compiled from tropical and subtropical latitudes 173 

(Extended Data Fig. 1). From this network, we selected 347 chronologies that fulfilled quality 174 

criteria of sample size, chronology robustness and length, and that covered recent decades. 175 
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The chronologies are derived from 99 tree species on five continents and were obtained 176 

from co-authors (n = 112 chronologies) and the International Tree-Ring Data Bank (ITRDB; n 177 

= 235).  178 

To facilitate comparative analyses of tree climate responses across the network, we 179 

re-developed standardized ring-width index (RWI) chronologies using a single detrending 180 

method. We then assessed climate associations by relating the most recent 50 years of all 181 

RWI chronologies to gridded climate data (Extended Data Table 1). We chose to evaluate 182 

climate associations to precipitation (P) and maximum temperature (Tmax) instead of 183 

commonly used drought indices, because these climate data are directly measured, available 184 

for multiple decades, and because Tmax is a strong driver of tropical woody biomass growth22. 185 

We tested our first two hypotheses using two complementary approaches. First, to 186 

detect common modes of climate response across the network, regardless of biogeographic 187 

region, we performed a self-organizing maps (SOM)23 cluster analysis based on RWI 188 

responses to monthly P and Tmax over a 2-year period during and prior to the year of ring 189 

formation. This approach allows for detecting idiosyncratic and lagged responses of tree 190 

growth to monthly climatic conditions24. We present the results based on a 2x2 SOM-grid, 191 

which resulted in four groups of climate response. Second, to evaluate the relative influence 192 

of Tmax and P on tree growth during the wet (P>100 mm/mo)46 and dry season (P<100 193 

mm/mo;  preceding ring formation), we conducted a multiple linear regression analysis of 194 

RWI for each chronology. This more restrictive analysis included only seasonally significant 195 

(p<0.05) and additive effects of the two climatic variables during a 1-year period. For both 196 

approaches, we tested hypothesis 3 by associating climate responses to ambient 197 

hydroclimatic conditions.  198 
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 199 

Network representativeness 200 

Our network covers a large portion of climatic conditions and biomes on tropical land area 201 

(Fig. 1a-b; Extended Data Fig. 1). The network is climatologically representative for 66% of the 202 

pantropical land area with woody vegetation and matches pantropical distributions of 203 

precipitation regimes reasonably well (Fig. 1b). The network overrepresents Northern 204 

Hemisphere subtropical montane regions, where the presence of coniferous species facilitates 205 

dendrochronology; while it underrepresents humid lowland tropical forests, in part because 206 

weak climatic seasonality hampers chronology development25. We consider this over- and 207 

under-representation by validation tests and weight-adjusted analyses.  208 

 209 

Four robust clusters of climate responses 210 

When SOM-clustering the chronologies according to their monthly climate responses, four 211 

distinct groups with characteristic climate response modes emerge. Three of the four 212 

climate response groups are globally distributed, taxonomically diverse, and climatologically 213 

representative for 46-67% of global tropical woody vegetation (Fig. 1c). One of the groups 214 

(‘Strong positive P response’) is restricted to North America, taxonomically poor, and has a 215 

very limited representativeness (4%; Fig 1c).  216 

Tree growth in three of the four groups responds positively to P increases and 217 

negatively to Tmax increases, supporting hypothesis 1, whereas these responses are reversed 218 

in the fourth group (‘Weak negative P response’; Fig. 2a). Despite differences in response 219 

magnitude between the first three groups, the seasonality of the response is similar, with 220 
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the strongest climate responses occurring in the dry season (Fig. 2a). This larger importance 221 

of dry-season climate contrasts with hypothesis 2 and suggests dry-season water availability 222 

and demand as first-order drivers of interannual variability in tropical tree growth. The 223 

importance of this driver is further supported when ranking the groups from strongly 224 

positive P response to weakly negative P response. This ranking coincides with a gradient of 225 

low to high annual water availability (MAP and CWD; Fig. 2b) and strongly to weakly negative 226 

water balance (Extended Data Table 2), in accordance with hypothesis 3. 227 

In the geographically restricted ‘Strong positive P response’ group, tree growth reacts 228 

strongly and positively to higher P and lower Tmax throughout the dry season, with a 229 

response peak in the mid-dry season (Fig. 2a). At the semi-arid, high-elevation sites in this 230 

group, the mid-dry season occurs in winter, when P primarily falls as snow and becomes 231 

gradually available as moisture during spring when trees resume growth.  232 

Trees in the ‘Positive P response’ and ‘Weak positive P response’ groups typically 233 

grow at lower elevation, at sites with low to medium water availability (Extended Data Table 234 

2). In both groups, P response peaks in the late dry season, but the timing and shape of the 235 

peaks differ between groups. Finally, the ‘Weak negative P response’ group occurs at sites 236 

with relatively high water availability and is the only group with consistently negative P and 237 

positive Tmax responses, that are somewhat stronger in the wet season compared to the dry 238 

season.  239 

The two groups with the strongest positive P responses differ from each other not 240 

only in mean hydroclimatic conditions, but also in the amplitude of interannual P variation 241 

(Fig. 2c). Both annual and dry-season P variability are stronger for the ‘Strong positive P 242 

response’ group compared to the ‘Positive P response’ group, indicating that the strongest 243 
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climate responses can be found at dry sites with high P variability. In contrast, the two 244 

groups with the weakest climate responses show no significant differences in P variability, 245 

but differ in their P seasonality (Fig. 2d). Sites with a weakly positive P response have lower P 246 

seasonality and higher monthly dry-season P than sites with a weakly negative P response.  247 

Climate response groups also differed in associations with El Niño Southern 248 

Oscillation (ENSO) cycle, a major driver of tropical forest productivity8. During El Niño years 249 

tree growth in the ‘Strong positive P response’ group is clearly stimulated, but associations 250 

are lacking or weak in the other groups (Extended Data Table 2). 251 

The typical climate responses of these four groups are conserved in cross-validation 252 

tests in which a random portion (10%) or the overrepresented colder sites (MAT <10°C) were 253 

removed (Extended Data Fig. 2a-b). Validation tests in which poorly represented climates 254 

(MAP >2000 mm) and regions (Africa, Indonesia & Australia) were removed yielded high 255 

levels of correct assignments to climate response groups (Extended Data Fig. 2c-e). Region-256 

specific cluster analyses (North America, High-mountain Asia, and South America) show 257 

consistent climate responses with the pantropical analysis (Extended Data Fig. 3; Extended 258 

Data Table 3). Thus, the climate response groups identified here are overall robust, 259 

unaffected by climatic over-/under-representation and also manifest themselves at the 260 

regional scale.  261 

 262 

Seasonal climate responses vary with hydroclimate 263 

To evaluate the climatic drivers of tropical tree growth at the seasonal level, we constructed 264 

multiple regression models for all individual chronologies. In 75% of these 347 regressions, 265 
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we found at least one significant effect of seasonal P or Tmax. The regression coefficients 266 

reveal that effects of P and Tmax on tree growth are equally large but mostly have opposite 267 

signs (P: positive; Tmax: negative; Fig. 3a-b), in agreement with hypothesis 1.  268 

Dry-season conditions were a stronger driver than wet-season conditions as 269 

indicated by a higher number of significant coefficients (262 dry-season vs. 176 wet-season 270 

coefficients, dry/wet ratio of coefficients = 1.5), larger absolute coefficient values (Fig. 3c), 271 

and higher relative importance values (Fig. 3d) for the dry season. Higher proportions of 272 

significant dry-season coefficients were found for all three positive P effects groups (dry/wet 273 

ratio ranging from 1.4-3.0). To examine the possible effect of rainfall timing during the late 274 

dry season, we ran regression models that included P and Tmax during the last two months. 275 

While late dry season climate was often significant in these models, the absolute value of 276 

coefficients and their importance values were smaller than those of the full dry season 277 

(Extended Data Fig. 4). Together, these results contrast our expectation that tree growth is 278 

mostly driven by wet-season climate (hypothesis 2).  279 

Hydroclimatic conditions likely modify these seasonal climate responses. We 280 

therefore performed weighted rank correlations between regression coefficients and 281 

climatic variables. These correlations show that the predominantly negative effect of dry-282 

season Tmax on tree growth is stronger at sites that are hotter, more arid, or experience a 283 

higher P variability (Fig. 3e-g, Extended Data Fig. 5), supporting hypothesis 3. In addition, we 284 

also find that positive dry-season P effects are stronger at drier sites (Fig. 3e). A notable 285 

exception to this general picture is the weaker positive dry-season P response at the 286 

warmest sites (Fig. 3g), which may be caused by stronger evapotranspiration demand, 287 

limiting the positive effects of a wetter dry season. The results of the unweighted correlation 288 
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analyses were similar to the weighted analyses for all tested climate variables except for 289 

MAT (Extended Data Table 4). Thus, overall, dry-season climate responses are stronger 290 

where water supply is low and evapotranspiration demand is high. 291 

 292 

A dominant role for dry-season climate variability 293 

Combined, our regression and cluster analyses show that tropical tree growth variability 294 

responds primarily to dry-season climate variation and that this response is amplified in 295 

regions that are drier, hotter, and experience stronger interannual climate variation. The 296 

pantropical and multi-decadal scale of our study provides a context to short-term or regional 297 

field studies that reported stronger drought-induced growth reduction at more arid 298 

sites20,26,27 (consistent with our tests of hypothesis 3) or absence of such responses28,29 299 

(consistent with the ‘Weak negative P response’ group). The variability of climate responses 300 

revealed by our study calls for caution in scaling up results of local or short-term studies26,28.  301 

Our finding of opposite and additive effects of P and Tmax suggests a dominant role of 302 

tree water balance (i.e., uptake from precipitation minus loss by transpiration) in driving 303 

tropical tree growth. This is further supported by increased strength of P and Tmax effects at 304 

more arid sites. The importance of tree water balance can be understood from the basic 305 

biology of xylem cell formation and enlargement30 and their strong dependence on xylem 306 

turgor pressure31. Xylem growth is promoted by high soil water availability, but diminished 307 

by Tmax-induced increase in vapour pressure deficit (VPD) and transpiration26. Alternative 308 

mechanisms explaining the negative temperature effects on growth include Tmax-induced 309 

reduction in photosynthesis and increase in respiration14, but their contribution is likely 310 

small because Tmax at our sites only rarely exceeds the thermal optimum for photosynthesis 311 
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(Supplementary Fig. 1) and because negative Tmax effects occur across a wide range of MAT 312 

values (Fig. 3g).  313 

We find that interannual variability in tropical tree growth is mostly explained by 314 

climatic variation during the dry season. This result contradicts our second hypothesis that at 315 

water-limited sites, wet-season climate drives annual tree growth and hence its interannual 316 

variability. How can the climate response of tree growth peak during the dry season, when 317 

the bulk of productivity of tropical trees growing in water-limited sites takes place during the 318 

wet season20,26,32-35? We hypothesize that dry-season climate is more important than wet-319 

season climate because it is more variable (dry-season P variability = 30.9; wet-season P 320 

variability = 16.5, averaged across network) and because drier months within the dry season 321 

lead to direct reduction in tree available water, while the effect of such months during the 322 

wet season are likely buffered by soil water reserves19. We further hypothesize that climate 323 

conditions during the dry season constrain the magnitude of tree growth taking place during 324 

the following wet season, because climatologically benign dry seasons advance leaf flushing 325 

and xylem growth20,26, thus extending the growing season. Detailed field studies are needed 326 

to quantify the physiological and phenological processes responsible for the observed strong 327 

dry-season effects and to improve their representation in process-based global vegetation 328 

models36,37.  329 

In addition to mean water availability as a first-order driver, climate responses of 330 

tropical tree growth are also modulated by the variability and seasonality in water 331 

availability. The effect of interannual variability in precipitation on the climate response of 332 

tree growth (Fig. 2c) is consistent with the larger contribution of arid regions to the 333 

interannual variation of the global carbon land sink1,3. Yet, the modifying role of P 334 
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seasonality on climate responses of tropical tree growth is poorly understood. The stronger 335 

P seasonality in the ‘Weak negative P response’ group (Fig. 2d) may occur if very low 336 

moisture availability during the dry season hampers photosynthesis and xylem growth, but 337 

also if root access to (deep) soil water during the dry season causes stem growth to be 338 

effectively insensitive to dry-season precipitation38.  339 

The positive Tmax effects and negative P effects on tree growth in the ‘Weak negative 340 

P response’ group (Fig. 2a) are likely explained by two distinct mechanisms. At high-elevation 341 

sites (>3000 m a.s.l., 40% of the group), low growing season temperature may override 342 

water availability as the primary constraint of tree growth39, while at low elevation sites 343 

(<1500 m a.s.l., 25%), negative P responses may reflect radiation limitation of 344 

photosynthesis19,20. Yet, the minimum MAP (2000 mm) at which radiation limitation is 345 

thought to occur19,20, is not reached by 83% of the low-elevation sites in this group, 346 

suggesting that local soil and terrain conditions may alter this generic climatic threshold19.  347 

 348 

Aggravated drought responses under climate change 349 

What shifts in interannual variability of tropical tree growth can be expected under 350 

anthropogenic climate change? Global Circulation Models predict an average 0.5-0.7°C 351 

warming per decade until 2100 for our sites (Extended Data Table 5), likely resulting in 352 

stronger water deficits for most of the sites. Drawing from the climatic variation in our 353 

network and the shifts in climate responses with MAT, CWD, and P variability, we expect 354 

continued climate change and increased P variability40 to aggravate negative effects of 355 

hotter dry seasons and drier wet seasons on (regional) tree growth (Fig. 3e-g, Extended Data 356 

Fig. 5). This stronger sensitivity may elevate tree mortality41,42, reduce tree longevity43 and 357 
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increase the frequency of years that tropical vegetation flips from being a net carbon sink to 358 

a net source8,15,16.  359 

The climate responses of tropical tree growth revealed here, may aid the 360 

interpretation of interannual variability in the tropical land sink3,6,10 as they provide field-361 

based and region-specific insights into the climatic drivers of an important component of 362 

tropical vegetation productivity.  363 
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Figure captions 413 

Figure 1 | Distribution and climatic representativeness of tropical tree-ring network. a, 414 

Geographic distribution of tropical tree-ring chronologies (n = 347) on a tree cover map. b, 415 

Climatic representativeness of the network can be assessed based on distributions of 416 

chronologies (black) and tropical land area with woody vegetation (green). Density values 417 

are scaled from 0-1, with 1 indicating a condition that is most represented in the network 418 

(black) or occupies most land area (green).  Climatic overrepresentation 419 

(underrepresentation) of network occurs when black lines are above (below) green lines. 420 

CWD: annual cumulative water deficit, MAP: mean annual precipitation, MAT: mean annual 421 

temperature, P seasonality: seasonality in precipitation, P variability: interannual variation in 422 

precipitation. c, Geographic distribution of four groups of tropical tree growth responses to 423 

climatic variation (n = 43, 69, 115, and 120 chronologies, respectively). Maps are coloured by 424 

water deficit (CWD) for pixels with woody vegetation falling within group-specific climate 425 
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envelops (MAT vs MAP) or are grey for woody vegetation pixels outside envelops. Groups 426 

are representative of 4, 48, 67, and 46% of woody vegetated tropical land area, respectively.  427 

 428 

Figure 2 | Four climate response groups of tropical trees and their hydroclimatic 429 

differences. a, Relationships between ring-width index (RWI) and interannual variation in 430 

monthly Tmax (red) or P (blue) of four climate response groups. Shown are Pearson r 431 

correlation coefficients (mean and 95% confidence intervals) for a 24-month period that 432 

covers the year of ring formation (‘current’) and that prior to ring formation (‘previous’). 433 

Grey shading indicates wet-season timing. b, Distribution of mean water availability metrics 434 

that distinguish the first two from the last two groups. c, Distribution of climate variability 435 

metrics that distinguish the strongly positive from the positive P response group (P/DSP 436 

variability: interannual variability in annual/dry-season precipitation). d, Distribution of 437 

climate seasonality that distinguish the weakly positive from the negative P response group 438 

(DSP: dry season precipitation). Different letters denote significant differences between 439 

climate response groups (Wilcoxon rank sum test; p<0.05; Extended Data Table 2). Horizonal 440 

lines represent medians.  441 

Figure 3 | Seasonal climate responses of tropical tree growth and their relation to 442 

hydroclimate. a-b, Distributions of significant regression coefficients for seasonal Tmax (red) 443 

and P (blue) in multiple regression models of ring-width index (RWI). Letters denote 444 

differences between groups (Wilcoxon rank test, p<0.05, n = 438 coefficients; dry season: n = 445 

262; wet season: n = 176). Horizonal lines represent medians. c-d, As panels a-b but for 446 

relative importance (models with >1 coefficient, n = 322 coefficients). e-g, Association of 447 

regression coefficients for dry-season P (blue, n = 130) and Tmax (red, n = 132) with site 448 
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hydroclimate conditions. Symbol size is proportional to site hydroclimate representativeness 449 

(density values, Fig. 1b). Significant associations are indicated (weighted Spearman rank 450 

correlation; **: p <0.01; ***: p <0.001; Extended Data Table 3) and lines are shown for 451 

illustration only. All hydroclimatic variables are ordered from arid (left) to humid (right). 452 
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Methods 556 

Tree-ring network. We established our tropical tree-ring network by compiling published 557 

ring-width chronologies from naturally regenerating tree populations in tropical and 558 

subtropical vegetation (30°N to 30°S; excluding mangroves and flooded forests). For this 559 

purpose, we compiled raw ring-width data from the International Tree-Ring Data Bank 560 

(ITRDB, https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring; 561 

241 chronologies). To increase representation of wetter tropical regions44,45, we 562 

complemented this data set with 174 chronologies derived from published tree-ring studies 563 

(mainly low-latitude sites; Extended Data Fig. 1).  564 

Chronology selection. From the initial 415 chronologies, we selected those with a minimum 565 

length of 50 years, based on at least 5 trees, and ending after 1975. The 1975 cutoff date is a 566 

compromise between the low quality of early-20th century gridded climate data and the 567 

sharp recent decline in tree-ring data46. In addition, we selected chronologies with a mean 568 

inter-series correlation (Rbar) greater than 0.3 (see next Section) over the 50-year period. 569 

Low or non-significant Rbar-values may indicate poor dating quality, a lack of common 570 

environmental drivers of growth47,48, or both, and are expected in wetter climates. By 571 

introducing an Rbar threshold, which removed 9% of chronologies, we sought a compromise 572 

between ensuring chronology quality and being overly selective towards highly climate-573 

sensitive chronologies.  574 

Our selection procedure removed 68 chronologies (6 ITRDB and 62 contributed). The 575 

resulting network includes 347 chronologies (235 from ITRDB, 112 from contributors) and is 576 

based on 7751 trees and 14,032 series from 99 species (56 genera, 24 families; metadata in 577 

https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
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Supplementary Data 1). Species are represented by 1-49 chronologies (average = 3.4) and by 578 

an average of 21.5 trees.  579 

The selected chronologies were originally developed for various purposes, including climate 580 

reconstructions, ecological studies, and timber yield evaluations. Dendroclimatic 581 

reconstructions are usually conducted in marginal habitats in arid and high montane 582 

regions49, which may introduce a ‘macro-site selection bias’ in tree-ring networks. Such bias 583 

can be strong, for instance in the arid Southwest of the United States50, but were not found 584 

to exist when ITRDB chronologies were compared to independent reference networks (Fig. 585 

S7 in Ref 51; Fig. 3 in Ref 52). We accommodated possible ‘macro-site selection bias’ in our 586 

network by calculating and accounting for the climatic representativeness of sites (see 587 

‘Network representativeness’)50.   588 

Chronology building and quality control. To ascertain homogeneous data treatment across 589 

trees and sites, we applied the same detrending method to all individual raw ring-width 590 

series to develop tree-ring chronologies, rather than using the published chronologies. We 591 

tested various detrending methods that account for ontogeny, remove low-frequency 592 

variation, and retain the high-frequency (annual) variation we study here. We selected a 593 

flexible spline detrending with a 50% frequency cut-off at 30 years to emphasize the 594 

interannual variation in ring width. We developed mean chronologies of ring-width index 595 

(RWI) from the detrended series using a bi-weight robust mean and the most recent 50 596 

years of each chronology were selected for analysis. We ensured that dating of all tree-ring 597 

series from the Southern Hemisphere followed the Schulman convention53, such that the 598 

calendar year assigned to the ring is that during which ring formation started. An exception 599 

was made for the Southern Hemisphere chronologies in the Brazilian Caatinga biome, where 600 
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the growth season occurs between March and July54 and thus coincides with the Northern 601 

Hemisphere’s growth season, making the Shulman shift redundant. Detrending and 602 

chronology building was conducted in R (Ref 55) using the dplR package56. 603 

Woody vegetation and elevation data. To relate climate responses to tree cover, we 604 

obtained MODIS-derived tree-cover percentages for all sites (‘Percent_Tree_Cover’, 605 

MOD44B, version 6; https://lpdaac.usgs.gov/products/mod44bv006/). We also used this 606 

data product to mask out areas with <10% tree cover of tropical land area.  607 

 608 

Climate data. We used three types of gridded climate data. We used Worldclim version 2 609 

(worldclim.org)57 to obtain 30-year (1970-2000) mean annual and monthly climate 610 

conditions at 1-km spatial resolution. This yielded data on mean monthly precipitation (P), 611 

total dry-season precipitation (DSP, in mm), total wet-season precipitation (WSP, in mm), 612 

mean annual precipitation (MAP, in mm), mean annual temperature (MAT, in °C), and 613 

seasonality in precipitation (P seasonality, unitless; this is the coefficient of variation of 614 

monthly P57). In addition, we calculated the monthly climatic water balance (CWB) as the 615 

difference between monthly precipitation and potential evapotranspiration (P-PET). PET was 616 

estimated from monthly Worldclim climate parameters using the Penman-Monteith 617 

equation implemented in the SPEI package in R (Ref 58). From these data we derived per 618 

site: annual climatic water deficit (CWD, in mm; always negative) as the sum of all negative 619 

monthly CWBs, annual CWB (in mm) as the sum of all monthly CWBs, and maximum monthly 620 

water deficit (MMWD, in mm) as the lowest (i.e., most negative) value of monthly CWBs. 621 

This set of variables was used to characterize climatic site conditions for all chronologies.  622 

We further used Worldclim to obtain CMIP6 downscaled future climate projections for 623 

periods 2041-2060 and 2061-2080 (compared to 1970-2000) for all sites. We used two 624 

https://lpdaac.usgs.gov/products/mod44bv006/
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Shared Socio-economic Pathways (SSPs): 370 and 585, and 9 Global Circulation Models 625 

(GCMs) of which we calculated an ensemble (arithmetic) mean across sites and GCMs.  626 

Third, we used CRU TS4.02 (Ref 59) climate data to conduct climate-growth analyses based 627 

on monthly time series at a coarser spatial resolution (0.5°) for the most recent 50 years of 628 

each chronology in our network. Such broader resolution gridded data do not optimally 629 

capture elevational climate gradients, but they provide the homogeneity and long time 630 

series needed to establish climate-growth relations in our cluster and regression analyses. All 631 

climate-growth analyses were conducted for Tmax (daily maximum temperature, averaged 632 

per month or season) and P (precipitation, sum per month or season). We chose to use Tmax 633 

as it is related to atmospheric drought (Vapour Pressure Deficit, VPD) and thus to the tree 634 

water balance, which we hypothesized to be an important driver of tropical tree growth. 635 

CRU data were also used to obtain a metric of interannual variation in P (P variability) for all 636 

sites and for all tropical land with woody vegetation. P variability was calculated as the 637 

coefficient of variation of the P time series over the 50 years covered by the tree-ring 638 

chronologies.  639 

Season definitions. The multiple regression models (see below) were constructed for 640 

seasonal (wet and dry season) P and Tmax. We tested various season definitions based on P 641 

and CWB: seasons based on a monthly P cut-off of 50 and 100 mm45 and based on CWB 642 

calculated using the Thornthwaite and the Penman-Monteith equations. Seasonal 643 

boundaries were very similar for 100 mm P, and CWB (Penman-Monteith) definitions and we 644 

thus selected the 100 mm cut-off definition for its simplicity and because variables such as 645 

wind speed required for CWB are associated with large uncertainties in gridded data. The 646 

dry season was thus defined as all months with less than 100 mm precipitation preceding 647 

the wet season of the year of ring formation. 648 
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 649 

Frequency of hot months. To estimate to which extent Tmax may limit tree growth through 650 

decreased photosynthesis, we calculated per site the percentage of months during which 651 

Tmax exceeded 30°C, when leaves in sun-exposed crowns can reach temperatures >32°C and 652 

reduce photosynthesis60,61. If a large proportion of sites frequently experiences such high 653 

Tmax values, this suggests an important role of temperature-driven photosynthetic limitation 654 

in tropical tree growth. If that proportion is small, it suggests that negative effects of Tmax on 655 

tropical tree growth are mainly resulting from increased transpiration.  656 

 657 

Network representativeness. We evaluated the climatic representativeness of our network 658 

in two ways. First, we used Worldclim average climate data for all sites to define the climate 659 

space of our network and the four climate response groups (see below under ‘Cluster 660 

analysis’), using a convex hull that encompasses 99% of the network’s MAP and MAT range 661 

(i.e., to minimize edge effects). Grid cells with MAP-MAT combinations outside this contour 662 

shape are not represented by our network and masked from CWD maps (Fig. 1c). Climatic 663 

representativeness was estimated by calculating the percentage of pixels of tropical land 664 

area with >10% woody vegetation (49,870,418 km2) within the convex hull.  665 

Second, we quantified the representativeness of our network for tropical vegetation by 666 

comparing the probability density distributions of geographic and climatic variables (CWD, 667 

MAP, P seasonality, P variability, MAT) across our sites with those of all tropical land area 668 

that supports woody vegetation (>10% tree cover). We scaled both sets of distributions (i.e., 669 

sites and land area) by dividing them by their maximum values. Thus, a scaled value of 0 670 

implies that the corresponding climatic condition is not represented by sites or tropical land 671 

area; a value of 1 implies that the climatic condition has the highest representation of sites 672 
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or land area. When the scaled distributions of the network (black lines in Fig. 1b) and tropical 673 

land area (green lines) are similar, overall representativeness is good (e.g., MAT, P variability; 674 

Fig. 1b); if they are dissimilar, overall representativeness is limited (e.g., MAT). For each 675 

climatic variable, a higher value of the network compared to the tropical land area indicates 676 

overrepresentation in the network, while the reverse indicates underrepresentation. We use 677 

the scaled distributions of land area for weighted correlations in our analysis of shifts in 678 

climate responses along climatic gradients (see below under ‘Climate responses vs. climatic 679 

conditions’). In two-dimensional space (Fig. 1b), distributions were calculated using bivariate 680 

kernel density estimation (GenKern package62). 681 

 682 

Cluster analysis. Seasonal climate-growth analyses can miss subtle, idiosyncratic responses 683 

of tree species to climatic conditions during specific months or with a lag period. To 684 

accommodate such responses, we conducted monthly climate-growth analyses (simple 685 

Pearson correlations) for a 24-month period (full year of ring formation, plus full previous 686 

year) and used these as a basis for clustering. For Northern Hemisphere sites, the 24-month 687 

period starts in January of the year prior to ring formation and ends in December of the year 688 

of ring formation. For Southern Hemisphere sites, this period is lagged by 6 months (running 689 

from July-1 to June). We identified distinct groups of sites with a coherent climate response 690 

using self-organizing maps (SOMs63). SOMs are an artificial neural network-based method of 691 

dimension reduction that assigns observations (chronologies) to a set of clusters (or 692 

“nodes”) based on Euclidian distance. In an iterative process, the optimal node assignment is 693 

determined in an unsupervised manner to best represent the dataset’s variance. Nodes are 694 

then arranged in a grid of definable size and shape: closer nodes in this grid are more similar, 695 

distant nodes are dissimilar. This feature greatly facilitates the visualization and 696 
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interpretation of nodes, as has previously been shown in regional and continental-scale tree-697 

ring studies64,65. 698 

We calculated SOMs based on the monthly climate correlations. The algorithm was 699 

presented with 24 Tmax correlations and 24 P correlations per site, but no other information 700 

(e.g., site location or climate). We tested square SOM-grids of increasing size (2x2, 3x3, etc.) 701 

to visualize increasingly nuanced differences in climate response between the nodes. Then, 702 

we calculated bootstrapped means (1000 replicates) and 95% confidence intervals of the 703 

climate correlations from all sites (Fig. 2a) or that of geographic sub-regions (Extended Data 704 

Fig. 4) that were assigned to a given node. We present the results based on the 2x2 SOM-705 

grid (i.e., four climate response groups). Further subdivision did not result in additional 706 

modes of climate response, but merely in minimally differing variants of the four main 707 

groups. While SOM clustering uses all subtleties of site-specific responses of RWI to monthly 708 

climate conditions, the resulting climate responses are an average across all sites within a 709 

cluster and may therefore differ from site-specific correlation patterns. Despite this possible 710 

discrepancy, SOM clustering optimizes the representation of idiosyncratic and subtle climate 711 

responses of tree growth.  712 

One challenge associated with SOMs is that their initiation is random, which leads to minor 713 

differences in site assignments. To overcome this challenge, we stabilized the grouping 714 

iteratively in 10,000 consecutive SOM runs. In each run, the codebook vectors (representing 715 

the mean climate correlations within a node) were reassigned to an existing node with the 716 

most similar codebook vector based on all prior runs. This codebook vector was then 717 

updated with the new vector. For the final site assignment, we considered only the last 1000 718 

runs, when the codebook vectors did not change much anymore. The percentage of those 719 

runs when a site was assigned to a given node (e.g., site X was assigned to Node1 in 900 out 720 
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of 1000 runs = 90%) was used as a quality measure for the clustering. Percentage 721 

assignments were high: 93 ±10% (mean ± 1 SD) across the entire network and ranging from 722 

85-97% (means) per cluster. These analyses were performed using the kohonen66 and boot67 723 

packages in R.  724 

To compare climate and geographic characteristics of the four climate response groups, we 725 

performed non-parametric analyses of variance (Kruskal-Wallis rank sum test) followed by a 726 

Wilcoxon rank sum post-hoc test.  727 

 728 

Validation tests of cluster analysis results. To evaluate the robustness of our cluster results 729 

regarding the over- and under-representation of climatic conditions and regions, we 730 

performed four sets of validation tests. In these ‘leave-several-out-cross-validation’ tests we 731 

removed a number of chronologies from the network: (1) a random subset to test overall 732 

robustness (10%, repeated 10 times); (2) all ‘cold’ sites (<10°C MAT) to test whether 733 

clustering is strongly driven by high-elevation sites that are overrepresented in our network; 734 

(3) all ‘wet’ sites (>2000 mm MAP), and (4) all sites in underrepresented regions (Africa, 735 

Indonesia & Australia), both with the goal to verify whether low representation of climates 736 

or regions affects the assignment of chronologies to climate response groups. After 737 

removing the sites, we reconducted the cluster analyses (as described above in ‘Cluster 738 

analysis’ ) for the remaining chronologies. Each of the removed sites was then ‘assigned’ to 739 

one of the four clusters by calculating monthly climate growth correlations with all four 740 

clusters and assigning it to the cluster with most similar climate correlation patterns (i.e., 741 

smallest average difference in monthly correlations). We then calculated the percentage of 742 

correct assignments (i.e., to the same cluster as in the original clustering approach) and 743 

compared monthly climate correlation patterns (Extended Data Fig. 2) with those of the 744 
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main analysis (Fig. 2a). Clustering results were considered robust if correlation patterns 745 

remain similar and the percentage of correct assignments is high.  746 

 747 

Evaluating sensitivity of climate responses to quality of gridded climate data. To evaluate 748 

possible biases introduced by spatially varying quality of gridded climate data, we performed 749 

two analyses using distance of sites to the nearest meteorological station (from 750 

climexp.knmi.nl) as a proxy for the quality of gridded data. For the majority of sites, proximal 751 

meteorological stations exist: distances between sites and stations ranged from 0-243 km 752 

(median: 63 km) and were > 100 km for 93 sites (27%). Analysis 1: we evaluated associations 753 

between the seasonal climate response and the distance to nearest station. Because climate 754 

responses are driven by mean climate, we performed this analysis within two-way climate 755 

bins of MAP (300 mm wide) and MAT (3°C wide). Within each climate bin that contained at 756 

least 10 sites, we associated the climate response (i.e., the p-value of the Pearson 757 

correlation of RWI with P or Tmax during dry or wet season) with distance to nearest 758 

meteorological station, using Spearman rank correlation. Positive Spearman correlations 759 

indicate that correlation strength is higher when meteorological station density is higher 760 

(Extended Data Table 1a). Analysis 2: to verify the extent to which climate responses in our 761 

four clusters are modulated by the density of meteorological stations, we used t-tests to find 762 

differences in correlation coefficients of RWI and monthly climate (P and Tmax) between sites 763 

located <100 km and >100 km from meteorological stations. We conducted tests for the two 764 

climate response groups with a sufficiently large number (n >10) of sites at >100 km from 765 

meteorological stations and for the 24-month period used in our clustering analysis 766 

(Extended Data Table 1b).  767 

 768 

https://climexp.knmi.nl/
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Multiple regression analysis. For each chronology we ran a multiple regression model to 769 

evaluate additive effects on RWI of interannual variability in seasonal Tmax and P, which 770 

typically co-vary. This approach allows for controlling for one variable while testing the effect 771 

of another and yields additive effects in case multiple variables are included. To prevent 772 

model overfitting, we limited the number of explanatory variables (summed P and average 773 

Tmax) and conducted seasonal (rather than monthly) analyses. The maximum number of 774 

climate variables in the models is thus 4, for a fixed chronology length of 50 years. We used 775 

the leaps algorithm for model selection, an all-subset model comparison68 that is more 776 

robust than stepwise methods. We scaled climate variables: their effects on tree growth are 777 

therefore directly comparable and unaffected by season length. We checked for collinearity 778 

between P and Tmax and found significant, mostly negative, associations in 73% (wet) and 779 

59% (dry) of cases. We therefore checked Variance Inflation Factors (VIFs) in all models and 780 

found these to be lower than 2.2. To compare the relative strength of P and Tmax effects on 781 

tree growth, we calculated relative importance values of significant climate variables. These 782 

are reported only for models with >1 significant coefficient.  783 

To examine whether dry-season effects were mostly driven by P over the entire dry season 784 

or in the transitional months from dry to wet season (the ‘Late dry season’), we also ran all 785 

regression models with two additional climate variables: summed P and average Tmax over 786 

the two last months of the dry season, and then compared number of significant 787 

coefficients, absolute coefficient values, and relative importance values of full vs. late dry 788 

season (Extended Data Fig. 4). Analyses were conducted in R using packages leaps69, 789 

bestglm70 and relaimpo71. 790 

 791 
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Climate responses vs. climatic conditions. To evaluate whether seasonal climate responses 792 

of tree growth are associated with site hydroclimate, we correlated significant regression 793 

coefficients with site climatic conditions: CWD, MAP, MAT, P variability, and P seasonality. 794 

We performed ordinary as well as weighted Spearman rank correlations, to account for 795 

climate representativeness of sites. We weighted data points by the relative density of 796 

tropical land area with woody vegetation for each climate variable (i.e., the green lines in 797 

Fig. 1b; see section ‘Analyses of network representativeness’). Thus, low-MAT sites 798 

(overrepresented in network) received a lower weight than high-MAT sites. Analyses were 799 

conducted in R using package expss72. 800 

 801 

 802 

Data availability 803 

The 50-year mean RWI time series of all 347 chronologies used in this study will be made 804 

available through Data Dryad (DOI: to be included upon publication). All relevant meta-data 805 

of these chronologies are included in Supplementary Data File S1. Raw tree-ring width data 806 

of 98 out of the 112 contributed chronologies used in the analyses will be uploaded to the 807 

International Tree-Ring Data Bank (ITRDB, https://www.ncdc.noaa.gov/data-808 

access/paleoclimatology-data/datasets/tree-ring).  809 

 810 

Code availability 811 

R-code used for chronology construction and statistical analyses will be made available upon 812 

request.    813 

https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring


36 
 

References 814 

44 Zhao, S. et al. The International Tree-Ring Data Bank (ITRDB) revisited: Data availability and global 815 
ecological representativity. Journal of Biogeography 46, 355-368, doi:10.1111/jbi.13488 (2019). 816 

45 Brienen, R. J., Schöngart, J. & Zuidema, P. A. in Tropical Tree Physiology     439-461 (Springer 817 
International Publishing, 2016). 818 

46 Babst, F., Poulter, B., Bodesheim, P., Mahecha, M. D. & Frank, D. C. Improved tree-ring archives will 819 
support earth-system science. Nature Ecology & Evolution 1, 0008, doi:10.1038/s41559-016-0008 820 
(2017). 821 

47 Fichtler, E., Clark, D. A. & Worbes, M. Age and Long-term Growth of Trees in an Old-growth Tropical 822 
Rain Forest, Based on Analyses of Tree Rings and 14C. Biotropica 35, 306-317 (2003). 823 

48 Groenendijk, P., Sass-Klaassen, U., Bongers, F. & Zuidema, P. A. Potential of tree-ring analysis in a 824 
wet tropical forest: A case study on 22 commercial tree species in Central Africa. For. Ecol. Manage. 825 
323, 65-78 (2014). 826 

49 Fritts, H. Tree rings and climate.  (Elsevier, 2012). 827 
50 Klesse, S. et al. Sampling bias overestimates climate change impacts on forest growth in the 828 

southwestern United States. Nat. Commun. 9, 5336, doi:10.1038/s41467-018-07800-y (2018). 829 
51 Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Science 830 

Advances 5, eaat4313, doi:10.1126/sciadv.aat4313 (2019). 831 
52 Klesse, S. et al. A Combined Tree Ring and Vegetation Model Assessment of European Forest Growth 832 

Sensitivity to Interannual Climate Variability. Global Biogeochemical Cycles 32, 1226-1240, 833 
doi:10.1029/2017GB005856 (2018). 834 

53 Schulman, E. Dendroclimatic changes in semiarid America.  (University of Arizona Press, 1956). 835 
54 Aragão, J. R. V., Groenendijk, P. & Lisi, C. S. Dendrochronological potential of four neotropical dry-836 

forest tree species: Climate-growth correlations in northeast Brazil. Dendrochronologia 53, 5-16, 837 
doi:10.1016/j.dendro.2018.10.011 (2019). 838 

55 R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical 839 
Computing, Vienna, Austria., 2019). 840 

56 Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115-124, 841 
doi:https://doi.org/10.1016/j.dendro.2008.01.002 (2008). 842 

57 Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land 843 
areas. International Journal of Climatology 37, 4302-4315, doi:10.1002/joc.5086 (2017). 844 

58 Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to 845 
global warming: the Standardized Precipitation Evapotranspiration Index. Journal of Climate 23, 1696-846 
1718, doi:10.1175/2009jcli2909.1 (2010). 847 

59 Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic 848 
observations – the CRU TS3.10 Dataset. International Journal of Climatology 34, 623-642, 849 
doi:10.1002/joc.3711 (2014). 850 

60 Pau, S., Detto, M., Kim, Y. & Still, C. J. Tropical forest temperature thresholds for gross primary 851 
productivity. Ecosphere 9, e02311, doi:10.1002/ecs2.2311 (2018). 852 

61 Mau, A., Reed, S., Wood, T. & Cavaleri, M. Temperate and tropical forest canopies are already 853 
functioning beyond their thermal thresholds for photosynthesis. Forests 9, 47 (2018). 854 

62 Lucy, D., Aykroyd, R. G. & Pollard, A. M. Nonparametric calibration for age estimation. Journal of the 855 
Royal Statistical Society: Series C (Applied Statistics) 51, 183-196, doi:10.1111/1467-9876.00262 856 
(2002). 857 

63 Hewitson, B. & Crane, R. G. Self-organizing maps: applications to synoptic climatology. Climate 858 
Research 22, 13-26 (2002). 859 

64 Babst, F. et al. Site- and species-specific responses of forest growth to climate across the European 860 
continent. Global Ecology and Biogeography 22, 706-717, doi:10.1111/geb.12023 (2013). 861 

65 Martin-Benito, D. & Pederson, N. Convergence in drought stress, but a divergence of climatic drivers 862 
across a latitudinal gradient in a temperate broadleaf forest. Journal of Biogeography 42, 925-937, 863 
doi:10.1111/jbi.12462 (2015). 864 

66 Wehrens, R. & Buydens, L. M. Self-and super-organizing maps in R: the Kohonen package. 865 
67 Canty, A. & Ripley, B. D. boot: Bootstrap R (S-Plus) Functions. R package version 1.3-26. (2021). 866 
68 Furnival, G. M. & Wilson, R. W. Regressions by Leaps and Bounds. Technometrics 16, 499-511, 867 

doi:10.2307/1267601 (1974). 868 
69 Lumley, T. leaps: Regression Subset Selection. R package v. 3.1 (2019). 869 
70 McLeod, A. I., Xu, C. & Lai, Y. bestglm: Best Subset GLM and Regression Utilities. R package 0.37.3 870 

(2020). 871 
71 Groemping, U. Relative Importance for Linear Regression in R: The Package relaimpo. Journal of 872 

Statistical Software  17, 27, doi:10.18637/jss.v017.i01 (2006). 873 
72 Demin, G. & Jeworutzki, S. expss: Tables, Labels and Some Useful Functions from Spreadsheets and 874 

'SPSS' Statistics. R package 0.10.7 v. 0.10.7 (2020). 875 
73 Whittaker, R. H. Primary productivity of the biosphere., Vol. 14 339 (Springer‐Verlag, , 1975). 876 
74 Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci 877 

Data 5, 180214-180214, doi:10.1038/sdata.2018.214 (2018). 878 

 879 



37 
 

 880 

 881 

  882 



38 
 

Extended Data Table 1 | Climate responses are robust to among-site variation in quality of 883 

gridded climate data.  a, Results of Spearman rank correlations between p-values of 884 

seasonal climate responses (Pearson correlations of RWI vs. seasonal P and Tmax) and 885 

distance to the nearest meteorological station (a quality proxy for gridded climate data). 886 

Rank correlations were conducted for MAP-MAT climate bins (bin size of 300mm MAP by 3°C 887 

MAT) that contained at least 10 sites. Only 15% of the correlations were significantly 888 

positive, suggesting a minor effect of data quality on the climate responses. b, Results of t-889 

tests that compare monthly climate responses (Pearson correlation coefficients of RWI vs. 890 

monthly P and Tmax) for sites close to (<100 km) or further away from (>100 km) a 891 

meteorological station. Tests were conducted for the 24-months period used in SOM-892 

clustering analysis, and for two climate response groups with >10 sites at >100 km from 893 

meteorological stations. Significantly stronger climate response for sites closer to 894 

meteorological stations were found in just 8% of the cases, and the reverse was found for a 895 

similar proportion (7%). Thus, climate growth responses were consistent for sites located 896 

close to or far away from meteorological stations.  897 

a. Result of Spearman’s rank correlation:  Dry-season:  Wet-season:  

 P Tmax P Tmax 

Non-significant (p≥0.05) 8 10 8 11 

Significantly negative (p<0.05) 0 0 0 0 

Significantly positive (p<0.05) 4 2 1 0 

Total number of tests (grand total = 46) 12 12 11 11 

b. Result of t-test:  ‘Weak positive P 
response’ group  

‘Weak negative P 
response’ group 

 P Tmax P Tmax 

Non-significant (p≥0.05) 19 20 20 21 
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Stronger correlation for sites closer to 
meteorological station (p<0.05) 

3 2 3 0 

Stronger correlation for sites further away 
from meteorological station (p<0.05) 

2 2 1 3 

Total number of tests (grand total = 96) 24 24 24 24 

 898 

  899 
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Extended Data Table 2 | Characteristics of four climate response groups. Shown are counts 900 

(for variables starting with ‘#’) and medians (all other variables) per climate response group. 901 

Different letters denote climate response groups with significantly different median values in 902 

a post-hoc test (Wilcoxon rank sum test; p<0.05; NS=not significant). Representativeness of 903 

geographic and climatic variables is shown as the mean of the scaled density of all sites in a 904 

climate response group for the climatic variable of interest. Rbar: mean inter-series 905 

correlation; MAT: mean annual temperature; MAP: mean annual precipitation; CWD: annual 906 

climatic water deficit; CWB: cumulative water balance; MMWD: maximum monthly water 907 

deficit; P seasonality: seasonality of monthly precipitation; P variability: inter annual 908 

variation in annual precipitation; DSP variability: inter annual variation in dry-season 909 

precipitation; P seasonality: precipitation seasonality; DSP: dry-season precipitation; WSP: 910 

wet-season precipitation; ENSO: El Niño Southern Oscillation.  911 

  Climate response group 

 

  Strong 

positive P 

response 

Positive P 

response 

Weak 

positive P 

response 

Weak 

negative P 

response 

Basic 

information  

#Chronologies 43 69 115 120 

#Countries 3 11 26 30 

% Woody vegetation 
area represented 

3.5 47.7 67.2 46.3 

Standard deviation 0.23 a 0.21 a 0.21 a 0.18 b 

1-yr autocorrelation -0.01 d 0.13 c 0.18 b 0.28 a 

Rbar 0.67 a 0.54 b 0.50 c 0.49 c 

Geography  Latitude (° N or S) 25.4 a 20.1 ab 14.6 b 26.8 a 

Elevation (m a.s.l.) 2314 a 1300 b 1238 b 2685 a 
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Mean 

climate 

MAT (°C) 11.8 c 20.1a 19.3a 16.1b 

MAP (mm) 803 b  999 a 1125 a 1094 a 

CWD (mm) -757 c -524 b -422 a -381 a 

CWB (mm) -728 c -241 b -244 b -74 a 

MMWD (mm) -127 d -114 c -90 b -75 a 

# Wet months 3 a 4 b 5 b 4 b 

Climate 

variability 

P variability (-) 20.9 a 16.2 b 14.6 b 13.2 c 

DSP variability (-) 40.7 a 31.7 b 27.4 c 30.5 c 

Climate 

seasonality 

P seasonality (-) 90.0 ab 83.0 bc 82.9 c 89.5 a 

Precipitation 
Concentration Index 
(PCI) 

14.7 ab 13.7 bc 13.7 c 14.8 a 

DSP (mm/month) 38.2 ab 34.9 ab 45.9 a 33.7 b 

DSP (mm/season) 347 a 263 c 323 b 254 c 

WSP (mm/month) 168 NS 163 NS 159 NS 175 NS 

WSP (mm/season) 515 b 744 a 786 a 815 a 

ENSO 

responses 

Pearson correlation with 
MEI (Multi-variate ENSO 
index) in current year 

0.37 a -0.12 c -0.002 c 0.08 b 

Species 

composition 

#Species 8 22 61 50 

#Genera 4 9 37 28 

#Plant families 2 5 16 14 

#Angiosperm species   1 5 34 26 

#Angiosperm 
chronologies 

1 22 55 40 

Representa-

tiveness 

Latitude 0.62 0.67 0.69 0.66 

Elevation 0.06 0.34 0.31 0.16 

MAT 0.06 0.36 0.30 0.19 

MAP 0.91 0.87 0.89 0.87 
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CWD 0.24 0.39 0.46 0.50 

P variability  0.41 0.66 0.71 0.77 

P seasonality 0.80 0.81 0.82 0.78 

  912 
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Extended Data Table 3 | Regional differences of climate response groups. Shown are 913 

counts (for variables starting with ‘#’) and medians (all other variables) per climate response 914 

group and for each of three well-represented regions. Different letters denote groups with 915 

significantly different median values in a post-hoc test (Wilcoxon rank sum test; p<0.05; 916 

NS=not significant). Only groups represented by >10 sites were tested. MAT: mean annual 917 

temperature; MAP: mean annual precipitation; CWD: annual climatic water deficit; P 918 

seasonality: seasonality of monthly precipitation; P variability: inter annual variation in 919 

annual precipitation; DSP variability: inter annual variation in dry-season precipitation; P 920 

seasonality: precipitation seasonality; DSP: dry-season precipitation; WSP: wet-season 921 

precipitation.  922 

North America Climate response group 

  Strong 

positive P 

response 

Strong 

positive P 

response 

Strong 

positive P 

response 

Strong 

positive P 

response 

Basic info  #Chronologies 42 46 16 15 

Geography Elevation (m a.s.l.) 2332 a 1685 b 47 c 2500 ab 

Mean 

climate 

MAT (°C) 11.7 c 19.3 b 21.9 a 12.1 c 

MAP (mm) 803 b 856 ab 1255 a 966 ab 

CWD (mm) -764 b -646 a -503 b -549 ab 

Climate 

variability 

P variability (-) 20.9 a 17.7 b 15.3 b 18.3 ab 

DSP variability (-) 40.6 a 30.4 b 30.6 b 39.2 a 

Climate 

seasonality 

P seasonality (-) 90.1 ab 83.0 ab 61.3 b 95.7 a 

DSP (mm/month) 37.9 NS 35.8 NS 47.4 NS 30.9 NS 

WSP (mm/month) 168 NS 150 NS 169 NS 178 NS 

 

High-mountain Asia 
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Basic info  #Chronologies  3 34 58 

Geography Elevation (m a.s.l.)   3100 b 3284 a 

Mean 

climate 

MAT (°C)   9.0 NS 11.0 NS 

MAP (mm)   841 NS 1094 NS 

CWD (mm)   -273 NS -310 NS 

Climate 

variability 

P variability (-)   12.5 NS 12.6 NS 

DSP variability (-)   20.2 NS 26.7 NS 

Climate 

seasonality 

P seasonality (-)   84.2 b 94.2 a 

DSP (mm/month)   32.4 a 34.4 b 

WSP (mm/month)   170 b 196 a 

 

South America 

 

Basic info  #Chronologies   38 27 

Geography Elevation (m a.s.l.)   590 NS 1600 NS 

Mean 

climate 

MAT (°C)   21.8 NS 18.5 NS 

MAP (mm)   1140 NS 899 NS 

CWD (mm)   -491 NS -178 NS 

Climate 

variability 

P variability (-)   17.0 NS 16.8 NS 

DSP variability (-)   24.0 b 28.5 a 

Climate 

seasonality 

P seasonality (-)   62.1 NS 83.8 NS 

DSP (mm/month)   48.2 NS 38.0 NS 

WSP (mm/month)   154.9 NS 151.3 NS 

  923 
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Extended Data Table 4 | Correlations of seasonal regression coefficients and site climate 924 

conditions. Results of unweighted (UW) and weighted (W) Spearman rank correlations 925 

between site climate variables (CWD, MAP, MAT, P variability, and P seasonality) and 926 

significant regression coefficients for P and Tmax during dry (a) or wet (b) season. The 927 

weighted correlation analysis accounts for the under- and over-representation of climatic 928 

conditions in our network by weighing data points by the relative density of tropical woody 929 

vegetation for the value of the climate variable under consideration (green lines in Extended 930 

Data Fig. 2). A total of 438 significant regression coefficients were obtained from 260 931 

multiple regression models that contained at least one significant effect (out of the 347 932 

models conducted for all chronologies).  Significance levels: *: 0.01<p<0.05; **: 933 

0.001<p<0.01; ***: p <0.001. Sample sizes dry season: P, n=130; Tmax, n=132; wet season: P, 934 

n=92; Tmax, n= 84.  935 

a. Dry season          
    CWD MAP MAT P variability P seasonality 

  UW W UW W UW W UW W UW W 

P 
Tmax -0.259 -0.232 -0.088 -0.002 0.002 -0.367 0.232 0.232 0.070 0.053 

P ** ** NS NS NS *** ** * NS NS 

Tmax 
Tmax 0.425 0.390 0.317 0.307 0.050 -0.312 -0.341 -0.336 0.015 -0.005 

P *** *** *** *** NS *** *** *** NS NS 

                        
b. Wet season                   

    CWD MAP MAT P variability P seasonality 

  UW W UW W UW W UW W UW W 

P 
Tmax -0.158 -0.077 -0.049 -0.019 0.362 0.181 0.467 0.332 -0.273 -0.328 

P NS NS NS NS *** NS *** ** ** ** 

Tmax 
Tmax 0.027 0.066 0.046 0.102 -0.126 0.110 0.104 0.039 -0.010 -0.047 

P NS NS NS NS NS NS NS NS NS NS 

  936 
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Extended Data Table 5 | Predicted warming at network sites. Predicted maximum (Tmax), 938 

minimum (Tmin), and mean (Tmean =Tmax - Tmin) warming, averaged across all 347 sites until 939 

2100, and relative to 1970-2000 values. For each site, predictions of 9 GCMs were averaged, 940 

and then site-specific values were averaged, and their SD calculated. Predictions are shown 941 

for two Shared Socio-economic Pathways (SSPs).  942 

Predicted increase in: SSP 2021-2040 2041-2060 2061-2080 2081-2100 

Tmax (°C) 370 1.32±1.24 2.21±1.27 3.21±1.31 4.35±1.37 

 585 1.49±1.25 2.58±1.26 3.95±1.32 5.59±1.41 

Tmin (°C) 370 1.25±1.2 2.11±1.23 3.08±1.26 4.18±1.33 

 585 1.37±1.21 2.44±1.23 3.77±1.3 5.36±1.42 

Tmean(°C) 370 1.29±1.14 2.16±1.17 3.15±1.2 4.27±1.26 

 585 1.43±1.14 2.51±1.16 3.86±1.22 5.47±1.32 

 943 

 944 


