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Abstract

A classifier is a software component, often based on Deep Learning, that categorizes 

each input provided to it into one of a fixed set of classes. An IDK classifier may 

additionally output “I Don’t Know” (IDK) for certain inputs. Multiple distinct IDK 

classifiers may be available for the same classification problem, offering different 

trade-offs between effectiveness, i.e. the probability of successful classification, and 

efficiency, i.e. execution time. Optimal offline algorithms are proposed for sequen-

tially ordering IDK classifiers such that the expected duration to successfully clas-

sify an input is minimized, optionally subject to a hard deadline on the maximum 

time permitted for classification. Solutions are provided considering independent 

and dependent relationships between pairs of classifiers, as well as a mix of the two.

Keywords Deep Learning · Hard deadlines · Classifiers · IDK cascades · Optimal 

synthesis

1  Extended version

The paper “Optimal Synthesis of IDK cascades” by Baruah et  al. (2021), pub-

lished in RTNS 2021, presented analysis and algorithms for determining the optimal 

sequentially ordering of probabilistically independent IDK classifiers, achieving the 

 * Robert I. Davis 

 rob.davis@york.ac.uk

 Sanjoy Baruah 

 baruah@wustl.edu

 Alan Burns 

 alan.burns@york.ac.uk

 Yue Wu 

 yuew29@uw.edu

1 Washington University in Saint Louis, Saint Louis, MO, USA

2 University of York, York, UK

3 University of Washington, Seattle, WA, USA

http://orcid.org/0000-0002-4541-3445
http://orcid.org/0000-0001-5621-8816
http://orcid.org/0000-0002-5772-0928
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-022-09383-w&domain=pdf


 Real-Time Systems

1 3

minimum expected duration for classification, with and without deadline constraints. 

This paper substantially extends that work by considering independent IDK classi-

fiers (Sect. 3), fully dependent IDK classifiers (Sect. 4), and a mix of both independ-

ent and dependent relationships between classifiers (Sect. 5). In each case, analysis 

and optimal algorithms are derived that achieve the minimum expected duration for 

classification, including under deadline constraints (Sect. 6).

2 Introduction

Software components that are based on Deep Learning and related AI techniques are 

increasingly being deployed for classification problems in complex resource-con-

strained Cyber-Physical Systems. Such systems often require accurate predictions to 

be delivered in real time using limited computational resources.

Much of the recent research into Deep Neural Networks (DNNs) has however 

focused on improving the accuracy of classification. From a real-time perspective 

this ongoing quest for improved accuracy has arguably gone too far, resulting in 

DNNs that take substantial time to process even simple inputs that should in fact be 

relatively straightforward to classify. For example, Wang et al. (2018) showed that 

an order-of-magnitude increase in the execution time of DNNs has resulted in a neg-

ligible improvement in the accuracy of predictions for a considerable fraction of the 

ImageNet 2012 benchmark of validation images (Russakovsky et al 2015).

Balancing the trade-off between accuracy and latency becomes important if such 

DNNs are to be adopted for use in Cyber Physical Systems (CPS) that are expected 

to respond in a timely manner; for example, a DNN used for image processing 

within an autonomous driving CPS (Fujiyoshi et al. 2019). With this goal in mind, 

Wang et al. (2018) observed that if the advanced but slower DNNs were only used 

in the more challenging cases, then the time taken to achieve successful classifica-

tion could be reduced. In effect, combining fast DNNs with accurate ones to reduce 

mean latency without any trade-off in accuracy.

This observation motivated Trappenberg and Back (2000) and Khani et al. (2016) 

to explore the use of IDK classifiers, which may be viewed as bringing some degree 

of self awareness to classifiers. An IDK classifier is obtained from an existing base 

classifier by attaching a computationally light-weight augmenting classifier that ena-

bles the base classifier to additionally predict an auxiliary “I Don’t Know” (IDK) 

class depending on the degree of uncertainty in the predictions of the base classifier.1

Specifically, an IDK classifier classifies an input as being in the IDK class if the 

base classifier is not able to predict some actual class for that input with a level of 

confidence that exceeds a predefined threshold value (Baruah et al. 2021).

The use of multiple classifiers to enhance the overall accuracy and precision 

of classification has been studied since as least the work of Nilsson (1965). An 

ensemble of classifiers is used to introduce diversity, either in the type of input, 

1 A similar notion is used by Madras et al. (2018), they allow the base classifier to defer by outputting 

the class PASS.
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the classification model, or in the features of the data sets used during training. 

Oza and Tumer (2008) provide a review of the use of ensembles of classifiers. 

Examples of ensembles can be found in: autonomous vehicles, where cameras, 

LiDAR, radar, microphones and even satellite feeds can be combined to accom-

plish safe vehicle control; and in person recognition systems where iris images, 

fingerprints, face recognition and voice recognition are synthesised. The former 

clearly has strict timing constraints applied to the output of the ensemble’s clas-

sification; a restricted form of the latter may also need to operate under timing 

constraints if it is being applied to the real-time monitoring of a crowd scene.

Ensembles of IDK classifiers, with different execution times and probabilities of 

success (i.e. of not outputting IDK), may be devised for the same classification prob-

lem. Wang et al. (2018) proposed arranging such IDK classifiers into IDK cascades, 

which are linear sequences of IDK classifiers designed to work as follows: 

1. The first classifier in the IDK cascade is invoked first, for any input that needs to 

be classified.

2. If the classifier outputs a real class, rather than IDK, then the IDK cascade ter-

minates and characterizes the input as being of the identified class.

3. Otherwise, if the classifier outputs IDK, then the subsequent classifier in the IDK 

cascade is invoked and the process continues from step 2.

Since it is a requirement that all inputs are successfully classified by an IDK cas-

cade, it is assumed that the last classifier in the cascade always outputs a real 

class. We refer to a classifier that always outputs a real class as a deterministic 

classifier. There are various forms that the deterministic classifier can take. Wang 

et al. (2018) proposed that a human expert could be considered to be the deter-

ministic classifier. For example, the driver of a semi-autonomous vehicle could be 

called upon to decide, in conditions that caused a camera-based classifier to fail 

(i.e. output IDK), if a partially obscured road sign ahead signifies a lower speed 

limit, and hence the vehicle should reduce speed, an action that has a safety-

related timing constraint. In another application a fully developed DNN could 

be sufficiently accurate that it can take on the role of deterministic classifier; 

however, its computation requirements are such that it should only be executed 

when absolutely necessary, other more efficient classifiers should be used if they 

can cater for typical inputs. To deal with applications that exhibit high levels of 

uncertainty, it may be necessary to introduce the class unclassifiable that the final 

arbiter, the deterministic classifier, can output if a real class cannot be identified.

Given a collection of several different IDK classifiers for a particular classifica-

tion problem, this paper considers how they should be sequentially ordered for exe-

cution so as to minimize the expected (i.e. average) duration taken to successfully 

classify an input, and if a deadline is specified, to additionally guarantee to always 

meet that deadline. The analysis and the algorithms required to solve these problems 

are impacted by the relationships between the IDK classifiers concerned.

Two IDK classifiers may behave in a way that is independent of one another. 

By independent, we mean that the probability that the second classifier will 
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output a real class is independent of whether it is run on all inputs or on only 

those inputs where the first classifier outputs IDK. For example, the ensemble 

examples given earlier for autonomous vehicle control and person recognition 

employ diverse inputs (radar, LiDAR and camera; iris images, face recognition 

and voice recognition) are likely to exhibit behavior that is independent. Indeed, 

Madani et al. (2012, 2013) show that very different sources of evidence such as 

text, audio, and video features are effectively independent. At the other extreme, 

two image-based classifiers that use the same input image but scale it to different 

resolutions (e.g. 64 × 64 or 256 × 256 pixels) (Hu et al. 2021) may be very simi-

lar and exhibit behavior that is fully dependent. By fully dependent, we mean that 

the first less powerful classifier is only able to successfully classify a strict subset 

of the inputs that the second more powerful classifier can recognize. This infor-

mal notion of similarity among classifiers is formalized in Sect. 2 via the concept 

of conditional probability.

The remainder of the paper is organized as follows. Section 2 describes the sys-

tem model, terminology and notation used, along with the definitions of key con-

cepts. Sections 3 and 4, present solutions for collections of IDK classifiers that are 

respectively, (i) independent and (ii) fully dependent with respect to one another. 

Section 5 considers collections of IDK classifiers that have (iii) a mix of dependent 

and independent relationships. Section 6 extends the analysis and algorithms for all 

three cases to problems where there is also a deadline constraint. Finally, Sect.  7 

concludes with a summary and directions for future research.

3  System model, terminology, and notation

We consider a collection of n classifiers K
1
 , K

2
 , … , K

n
 that may be used for a given 

classification problem. Each classifier K
i
 is characterized by parameters (C

i
, P

i
) , 

specifying its execution time C
i
 and its success probability P

i
 . These parameters 

denote that the classifier takes at most a time C
i
 to complete execution when invoked 

on an input, and returns a real class, rather than IDK, with probability P
i
 , where 

0 < P
i
≤ 1 . (For a discussion about how these parameters can be obtained, see 

(Baruah et al. 2021)). We refer to an ordered linear sequence of such classifiers as an 

IDK cascade.

The actual value of n is application dependent and many different values are to 

be found in the literature on classifier ensembles. As noted earlier, diversity comes 

from having independent classifiers with different types of input, different internal 

models and different training data. Even a single classifier, such as the image-based 

example described previously, can have a number of different pixel resolutions 

defined and hence give rise to two, three or more distinct fully dependent classifiers. 

Combining such fully dependent and independent classifiers can easily lead to IDK 

cascades with eight or more components. In practice, however, n is unlikely to be 

greater than ten.

Problem statement: Given a collection of n classifiers K
1
 , K

2
 , … , K

n
 suitable for 

use on a given classification problem, the objective is to determine which of these 

classifiers should be executed, and in what order, such that the expected duration to 
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successfully classify the input is minimized. Stated otherwise, the aim is to obtain 

the optimal IDK cascade. Further, the problem may additionally be subject to the 

constraint that the maximum time taken to successfully classify the input must be no 

more than a specified deadline D.

For the expected duration of an IDK cascade to be finite, it is necessary that some 

classifier K
n
 with P

n
= 1 is executed. We therefore assume that such a classifier 

exists, and refer to it as a deterministic classifier; by convention always denoted by 

K
n
 . Further, we assume that there is only one such deterministic classifier, since if 

there were more than one, the one with the shortest execution time should always 

be preferred and the others discarded. Similarly, we assume that the deterministic 

classifier has a longer execution time ( C
n
) than any of the IDK classifiers, since the 

deterministic classifier should always be preferred over any IDK classifier with the 

same or longer execution time; such IDK classifiers can therefore be discarded.

Combining probabilities: When computing the expected duration for an IDK 

cascade, it is essential to understand how the prior execution of one classifier K
A
 

impacts the probability that a subsequent classifier K
B
 will be able to make a suc-

cessful classification rather than return IDK. Consider two classifiers K
A
= (C

A
, P

A
) 

and K
B
= (C

B
, P

B
) , neither of which is deterministic (i.e. P

A
< 1.0 and P

B
< 1.0 ). 

Suppose that classifier K
A
 is called on some input and returns IDK, and in that case 

classifier K
B
 is called next. Let p(KB|KA) denote the conditional probability that 

classifier K
B
 returns an actual class rather than IDK given that classifier K

A
 failed to 

do so and therefore returned IDK.

Definition 1 (Independent classifiers) Classifiers K
A
 and K

B
 are said to be independ-

ent if p(KB|KA) = PB and p(KA|KB) = PA.

That is, the conditional probability that K
B
 will make a successful classification 

given that K
A
 did not, is exactly the same as the probability that K

B
 will make a suc-

cessful classification when K
A
 is not called beforehand, and vice versa. Informally 

speaking, this happens when K
A
 and K

B
 are making their classification decisions in 

very different ways, for example by using completely different (and uncorrelated) 

attributes of their inputs, and so the fact that one of the classifiers was unable to 

classify an input has no bearing on the ability of the other classifier to do so.

At the other extreme are fully dependent classifiers. Two classifiers are fully 

dependent if one successfully classifies only a strict subset of the set of inputs that 

are successfully classified by the other.

Definition 2 (Dependent classifiers) Classifiers K
A
 and K

B
 , satisfying (P

A
< P

B
) , are 

said to be fully dependent if

and

p(KA|KB) = 0

p(KB|KA) =
PB − PA

1 − PA

.
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So if K
B
 cannot deliver a successful classification then neither can K

A
 ; and the 

conditional probability that K
B
 will make a successful classification given that K

A
 

did not, is given by the proportion of inputs, P
B
− P

A
 , that K

B
 is able to classify that 

K
A
 cannot, divided by the proportion of inputs, 1 − P

A
 , that K

A
 fails to classify. For 

example, if P
A
= 0.6 and P

B
= 0.8 then if K

A
 fails to make a classification then the 

probability of success for K
B
 falls from 0.8 to 0.5.

Observe that if the second classifier K
B
 is deterministic, and hence P

B
= 1 then 

we have p(KB|KA) =
PB−PA

(1−PA)
= 1 = PB . In other words, deterministic classifiers can 

be regarded as being either independent (Definition 1) or fully dependent (Definition 

2).

Intuitively, IDK cascades can be constructed by placing less effective but faster 

classifiers earlier in the order, in the hope that they will successfully classify the 

input most of the time, with more effective but slower classifiers invoked only on 

those rare occasions that the earlier classifiers fail. This is illustrated by the follow-

ing example.

Example 1 Suppose, for solving some classification problem, we have a deterministic 

classifier K
3
 (we will add to this example later), with parameters (C3 = 10, P3 = 1) . 

Since the classifier is deterministic, it will be the last classifier to run in any IDK 

cascade in which it is included. Further, assume we also have an IDK classifier K
1
 

with parameters (C1 = 5, P1 = 0.6).

Consider the IDK cascade ⟨K1;K3⟩ , which executes K
1
 first and subsequently exe-

cutes K
3
 only if K

1
 fails to make a successful classification and returns IDK. Since K

1
 

is always executed on all inputs, but K
3
 only executes when K

1
 outputs IDK, which 

happens with probability (1 − P
1
) , the expected duration of this IDK cascade is 

given by:

which is smaller than C
3
= 10 , the duration of the cascade ⟨K

3
⟩ containing only the 

deterministic classifier.   ◻

The downside of using an IDK cascade rather than only executing the determin-

istic classifier is that the worst-case duration increases. In Example 1, while the IDK 

cascade ⟨K1;K3⟩ completes in 5 time units in 60% of cases, in the remaining 40% 

of cases it takes 15 time units, whereas executing only the deterministic classifier 

always takes 10 time units. Whether this matters or not depends on whether classifi-

cation is required by a specified deadline. Such problems are considered in Sect. 6.

Example 1 considered the combination of one IDK classifier with a determinis-

tic classifier. The problem of finding an optimal IDK cascade becomes much more 

interesting and challenging when multiple IDK classifiers are available. In that case, 

the analysis and algorithms required depend on the relationships between the IDK 

classifiers, i.e. whether they are independent (Sect. 3), fully dependent (Sect. 4), or 

consist of groups of dependent classifiers where classifiers from different groups are 

nevertheless independent of one another (Sect. 5).

C
1
+ (1 − P

1
) × C

3
= 9
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4  Independent IDK classifiers

In this section we consider the problem of determining the optimal IDK cascade, 

that minimizes the expected duration for successful classification, given a set of 

n independent IDK classifiers 
{

K
i
= (C

i
, P

i
)
}n

i=1
 . We begin with an illustrative 

example.

Example 2 Consider again the problem instance from Example 1. Suppose that there 

is an additional IDK classifier K
2
 with parameters (C2 = 3, P2 = 0.2) as set out in 

Table 1. Further, assume that K
2
 is known to be independent of K

1
 . It can be verified 

that IDK cascade ⟨K1;K2;K3⟩ has an expected duration of

IDK cascade ⟨K2;K1;K3⟩ has an expected duration of

and IDK cascade ⟨K2;K3⟩ has an expected duration of

Observe that each of these IDK cascades has an expected duration larger than that of 

the IDK cascade ⟨K1;K3⟩ that, as shown in Example 1, has an expected duration of 

9 . Hence if minimizing expected duration is the objective, then the IDK classifier K
2
 

should not be used at all.   ◻

Example 2 illustrates one way of obtaining optimal IDK cascades: simply enu-

merate all possibilities, compute the expected duration for each, and choose the IDK 

cascade with the minimum value. However, such an approach is highly inefficient: 

given n classifiers the number of possible IDK cascades is a very rapidly-growing 

combinatorial function2 �(
∑n−1

k=0

(n−1)!

(n−1−k)!
) . Below, we derive a far more efficient 

algorithm for synthesizing optimal IDK cascades from a given collection of inde-

pendent IDK classifiers.

Lemma 1 can be used to compute the expected duration of any linear sequence of 

independent IDK classifiers.

5 + (1 − 0.6) × 3 + (1 − 0.6)(1 − 0.2) × 10 = 5 + 1.2 + 3.2 = 9.4

3 + (1 − 0.2) × 5 + (1 − 0.2)(1 − 0.6) × 10 = 3 + 4 + 3.2 = 10.2

3 + (1 − 0.2) × 10 = 3 + 8 = 11

Table 1  Parameters of 

independent IDK classifiers for 

Example 2

K
i

C
i

P
i

K
1

5 0.60

K
2

3 0.20

K
3

10 1.00

2 The deterministic classifier must always be included as the final classifier, and may be preceded by 

k = 0…(n − 1) other IDK classifiers in any order, hence the formula follows from that for the arrange-

ment (i.e. permutation without repetition) of k elements from a set of cardinality n − 1.
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Lemma 1 Consider an IDK cascade that orders n classifiers. Let (Ĉ
k
, P̂

k
) denote 

the execution time and success probability of the k’th classifier in this cascade. The 

expected duration of the IDK cascade is given by:

Proof The first classifier will always execute; the second classifier will execute if 

and only if the first one fails, which happens with probability (1 − P̂
1
) ; the third clas-

sifier will execute if and only if the first two both fail, which happens with probabil-

ity (1 − P̂
1
)(1 − P̂

2
 ); and so on. Hence the expected duration is

which is represented compactly by the expression in the Lemma.   ◻

Lemma 2 below identifies, for independent IDK classifiers, an important charac-

teristic of any optimal IDK cascade:

Lemma 2 Let classifier Kj be scheduled for execution after classifier K
i
 in an opti-

mal IDK cascade (i.e. of minimum expected duration). It must be the case that:

Proof We will establish that any two adjacently scheduled classifiers K
i
 and Kj sat-

isfy (2). The lemma then follows from the transitivity of the ≤ relationship on ℝ (the 

set of real numbers).

Let Sopt denote an optimal IDK cascade, and let K̂
i
 denote the classifier in the i’th 

position in this cascade for any i, 1 ≤ i ≤ n . Further, let (Ĉ
i
, P̂

i
) denote the execution 

time and success probability of classifier K̂
i
 . Finally, let S

1
 denote an IDK cascade 

obtained from Sopt by swapping the classifiers in the i’th and (i + 1)’th positions in 

Sopt : 

Sopt Ĉi Ĉi+1

S1 Ĉi+1 Ĉi

Using Lemma 1, the expected duration of Sopt can be written as the sum of three 

terms representing respectively the outer summation of (1) for (i) k ∈ {1,… , i − 1} , 

(ii) k ∈ {i, i + 1} , and (iii) k ∈ {i + 2,… , n}:

(1)

n
∑

k=1

(

k−1
∏

j=1

(1 − P̂j)

)

Ĉk

Ĉ
1
+ (1 − P̂

1
) Ĉ

2
+ (1 − P̂

1
)(1 − P̂

2
) Ĉ

3
+⋯ +

n−1
∏

j=1

(1 − P̂j) Ĉn

(2)
Ci

Pi

≤
Cj

Pj
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 Next, consider the expected duration of S
1
 . Again using Lemma  1, the expected 

duration of S
1
 can also be written as the sum of three terms. Since S

1
 only differs 

from Sopt in that the i’th and (i + 1)’th classifiers are swapped, the first and third 

terms are the same as the first and third terms of (3). However, the middle term is as 

follows, since the order of the i’th and (i + 1)’th classifiers has been swapped.3

Sopt is by definition an optimal IDK cascade. Its expected duration is therefore no 

larger than the expected duration of S
1
 , and so the middle term of (3) must be no 

larger than (4):

Observing that the term 
∏i−1

j=1
(1 − P̂j) appears on both sides of (5), we have:

  ◻

(3)

i−1
∑

k=1

(

k−1
∏

j=1

(1 − P̂j)

)

Ĉk //The first (i − 1) classifiers

+

i−1
∏

j=1

(1 − P̂j)
(

Ĉi + (1 − P̂i)Ĉi+1

)

//The next two classifiers

+

n
∑

k=i+2

(

k−1
∏

j=1

(1 − P̂j)

)

Ĉk //The remaining classifiers

(4)

i−1
∏

j=1

(1 − P̂j)
(

Ĉi+1
+ (1 − P̂i+1

)Ĉi

)

(5)

i−1
∏

j=1

(1 − P̂j)
(

Ĉi + (1 − P̂i)Ĉi+1

)

≤

i−1
∏

j=1

(1 − P̂j)
(

Ĉi+1
+ (1 − P̂i+1

)Ĉi

)

(

Ĉ
i
+ (1 − P̂

i
)Ĉ

i+1

)

≤
(

Ĉ
i+1

+ (1 − P̂
i+1

)Ĉ
i

)

⇔

(

Ĉ
i
+ Ĉ

i+1
− P̂

i
Ĉ

i+1

)

≤
(

Ĉ
i+1

+ Ĉ
i
− P̂

i+1
Ĉ

i

)

⇔ P̂
i+1

Ĉ
i
≤ P̂

i
Ĉ

i+1

⇔

Ĉ
i

P̂
i

≤
Ĉ

i+1

P̂
i+1

3 The difference between (4) and the middle term of (3) is that the roles of i and (i + 1) are swapped in 

the expression 
(

Ĉx + (1 − P̂x)Ĉy

)

.
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Algorithm 1 Synthesizing an optimal IDK cascade from independent IDK

classifiers

OptOrderIndependent(
{

(C1, P1), (C2, P2), . . . , (Cn, Pn)
}

)

1 Compute Ci/Pi for all i, 1 ≤ i ≤ n
2 Sort in non-decreasing order of Ci/Pi

3 Output the classifiers according to their position in the sorted list, stopping at the
4 deterministic classifier

Lemma 2 implies that independent IDK classifiers adjacent to each other in any 

optimal IDK cascade must have the ratio of their execution time to their success 

probability in non-decreasing order. An algorithm for synthesizing optimal IDK cas-

cades immediately presents itself: simply determine these ratios for all of the clas-

sifiers, and sort the list in non-decreasing order—see Algorithm 1. As depicted, the 

algorithm need not enumerate any classifiers beyond the deterministic one, since 

such a classifier is guaranteed to complete successfully. Observe that Algorithm 1 

is highly efficient, its run-time complexity is dominated by the sorting step, and is 

therefore �(n log n).

5  Fully dependent IDK classifiers

In this section we consider the problem of determining an optimal IDK cascade, that 

minimizes the expected duration for successful classification, given a set of n fully 

dependent IDK classifiers 
{

K
i
= (C

i
, P

i
)
}n

i=1
 .

Since the classifiers are fully dependent, there is no benefit in executing a clas-

sifier with smaller probability Pj after one with a larger probability4 Pi > Pj , since 

from Definition 2, we have p(Kj|Ki) = 0 . In order to minimize the expected dura-

tion we must therefore order whichever classifiers are used by their probability of 

successful classification, smallest first. Further, the deterministic classifier K
n
 must 

appear last, since otherwise there would be a non-zero probability of failing to clas-

sify some input, and hence the expected duration would no longer be finite.

Without loss of generality, we now assume that the dependent IDK classifiers 

are indexed according to strictly increasing values of their success probability, 

i.e. P
i+1

> P
i
 for all i, 1 ≤ i < n , and P

n
= 1 , where K

n
 is the deterministic classifier.

We begin the analysis by building an illustrative example.

Consider two fully dependent IDK classifiers as as set out in Table   2: K
1
 with 

parameters (C1 = 5, P1 = 0.5) and K
2
 with parameters (C2 = 9, P2 = 0.8) . Compar-

ing classifiers K
1
 and K

2
 , we say that K

2
 is a more powerful classifier than K

1
 , since 

P
2
> P

1
 . If we were to schedule classifier K

1
 to execute only after executing K

2
 and 

4 We can assume that the P
i
 values are distinct, since if two are equal, we may discard the classifier with 

the larger value of C
i
 or make a arbitrary choice if both P

i
 and C

i
 are equal.
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having K
2
 output IDK, then the probability that K

1
 would make a successful clas-

sification would be 0, since all of the cases that it can correctly classify would have 

already been identified by K
1
 . Alternatively, if we execute K

1
 first and only execute 

K
2
 if K

1
 fails (i.e. returns IDK), then the probability that K

2
 will make a successful 

classification needs to account for the fact that we now know its input is not one that 

K
1
 is able to classify. In the notation of conditional probability (see Definition 2 in 

Sect. 2), we can represent this as:

where the numerator is the probability that an input to the IDK cascade ⟨K1;K2⟩ will 

be classified by K
2
 , and the denominator is the probability that an input to the IDK 

cascade ⟨K1;K2⟩ will not be classified by K
1
 . Next consider a further classifier K

3
 

added to the IDK cascade, i.e. ⟨K1;K2;K3⟩ . The probability that K
3
 will be executed 

is given by the probability that both K
1
 and then K

2
 output IDK. That is:

As expected, this simply equates to the probability that K
2
 alone is unable to make 

a classification. This is the case since K
1
 effectively adds nothing to the set of inputs 

that can be classified by K
2
.

Example 3 Consider the problem instance described above, where K
1
 , K

2
 , and K

3
 

are fully dependent classifiers, as set out in Table  2. Considering all of the possible 

IDK cascades where the classifiers run in index order, it can be verified that IDK 

cascade ⟨K1;K2;K3⟩ has an expected duration of

IDK cascade ⟨K1;K3⟩ has an expected duration of

and IDK cascade ⟨K2;K3⟩ has an expected duration of

Finally, running only the deterministic classifier K
3
 , has an expected duration of 

15. Observe that the IDK cascade ⟨K2;K3⟩ is optimal, and has an expected duration 

p(K
2
|K

1
) =

P
2
− P

1

1 − P
1

=
0.3

0.5
= 0.6

(1 − P
1
)(1 − p(K

2
|K

1
)) = (1 − P

1
)

(
1 −

P
2
− P

1

1 − P
1

)
= (1 − P

2
)

5 + (1 − 0.5) × 9 + (1 − 0.8) × 15 = 5 + 4.5 + 3 = 12.5

5 + (1 − 0.5) × 15 = 5 + 7.5 = 12.5

9 + (1 − 0.8) × 15 = 9 + 3 = 12

Table 2  Parameters of fully 

dependent IDK classifiers for 

Example 3

K
i

C
i

P
i

K
1

5 0.50

K
2

9 0.80

K
3

15 1.00
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lower than that of any of the possible IDK cascades that include K
1
 . Hence if mini-

mizing expected duration is the objective then K
1
 should not be used.   ◻

Example 3 again illustrates a simple but inefficient way of synthesizing optimal 

IDK cascades: enumerate all possible IDK cascades that could potentially be opti-

mal, compute the expected duration for each, and choose the one with the minimum 

value. However, even though we know that dependent classifiers can only appear in 

an optimal IDK cascade ordered by increasing probability, the fact that we do not 

know which classifiers to include means that there are still an exponential number5 

of different IDK cascades to consider: �(2n−1) , for n classifiers. Below, we derive a 

more efficient algorithm for synthesizing optimal IDK cascades from a given collec-

tion of fully dependent IDK classifiers. We begin with a definition.

Definition 3 (optimal sub-sequence S(i)) The optimal sub-sequence S(i) is the sub-

sequence of ⟨K1, K2,… , K
i
⟩ of minimum expected duration, with classifier K

i
 last. 

The sub-sequence may omit zero or more of the classifiers, with the exception of K
i
 , 

but otherwise retains the same (index) ordering. Let f(i) denote the expected dura-

tion of this optimal sub-sequence S(i).

Using the terminology introduced in Definition 3, the aim of determining an opti-

mal IDK cascade equates to determining the optimal sub-sequence S(n). We now 

describe how this may be achieved by inductively determining the optimal sub-

sequences S(1), S(2),… , S(n) in order.

In order to determine S(i) for i ≥ 1 , we observe that optimal sub-sequences satisfy 

the optimal sub-structure property (Cormen et al. 2009, p. 379): optimal solutions 

to any problem instance incorporate optimal solutions to sub-instances. Initially, we 

have:

Further, let K
h
 denote the classifier immediately preceding K

i
 in the optimal sub-

sequence S(i). It must be the case that S(i) equates to the concatenation of K
i
 to the 

end of the optimal sub-sequence S(h). Recalling that f(h) denotes the expected dura-

tion of S(h), we therefore have:

S(0) = ⟨ ⟩, f (0) = 0, and P0 = 0.0.

(6)f (i) = min
0≤h<i

{

f (h) + (1 − Ph)Ci

}

5 As the order of the classifiers is known, the complexity derives from whether or not to select them. 

Since the deterministic classifier must be included, there are n − 1 classifiers each of which may or may 

not be included, leading to 2n−1 possibilities.
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where S(i) equates to the concatenation of K
i
 to the end of S(�) where 

� = argmin
0≤h<i

{

f (h) + (1 − Ph)Ci

}

 . (Note, if � is not unique, then this implies 

that there are multiple optimal sub-sequences with the same minimum duration, and 

hence any such � may be chosen). Example 4 illustrates how this approach works.

Example 4 Consider again the problem instance from Example 3 where K
1
 and 

K
2
 are two fully dependent IDK classifiers, with parameters (C1 = 5, P1 = 0.5) 

and (C2 = 9, P2 = 0.8) , and K
3
 is a deterministic classifier with parameters 

(C3 = 15, P3 = 1.0) , as set out in Table  2 .

Let us consider the minimum expected duration f(i) of a sub-sequence ending 

with each of the three classifiers, i.e. f(i) for i = 1… 3.

– Starting with classifier K
1
 , trivially we have f (1) = C

1
= 5 since no other classi-

fiers can precede K
1
 , and therefore S(1) = ⟨K

1
⟩ is an optimal sub-sequence end-

ing in K
1
.

– Considering K
2
 , there are two possibilities: (i) K

2
 is the only classifier in the sub-

sequence, in which case f (2) = C
2
= 9 ; (ii) K

2
 is preceded by K

1
 , in which case 

f (2) = f (1) + (1 − P
1
) × C

2
 = 5 + (1 − 0.5) × 9 = 9.5 . This is the case because 

K
2
 runs with a probability of 1 − P

1
 , the probability that K

1
 returned IDK. Since 

we seek the minimum value, we have f (2) = 9 . As this minimum value is 

obtained by executing only K
2
 , S(2) = ⟨K

2
⟩ is an optimal sub-sequence ending in 

K
2
.

– Finally considering K
3
 , there are three possibilities: (i) K

3
 is the only classi-

fier in the sub-sequence, in which case f (3) = C
3
= 15 ; (ii) K

3
 is preceded by 

K
1
 , in which case f (3) = f (1) + (1 − P

1
) × C

3
 = 5 + (1 − 0.5) × 15 = 12.5 ; 

and (iii) K
3
 is preceded by K

2
 , in which case f (3) = f (2) + (1 − P

2
) × C

3
 

= 9 + (1 − 0.8) × 15 = 12 . Since we seek the minimum value, f (3) = 12 , and 

S(3) = ⟨K2, K3⟩ is an optimal sub-sequence ending in K
3
.

As any valid IDK cascade must end with the deterministic classifier, K
3
 in this case, 

we observe that the optimal IDK cascade for this example is S(3) = ⟨K2, K3⟩ , with 

the minimum expected duration of f (3) = 12 .   ◻
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Algorithm 2 Synthesizing an IDK cascade with minimum expected duration,

from fully dependent classifiers

OptOrderDependent(
{

(C1, P1), (C2, P2), . . . , (Cn, Pn)
}

)

1 // Assume sorted in order of increasing Pi

2 P0 = 0 // A notational convenience
3 f(0) = 0
4 for i = 1 to n

5 q(i) = arg min0≤h<i {f(h) + (1 − Ph)Ci}
6 f(i) = f(q(i)) + (1 − Pq(i))Ci

7
8 // Queue Q, initialized to contain the deterministic classifier
9 Q = [Kn]

10 r = q(n)
11 do

12 Q.prepend(Kr)
13 r = q(r)
14 while (r �= 0)
15 // Q now comprises the optimal IDK cascade
16 Output Q

As shown in Algorithm 2, the recurrence in (6) can be evaluated via a loop iterat-

ing over the values of k from 1 to n, with the min
0≤h<i

{} term leading to an overall 

run-time complexity that is quadratic �(n2) , rather than exponential, in the number 

of classifiers.

6  Independent groups of fully dependent IDK classifiers

In this section, we broaden the scope to include both independent and fully depend-

ent IDK classifiers. We consider the problem of determining an optimal IDK cas-

cade, given multiple independent groups of fully dependent IDK classifiers,6 and a 

single deterministic classifier, i.e. we have a collection:

of n IDK classifiers, such that K
n
 is a deterministic classifier, with P

n
= 1 , and the 

remaining classifiers are partitioned into m < n groups �1,�2,… ,�
m
 such that for 

any two distinct classifiers K
A
 and K

B
:

– If they are in the same group then they are fully dependent with respect to one 

another as per Definition 2. Without loss of generality, we assume that such 

fully dependent classifiers are indexed in increasing order of their probabili-

ties, P
i
 ; and

� =
{

K
i
= (C

i
, P

i
)
}n

i=1

6 Groups of size one represent IDK classifiers that are independent of all other IDK classifiers.
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– If they are in different groups then they are independent with respect to one 

another as per Definition 1.

From Definition  2, considering two fully dependent IDK classifiers K
A
 and K

B
 

from the same group, with P
B
> P

A
 , any sub-sequence of IDK classifiers where 

K
A
 occurs after K

B
 cannot be part of an optimal IDK cascade, since the probabil-

ity of K
A
 making a classification when K

B
 did not is zero ( p(KA|KB) = 0 ). For the 

opposite ordering, with K
A
 first, the conditional probability that K

B
 will make a 

classification given that K
A
 did not is given by:

Further, the probability p(S) that a sub-sequence S = ⟨K
A
, K

B
⟩ of fully dependent 

IDK classifiers will fail to make a classification can be expressed in terms of condi-

tional probabilities:

which equates to the probability that the most powerful of the dependent IDK classi-

fiers will fail to make a classification.

Considering a sub-sequence S = ⟨K
A
, K

I
, K

B
⟩ , where K

A
 and K

B
 are fully 

dependent IDK classifiers in the same group, with K
B
 the more powerful classi-

fier (i.e. P
B
> P

A
 ), and K

I
 is an independent IDK classifier (i.e.  from a different 

group), then the probability that the sub-sequence will fail to make a classifica-

tion is given by:

In general, considering an IDK cascade S composed of classifiers from independent 

groups of fully dependent IDK classifiers, the probability that the IDK cascade will 

fail to make a classification is given by:

where Z is a set containing for each group only the single most powerful IDK classi-

fier from the group that is present in S.

We illustrate the analysis for a mix of IDK classifiers via Example 5, obtained 

from Example 4 by renaming the deterministic classifier to K
4
 , and adding an inde-

pendent classifier K
3
.

(7)p(KB|KA) =
PB − PA

1 − PA

(8)p(S) = p(KA)p(KB|KA) = (1 − PA)

(
1 −

PB − PA

1 − PA

)
= (1 − PB)

(9)

p(S) = p(KA)p(KI)p(KB|KA)

= (1 − PA)(1 − PI)

(
1 −

PB − PA

1 − PA

)

= (1 − PI)(1 − PB)

(10)
p(S) =

∏

j∈Z

(

1 − Pj

)
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Example 5 Suppose that we have four IDK classifiers with parameters as set out in 

Table 3, where K
4
 is the deterministic classifier and the other three IDK classifiers 

are partitioned into two groups as follows:

Since sub-sequences where K
2
 appears before K

1
 cannot be part of an optimal IDK 

cascade, we ignore such cases and enumerate all other IDK cascades. Similar to 

Example 4, it can be verified that the IDK cascade ⟨K1;K2;K4⟩ has an expected dura-

tion of

IDK cascade ⟨K1;K4⟩ has an expected duration of

and IDK cascade ⟨K2;K4⟩ has an expected duration of

finally ⟨K
4
⟩ has an expected duration of 15.

Building upon the IDK cascades above and inserting K
3
 , it can be verified that 

IDK cascade ⟨K3;K1;K2;K4⟩ has an expected duration of

IDK cascade ⟨K1;K3;K2;K4⟩ has an expected duration of

IDK cascade ⟨K1;K2;K3;K4⟩ has an expected duration of

IDK cascade ⟨K3;K1;K4⟩ has an expected duration of

�1 = {K1, K2},�2 = {K3}

5 + (1 − 0.5) × 9 + (1 − 0.8) × 15 = 12.5

5 + (1 − 0.5) × 15 = 12.5

9 + (1 − 0.8) × 15 = 12

8 + (1 − 0.75) × 5 + (1 − 0.75)(1 − 0.5) × 9 + (1 − 0.75)(1 − 0.8) × 15 = 11.125

5 + (1 − 0.5) × 8 + (1 − 0.5)(1 − 0.75) × 9 + (1 − 0.75)(1 − 0.8) × 15 = 10.875

5 + (1 − 0.5) × 9 + (1 − 0.8) × 8 + (1 − 0.75)(1 − 0.8) × 15 = 11.85

8 + (1 − 0.75) × 5 + (1 − 0.75)(1 − 0.5) × 15 = 11.125

Table 3  Parameters of 

independent groups of 

dependent IDK classifiers for 

Example 5

K
i

C
i

P
i

�
i

K
1

5 0.50 �
1

K
2

9 0.80 �
1

K
3

8 0.75 �
2

K
4

15 1.00
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IDK cascade ⟨K1;K3;K4⟩ has an expected duration of

IDK cascade ⟨K3;K2;K4⟩ has an expected duration of

IDK cascade ⟨K2;K3;K4⟩ has an expected duration of

and finally, IDK cascade ⟨K3;K4⟩ has an expected duration of

Hence, there are two optimal IDK cascades, ⟨K1;K3;K4⟩ and ⟨K1;K3;K2;K4⟩ , both of 

which have an expected duration of 10.875 .   ◻

Example 5 illustrates a crucial point regarding the difficulty of determining an 

optimal IDK cascade for independent groups of dependent IDK classifiers. For the 

sub-problem with only one fully dependent group and the deterministic classifier 

(i.e.  K
1
 , K

2
 , and K

4
 ) then the optimal IDK cascade is ⟨K2;K4⟩ , yet once an extra 

group is added (effectively just the independent IDK classifier K
3
 ) then the use of 

K
1
 becomes essential to obtain an optimal IDK cascade, i.e.  either ⟨K1;K3;K4⟩ or 

⟨K1;K3;K2;K4⟩. This shows that a divide-and-conquer approach, first determining the 

local solution for each group of dependent IDK classifiers and then using only those 

classifiers in the global solution, is not optimal.

Lemma 2 shows that when we consider only independent IDK classifiers, then an 

optimal IDK cascade can be obtained by considering the classifiers in order of the 

increasing ratio of their execution time to their success probability, which is simply 

C
i
∕P

i
 in that case. Further, when we consider only fully dependent IDK classifiers, 

then an optimal IDK cascade can be obtained by considering the classifiers in order 

of their increasing probability P
i
 , with the problem effectively reduced to determin-

ing which classifiers, if any, to omit.

The problem is however subtly different when we attempt to build an optimal 

IDK cascade from multiple independent groups of fully dependent classifiers. In this 

case, there is no single complete ordering of classifiers from which we can make a 

step-by-step selection of the ones to use. The reason for this is as follows. When 

selecting between two mutually independent classifiers K
2
 and K

3
 from two different 

groups ( �1 = {K1, K2},�2 = {K3} ) then the two classifiers should be ordered 

according to increasing values of the ratio of their execution time to their probability 

5 + (1 − 0.5) × 8 + (1 − 0.75)(1 − 0.5) × 15 = 10.875

8 + (1 − 0.75) × 9 + (1 − 0.75)(1 − 0.8) × 15 = 11

9 + (1 − 0.8) × 8 + (1 − 0.75)(1 − 0.8) × 15 = 11.35

8 + (1 − 0.75) × 15 = 11.75
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of making a successful classification of any as yet unclassified input. (This ordering 

follows directly from the proof of Lemma 2 for independent classifiers). However, 

for an IDK classifier such as K
2
 that is a member of a group of fully dependent IDK 

classifiers, this probability is a conditional one that depends on the previous classi-

fier (e.g. K
1
 ), if any, from the same group that appears in the IDK cascade. The prob-

ability of K
2
 making a successful classification of any as yet unclassified input and 

hence its relative ordering with respect to K
3
 can therefore depend on whether or not 

K
1
 is present in the IDK cascade. Specifically, when C

2
∕P

2
< C

3
∕P

3
< C

2
∕
(

P
2
−P

1

1−P
1

)

 

then the ordering of K
2
 and K

3
 switches depending on whether or not K

1
 is present in 

the IDK cascade. This issue is illustrated in Example 6.

Example 6 The parameters of the classifiers used in this example are as set out 

in Table  4. IDK classifiers K
1
 and K

2
 , with parameters (C1 = 5, P1 = 0.5) and 

(C2 = 9, P2 = 0.8) respectively, are members of the same group �1 = {K1, K2} . IDK 

classifier K
3
 , with parameters (C3 = 10, P3 = 0.5) , is a member of a separate group 

�
2
= {K

3
} and hence is independent of K

1
 and K

2
 . Finally, K

4
 , with parameters 

(C4 = 20, P4 = 1.0) is the deterministic classifier.

In attempting to build an optimal IDK cascade, we can apply the previously 

derived rules when selecting from classifiers that are dependent. Hence, if more than 

one dependent IDK classifier from the same group is present in the IDK cascade, 

then those classifiers must appear in order of their probability i.e. K
1
 first then K

2
 , 

since P
2
> P

1
.

Similarly, when selecting between classifiers that are independent of one another, 

those classifiers must appear in order of the ratio of their execution time to their 

probability of successfully classifying any as yet unclassified input, noting that this 

probability is conditional on the previous classifier, if any, from the same dependent 

group that already appears in the IDK cascade.

Table 4  Parameters of 

independent groups of 

dependent IDK classifiers for 

Example 6

K
i

C
i

P
i

�
i

K
1

5 0.50 �
1

K
2

9 0.80 �
1

K
3

10 0.75 �
2

K
4

20 1.00
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The probability of K
2
 correctly classifying any as yet unclassified input is given 

by P
2
= 0.8 if K

1
 does not appear in the IDK cascade, and by p(K

2
|K

1
) =

0.8−0.5

1−0.5
= 0.6 

if K
1
 appears before K

2
 . Further, since C

2
∕P

2
= 11.25 , C

3
∕P

3
= 13.333 , and 

C
2
∕
(

P2−P1

1−P1

)

= 15 then the relative order of K
2
 and K

3
 depends on whether or not K

1
 

is used. If K
1
 is present, then including K

3
 before K

2
 will result in a lower overall 

expected duration, otherwise it is more effective to include K
2
 before K

3
 . We enu-

merate only the IDK cascades relevant to this point. It can be verified that IDK cas-

cade ⟨K1;K2;K3;K4⟩ has an expected duration of

Switching the order of K
2
 and K

3
 , IDK cascade ⟨K1;K3;K2;K4⟩ has an expected dura-

tion of

Omitting K
1
 , it can be verified that IDK cascade ⟨K2;K3;K4⟩ has an expected dura-

tion of

Switching the order of K
2
 and K

3
 , IDK cascade ⟨K3;K2;K4⟩ has an expected duration 

of

Observe that when K
1
 is included, it is more effective for K

2
 to appear after K

3
 , 

whereas if K
1
 is omitted, then it is more effective for K

2
 to precede K

3
 , as in the opti-

mal IDK cascade ⟨K2;K3;K4⟩ .   ◻

The issues of inclusion (illustrated by Example 5) and ordering (illustrated by 

Example 6) make the problem of determining an optimal IDK cascade for multiple 

independent groups of fully dependent IDK classifiers much more difficult than the 

individual cases of all independent or all fully dependent classifiers addressed in 

Sects. 3 and 4. 

5 + (1 − 0.5) × 9 + (1 − 0.8) × 10 + (1 − 0.8)(1 − 0.75) × 20 = 12.5

5 + (1 − 0.5) × 10 + (1 − 0.5)(1 − 0.75) × 9 + (1 − 0.75)(1 − 0.8) × 20 = 12.125

9 + (1 − 0.8) × 10 + (1 − 0.8)(1 − 0.75) × 20 = 12

10 + (1 − 0.75) × 9 + (1 − 0.75)(1 − 0.8) × 20 = 13.25
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Algorithm 3 Synthesizing an IDK cascade with minimum expected duration,

from multiple independent groups of dependent classifiers

OptOrderMixed(Γ =
{

(C1, P1), (C2, P2), . . . , (Cn, Pn)
}

)

1 // Γ is partitioned into dependent groups of classifiers
2 Initialize B to an array of n bits
3 minLength = ∞

4 minVec = [0, 0, . . . , 0]
5 // Cycle through all the possible values of B[. . .] that have (B[n] == 1) in any order
6 for B = [0, 0, . . . , 1] to [1, 1, . . . , 1]
7 tmp = computeLength(Γ, B)
8 if (tmp < minLength)
9 minLength = tmp

10 minVec = B

11 return IDK cascade comprising the classifiers indicated by minVec, in the order
12 they are marked as “used” by computeLength(Γ,minVec)

computeLength(Γ, B)

1 // Determine the expected duration of the IDK cascade that includes only the
2 // classifiers Ki for which B[i] == 1
3 Initialize the IDK cascade to be empty, and mark all included classifiers as “unused”
4 length = 0
5 prob = 1.0
6 repeat

7 for each dependent group with unused classifiers
8 –Identify as a candidate classifier the least-powerful (i.e., smallest Pi) as
9 yet unused classifier Ki from the group

10 –Let Pj be the probability for the previous classifier Kj , if any, from the
11 same group, that is also included according to B[j], with Pj = 0 if there is
12 no such classifier

13 –Compute the conditional probability P̂i =
Pi−Pj

1−Pj
for Ki using Definition 2

14 Select the candidate classifier that has the minimum ratio of execution time to

15 conditional probability. Let Kk denote this selected classifier, P̂k its conditional
16 probability, and Ck its execution time
17 Mark Kk as “used”.
18 length = length + (Ck × prob) // since Kk is executed with probability prob

19 prob = (prob × (1 − P̂k)) // Since Kk fails with probability (1 − P̂k)
20 until (deterministic classifier Kn has been selected)
21 return length

Algorithm 3 is a straightforward exponential time algorithm7 that finds the opti-

mal solution by explicitly considering all possibilities, in the following manner. 

Letting the n-bit array B denote a particular subset of the classifiers (with B[i]==1 

indicating that the i’th classifier K
i
 is included in this subset and B[i]==0 indicating 

that it is not), the procedure OPTORDERMIXED(� ) iterates through all 2n−1 subsets 

7 Although such an algorithm cannot be considered efficient, it is unlikely that n > 20 classifiers would 

be available for any given problem, and hence such an optimal algorithm may nevertheless prove useful 

in practice where the number of classifiers that could be used is limited.
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of the classifiers in �  that include the deterministic classifier K
n
 , in order to deter-

mine which has the smallest expected duration. The expected duration of the subset 

denoted by B is computed by procedure COMPUTELENGTH(� , B) , by repeatedly:

– Determining the set of candidate classifiers that could be used next. This candi-

date set comprises the first (i.e. lowest power) as yet unused classifier from each 

group that is present in the trial set according to B. (Note, the deterministic clas-

sifier is considered to occupy a group on its own and is therefore always included 

as a candidate).

– Selecting from the candidate classifiers the one with the minimum ratio of its 

execution time to its conditional probability, and marking it as used.

It is evident that the running time of Algorithm 3 is �(2n−1
n

2) , and hence exponen-

tial in the number of classifiers n.

Note that while Algorithm 3 provides an optimal solution to the simpler problems 

involving (i) only independent IDK classifiers (Sect. 3), and (ii) only fully depend-

ent IDK classifiers (Sect. 4), it has higher complexity and hence is less efficient than 

Algorithms 1 and 2 that were specifically designed for those cases.

7  Timing constraints on classification

Previous sections considered the problem of determining the optimal IDK cas-

cade, that minimizes the expected duration for successful classification, given a set 

of independent IDK classifiers (Sect.  3), a set of fully dependent IDK classifiers 

(Sect. 4), or independent groups of fully dependent IDK classifiers (Sect. 5). In each 

case there was no constraint placed on the maximum duration of the IDK cascade. 

In this section, we consider a variant of each of these problems in which a timing 

constraint is specified, thus the objective is to determine the optimal IDK cascade, 

that minimizes the expected duration for successful classification, subject to the con-

straint that the maximum duration of the IDK cascade does not exceed a specified 

hard deadline D. We suspect, but have not yet been able to prove, that the problem of 

determining an optimal IDK cascade, subject to a deadline constraint, is NP-hard in 

each of these three cases.

A problem instance is now specified as:

where K1, K2,… , K
n
 are n IDK classifiers with K

n
 the deterministic classifier (i.e., 

P
n
= 1 ), and D ∈ ℕ is the specified deadline.

The maximum duration of an IDK cascade is simply the sum of the execution 

times ( C
i
 ) of all of the classifiers deployed in that cascade. Since we must ensure 

that classification is always completed successful within the deadline D, it follows 

that a problem instance is feasible if and only if C
n
≤ D . In other words, if and only 

if the deterministic classifier has a duration that does not exceed the deadline. Other 

problem instances are infeasible and are not considered further.

(11)

⟨

� =
{

K
i
= (C

i
, P

i
)
}n

i=1
, D

⟩
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7.1  Independent IDK classifiers with a deadline

In this subsection, we consider the problem of determining an optimal IDK cascade, 

subject to a deadline constraint, given a set of n independent IDK classifiers.

We observe that Lemma  2 (from Sect.  3) continues to hold irrespective of the 

presence of a deadline. Hence, adjacent classifiers in an optimal IDK cascade must 

satisfy the property that the ratio of their execution time to their success probability 

(i.e.  C
i
∕P

i
 ) is non-decreasing. We assume, without loss of generality, that the classi-

fiers are indexed according to non-decreasing C
i
∕P

i
 ; i.e., for all i we have:

This assumption can be realized for any problem instance by sorting, in �(n log n) 

time. Since any optimal IDK cascade must always end with the deterministic clas-

sifier, we assume that any IDK classifier Kj that has a ratio of its execution time to 

its success probability that is greater than that of the deterministic classifier is dis-

carded. (From Lemma 2, we know that any such IDK classifier cannot appear before 

the deterministic classifier in any optimal IDK cascade, and hence discarding it has 

no effect on optimality.) Hence we may potentially reduce the value of n, with K
n
 

again representing the deterministic classifier.

Given a modified problem instance as specified above, we apply the technique 

of dynamic programming (Bellman 1957) to determine an optimal IDK cascade of 

minimum expected duration, subject to the constraint that the maximum duration 

does not exceed D. We begin with a definition.

Definition 4 Let E(k,  d) denote the minimum expected duration for the following 

sub-problem of the problem instance specified by (11)

That is, only the classifiers K
k
, K

k+1,… , K
n
 are available, and there is a sub-deadline 

of d.

Using the notation from Definition 4, the expected duration of the optimal IDK 

cascade for the complete problem instance is E(1, D), i.e. where the deadline is D, 

and all n classifiers K1, K2 , … , K
n
 are available.

In building a solution we first look at the sub-problem where only the determin-

istic classifier K
n
 is available, and compute the values of E(n, d) for all values of d. 

We have:

In other words, if the deadline is smaller than the execution time C
n
 of the deter-

ministic classifier K
n
 , then the sub-problem instance is infeasible, represented by an 

C
i

P
i

≤
C

i+1

P
i+1

⟨

{

K
i
= (C

i
, P

i
)
}n

i=k
, d

⟩

(12)E(n, d) =

{

∞, if d < C
n

C
n
, otherwise (i.e. if d ≥ C

n
)
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expected duration of infinity. Otherwise, d ≥ C
n
 and so the optimal IDK cascade 

for the sub-problem comprises the deterministic classifier K
n
 , and hence has an 

expected duration of C
n
.

Now, assuming that we have already determined the values of E(k + 1, d
�) for all 

d
′ , we can compute the values of E(k, d) for all d as follows:

where

– The first term within the min() reflects the decision not to use classifier K
k
 , 

and hence the expected duration is equal to the minimum expected duration 

E(k + 1, d) using only the classifiers K
k+1, K

k+2 , … , K
n
.

– The second term within the min() reflects the decision to use classifier K
k
 . In 

which case classifier K
k
 always executes, taking a time C

k
 , since according to 

Lemma 2 it precedes the remaining classifiers in an optimal IDK cascade. When 

classifier K
k
 executes, it fails to make a successful classification with a probabil-

ity (1 − P
k
) , and when this happens, the remainder of the IDK cascade is exe-

cuted with a minimum expected duration of E(k + 1, d − C
k
) , since the classifiers 

remaining are K
k+1, K

k+2 , … , K
n
 , and the available time remaining is d − C

k
.

Equation (12) can be used to determine E(n, d) for all d. Having done so, repeated 

application of (13) can be used to determine E(n − 1, d) , E(n − 2, d),..., E(1,  d), 

for all d, and hence obtain the value of E(1, D), which as mentioned earlier is the 

expected duration of an optimal IDK cascade for the complete problem instance. 

Further, the optimal IDK cascade that has this duration can be deduced by observ-

ing which of the first or the second term in the min() is smaller each time that (13) is 

applied.

Example 7 Suppose that we have three independent IDK classifiers K
1
 , K

2
 , and K

3
 

with parameters (C1 = 1, P1 = 0.4) , (C2 = 3, P2 = 0.9) , and (C3 = 2, P3 = 0.5) and a 

deterministic classifier K
4
 with parameters (C4 = 10, P4 = 1.0) as shown in Table 5, 

and a deadline D = 13 . Note the classifiers are again ordered according to the ratio 

C
i
∕P

i
 as they must be in any optimal IDK cascade of independent IDK classifiers, 

with the deterministic classifier last.

(13)E(k, d) = min

(

E(k + 1, d), C
k
+ (1 − P

k
) ⋅ E(k + 1, d − C

k
)

)

Table 5  Parameters of 

independent IDK classifiers for 

Example 7

K
i

C
i

P
i

K
1

1 0.40

K
2

3 0.90

K
3

2 0.50

K
4

10 1.00
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Let us consider the minimum expected duration E(k, d) of an IDK cascade start-

ing with each of the four classifiers, E(k, d) for k = 4… 1 , where the IDK cascade 

has a maximum length not exceeding d for values of d = 0…D . When no such IDK 

cascade is possible, then E(k, d) = ∞ . The computed values of E(k, d) are shown in 

Table 6 and are explained below. Note, the values of E(k, d) are assumed to be ∞ for 

all negative values of d.

– Starting with k = 4 , trivially we have E(4, d) = ∞ for d < C
4
= 10 and 

E(4, d) = C4 = 10 for d ≥ C
4
 since the only available classifier is K

4
.

– Considering k = 3 : (i) If K
3
 is not included in the IDK cascade, 

then E(3, d) = E(4, d) , (ii) otherwise K
3
 is included, in which case 

E(3, d) = C3 + (1 − P3) × E(4, d − C3) . As we are interested in the minimum 

values, we take the minimum of E(3,  d) from the two cases for each value of 

d, thus E(3, d) = ∞ for d < 10 and E(3, d) = 10 for 10 ≤ d < 12 (from (i)), and 

E(3, d) = C3 + (1 − P3) × E(4, d − C3) = 7 for d ≥ 12 (from (ii)).

– Considering k = 2 : (i) If K
2
 is not included in the IDK cascade, 

then E(2, d) = E(3, d) , (ii) otherwise K
2
 is included, in which case 

E(2, d) = C2 + (1 − P2) × E(3, d − C2) . Again, taking the minimum of 

E(2,  d) from the two cases, we have E(2, d) = ∞ for d < 10 , E(2, d) = 10 

for 10 ≤ d < 12 , and E(2, d) = 7 for d = 12 (from (i)), and E(2, d) = 4 for 

12 < d ≤ 14 and E(2, d) = 3.7 for d > 14 (from (ii)).

– Finally, considering k = 1 : (i) If K
1
 is not included in the IDK cas-

cade, then E(1, d) = E(2, d) , (ii) otherwise K
2
 is included, in which case 

E(1, d) = C1 + (1 − P1) × E(2, d − C1) . Taking the minimum of E(1,  d) from 

the two cases, we have E(1, d) = ∞ for d < 10 , E(1, d) = 10 for d = 10 , and 

E(1, d) = 4 for d = 13 (from (i)), and E(1, d) given by the values shown in Table 6 

for the remaining values of d (from (ii)). Note that the value of E(1, 12) = 7 is 

obtained via both (i) and (ii).

As any valid IDK cascade must end with the deterministic classifier, K
4
 in this case, 

the minimum expected duration for the optimal IDK cascade, subject to a deadline 

of D = 13 , is given by E(1, D) = E(1, 13) = 4 for this example. Tracing back how 

that result was obtained, we see that it is for the IDK cascade ⟨K2, K4⟩ , with clas-

sifiers K
1
 and K

3
 unused. We note that the optimal IDK cascade is, as expected, 

dependent on the length of deadline permitted. If the deadline were longer, D ≥ 16 , 

then all four classifiers could be used with an expected duration of 3.22, whereas 

Table 6  Values of E(k, d) for Example 7

d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E(4, d) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 10 10 10 10 10 10 10

E(3, d) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 10 10 7 7 7 7 7

E(2, d) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 10 10 7 4 4 3.7 3.7

E(1, d) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 10 7 7 4 3.4 3.4 3.22
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with a shorter deadline of D = 14 or D = 15 the optimal IDK cascade would be 

⟨K1, K2, K4⟩ , with an expected duration of 3.4. For a shorter deadline of D = 12 the 

optimal IDK cascade would be either ⟨K1, K4⟩ or ⟨K3, K4⟩ , with an expected duration 

of 7. Further, with a deadline of D = 11 , only ⟨K1, K4⟩ would be optimal with the 

same expected duration of 7. Finally, with a deadline of D = 10 , it is only possible 

to use the deterministic classifier K
4
 for an expected duration of 10.   ◻

Algorithm 4 provides the pseudo-code implementation of the above method. The 

overall complexity of the algorithm is dominated by the nested for  loops. The outer 

for  loop executes n times and the inner one D times, hence the overall complexity 

is pseudo-polynomial �(nD) in the number of classifiers, assuming that they are pre-

sorted, which can be done in �(n log n) time. 

Algorithm 4 Determining an optimal IDK cascade of independent IDK

classifiers with minimum expected duration and bounded maximum duration

OptOrderMixed(
〈

{

(C1, P1), (C2, P2), . . . , (Cn, Pn)
}

, D
〉

)

1 // Input assumed be sorted according to Ci/Pi: Ci/Pi ≥ Ci+1/Pi+1 for all i
2 // Also assumed that (i) Pn = 1.0; and (ii) Cn ≤ D, otherwise infeasible.
3 // Also assumed that Pi < 1 for all i < n.
4 E[(1, . . . , n) × (0, . . . , D)] of real numbers // Filled in using Dynamic Programming
5 // Initializing E[n, d] for all d (See (12))
6 for d = 0 to (Cn − 1)
7 E[n, d] = ∞

8 for d = Cn to D
9 E[n, d] = Cn

10 // Implementing the recurrence (See (13))
11 for k = (n − 1) downto 1
12 for d = 1 to D
13 // Compute E[k, d] according to (13)
14 E[k, d] = E[k + 1, d] // Initialize E[k, d] to first term in the min() of (13)
15 if (d ≥ Ck) // It is possible to execute Kk. . .
16 // Expected duration if Kk is executed (second term in min() of (13))
17 tmp = Ck + (1 − Pk) · E[k + 1, d − Ck]
18 if (tmp < E[k, d]) // It is better to execute Kk. . .
19 E[k, d] = tmp // Update E[k, d] to second term in min() of (13)
20 // Print the optimal schedule
21 d = D
22 for k = 1 to n − 1
23 if (E[k, d] �= E[k + 1, d])
24 // Kk must have been selected. . .
25 print out Kk

26 d = d − Ck

27 print out Kn
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7.2  Fully dependent IDK classifiers with a deadline

In this subsection, we consider the problem of determining an optimal IDK cascade, 

subject to a deadline constraint, given a set of n fully dependent IDK classifiers.

Since the classifiers are fully dependent, we observe that irrespective of the pres-

ence of a deadline, there is no benefit in executing a classifier with smaller probabil-

ity Pj after one with a larger probability Pi > Pj , since from Definition 2 (in Sect. 2), 

we have p(Kj|Ki) = 0 . We therefore assume, without loss of generality, that the clas-

sifiers are ordered according to increasing values of their probability P
i
 , with the 

deterministic classifier K
n
 with P

n
= 1 last. This assumption can be realized for any 

problem instance by sorting, in �(n log n) time.

Similar to the independent case considered in Sect. 6.1, we again apply dynamic 

programming to determine an optimal IDK cascade of minimum expected duration, 

subject to the constraint that the maximum duration does not exceed D. The follow-

ing definition is analogous to Definition 4.

Definition 5 Let F(k, d) denote the minimum expected duration of an IDK cascade 

ending with classifier K
k
 (and hence achieving a success probability equal to P

k
 ) 

while also guaranteeing to meet a deadline d for the following sub-problem of the 

problem instance specified in (11)

That is, only the classifiers K1, K2,… , K
k
 are available, and there is a deadline of d.

Using the notation from Definition 5, the expected duration of the optimal IDK 

cascade for the complete problem instance specified in (11) is F(n,  D). In other 

words where all n classifiers K1, K2 , … , K
n
 are available and the deadline is D.

In building a solution we first look at the sub-problem where only classifier K
1
 is 

available, and compute the values of F(1, d) for all values of d. We have:

In other words, if the deadline d is smaller than the execution time C
1
 of the clas-

sifier K
1
 , then the sub-problem instance is infeasible, represented by an expected 

duration of infinity. Otherwise, d ≥ C
1
 and so the optimal IDK cascade for the sub-

problem comprises the classifier K
1
 , and hence has an expected duration of C

1
.

Now, assuming that we have already determined the values of F(k − 1, d
�) for all 

d
′ , we can compute the values of F(k, d) for all d as follows:

where

⟨

{

K
i
= (C

i
, P

i
)
}k

i=1
, d

⟩

(14)F(1, d) =

{

∞, if d < C1

C1 otherwise

(15)

F(k, d) =

{

∞, if d < C
k

min

(

C
k
, min1≤i<k

{

F(i, d − C
k
) + (1 − P

i
) × C

k

})

otherwise
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– A deadline d that is smaller than the execution time C
k
 of the classifier K

k
 , 

required by the sub-problem instance to end the IDK cascade, indicates that the 

sub-problem is infeasible and so F(k, d) = ∞.

– The first term within the min() reflects the decision to use only classifier K
k
 , and 

hence the expected duration is equal to C
k
.

– The second term within the min() reflects the decision to append classifier K
k
 

to some IDK cascade that ends with a classifier K
i
 , where i < k , i.e. K

i
 appears 

earlier in the order of the classifiers than K
k
 , and hence P

i
< P

k
 . Since classifier 

K
k
 , with execution time C

k
 , must be appended to this suffix IDK cascade, the 

deadline available for the suffix IDK cascade is reduced to d − C
k
 . The minimum 

expected duration of such a suffix IDK cascade is therefore given by F(i, d − C
k
) . 

Further, as the classifiers are fully dependent and ordered by their increasing 

probabilities, the probability that the suffix IDK cascade ending in K
i
 will fail 

to make a successful classification and therefore K
k
 will need to execute is given 

by (1 − P
i
) . Hence the overall minimum expected duration when classifier K

k
 is 

immediately preceded by K
i
 is given by F(i, d − C

k
) + (1 − P

i
) × C

k
 . Since we 

are interested in the minimum expected duration of any IDK cascade ending in 

K
k
 with duration not exceeding d, we take the minimum over all possible values 

of i, i.e. 1 ≤ i < k.

We note that the recurrence in (15) can be evaluated within a nested loop, with the 

outer loop iterating over values of k from 1 to n, and the inner loop iterating over 

values of d from 0 to D (Table 7).

Example 8 Suppose that we have three fully dependent IDK classifiers K
1
 , K

2
 , and 

K
3
 , with parameters (C1 = 1, P1 = 0.5) , (C2 = 3, P2 = 0.8) , and (C3 = 6, P3 = 0.99) 

respectively, and a deterministic classifier K
4
 with parameters (C4 = 8, P4 = 1.0) , 

and a deadline D = 16 . Note the classifiers are again ordered according to their 

probabilities, as they must be in any optimal IDK cascade of fully dependent classi-

fiers, with the deterministic classifier last.

Let us consider the minimum expected duration F(i, d) of an IDK cascade ending 

with each of the four classifiers, i.e. F(i, d) for i = 1… 4 , where the IDK cascade 

has a maximum length not exceeding d for values of d = 0…D . When no such IDK 

cascade is possible, then F(i, d) = ∞ . The computed values of F(i, d) are shown in 

Table 7  Parameters of fully 

dependent IDK classifiers for 

Example 8

K
i

C
i

P
i

K
1

1 0.50

K
2

3 0.80

K
3

6 0.99

K
4

8 1.00
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Table 8 and are explained below. Note, the values of F(i, d) are assumed to be ∞ for 

all negative values of d.

– Starting with classifier K
1
 , trivially we have F(1, d) = ∞ for d < C

1
= 1 and 

F(1, d) = C1 = 1 for d ≥ C
1
 since no other classifiers can precede K

1
 in an opti-

mal IDK cascade.

– Considering K
2
 , there are two possibilities: (i) K

2
 is the only classifier in the 

cascade, in which case F(2, d) = C2 = 3 for d ≥ C
2
 and F(2, d) = ∞ otherwise; 

(ii) K
2
 is preceded by K

1
 , in which case F(2, d) = F(1, d − C2) + (1 − P1)C2 , 

since for K
2
 to run after K

1
 and finish by d, K

1
 must finish by d − C

2
 . As we are 

interested in the minimum values, we take the minimum of F(2, d) from the 

two cases for each value of d, thus F(2, d) = ∞ for d < 3 and F(2, 3) = C2 = 3 

(from (i)), and F(2, d) = F(1, d − C2) + (1 − P1)C2 = 2.5 for d ≥ 4 (from (ii)).

– Considering K
3
 , there are three possibilities: (i) K

3
 is the only classifier in the 

cascade, in which case F(3, d) = C3 = 6 for d ≥ C
3
 and F(3, d) = ∞ otherwise; 

(ii) K
3
 is preceded by K

1
 , in which case F(3, d) = F(1, d − C3) + (1 − P1)C3 ; 

(iii) K
3
 is preceded by K

2
 , in which case F(3, d) = F(2, d − C3) + (1 − P2)C3 . 

As we are interested in the minimum values, we take the minimum of F(3, d) 

from the three cases for each value of d, thus F(3, d) = ∞ for d < C
3
= 6 

and F(3, 6) = C3 = 6 (from (i)), F(3, d) = F(1, d − C3) + (1 − P1)C3 = 4 for 

d ∈ (7, 8, 9) (from (ii)), and F(3, d) = F(2, d − C3) + (1 − P2)C3 = 3.7 for 

d ≥ 10 (from (iii)).

– Finally, considering K
4
 , there are four possibilities: (i) K

4
 is the only 

classifier in the cascade, in which case F(4, d) = C4 = 8 for d ≥ C
4
 

and F(4, d) = ∞ otherwise; (ii) K
4
 is preceded by K

1
 , in which case 

F(4, d) = F(1, d − C4) + (1 − P1)C4 ; (iii) K
4
 is preceded by K

2
 , in which 

case F(4, d) = F(2, d − C4) + (1 − P2)C4 ; (iv) K
4
 is preceded by K

3
 , in which 

case F(4, d) = F(3, d − C4) + (1 − P3)C4 . As we are interested in the mini-

mum values, we take the minimum of F(4,  d) from the four cases for each 

value of d, thus F(4, d) = ∞ for d < C
4
= 8 and F(4, 8) = C4 = 8 (from 

(i)), F(4, d) = F(1, d − C4) + (1 − P1)C4 = 5 for d ∈ (9, 10) (from (ii)), 

F(4, d) = F(2, d − C4) + (1 − P2)C4 for d ∈ (11, 12, 13, 14) (from (iii)), and 

F(4, d) = F(3, d − C4) + (1 − P3)C4 = 4.08 for d ≥ 15 (from (iv)).

As any valid IDK cascade must end with the deterministic classifier, K
4
 in this 

case, the minimum expected duration for the optimal IDK cascade is given by 

F(n, D) = f (4, 16) = 4.08 for this example. Tracing back how that result was 

Table 8  Values of F(i, d) for Example 8

d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

F(1, d) ∞ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F(2, d) ∞ ∞ ∞ 3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

F(3, d) ∞ ∞ ∞ ∞ ∞ ∞ 6 4 4 4 3.7 3.7 3.7 3.7 3.7 3.7 3.7

F(4, d) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 8 5 5 4.6 4.1 4.1 4.1 4.08 4.08



1 3

Real-Time Systems 

obtained, we see that it is for the IDK cascade ⟨K1, K3, K4⟩ , with K
2
 unused. We 

note that the optimal IDK cascade is, as expected, dependent on the length of 

deadline permitted. If the deadline were longer, D ≥ 18 , then all four classifiers 

could be used with an expected duration of 3.78, whereas with a shorter deadline 

of D = 12 the optimal IDK cascade would be ⟨K1, K2, K4⟩ , with K
2
 unused, and 

an expected duration of 4.1. Further, with a deadline of D = 11 , only ⟨K2, K4⟩ 

would be used for an expected duration of 4.6, and with a deadline of 9 or 10, 

only ⟨K1, K4⟩ would be used for an expected duration of 5.   ◻

next

next

Algorithm 5 provides the pseudo-code implementation of the above method. 

The overall complexity of the algorithm is dominated by the three nested for   

loops, hence the overall complexity is pseudo-polynomial �(n2
D) in the number 
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of classifiers, assuming that they are pre-sorted, which can be done in �(n log n) 

time.

7.3  Independent groups of fully dependent IDK classifiers with a deadline

In this subsection, we consider the problem of determining an optimal IDK cascade, 

subject to a deadline constraint, given multiple independent groups of fully depend-

ent IDK classifiers,8 and a single deterministic classifier.

In Sects. 6.1 and 6.2, we used dynamic programming techniques to extend the 

polynomial time methods for obtaining optimal IDK cascades for (i) independ-

ent IDK classifiers (Sect. 3) and (ii) fully dependent IDK classifiers (Sect. 4) into 

pseudo-polynomial methods for solving these problems subject to a hard deadline 

constraint. However, for the problem considered in this subsection, we take a differ-

ent approach.

In Sect. 5 we presented the method described by Algorithm 3 for obtaining opti-

mal IDK cascades given multiple independent groups of fully dependent IDK classi-

fiers. Recall that Algorithm 3 examines each possible subset of classifiers that could 

potentially comprise the optimal IDK cascade. This is controlled via an n-bit array B 

that is used to indicate which of the n classifiers will be included in a trial solution, 

i.e. B[j]==1 indicates that the j-th classifier is included and B[j]==0 indicates that it 

is not. Note, since the deterministic classifier is always included, B[n]==1.

Algorithm  3 is easily adapted to also account for a specified hard deadline D: 

we can simply discard any trial solution where the sum of the execute times of the 

classifiers used exceeds the deadline, i.e. 
∑

∀k∶B[k]=1
C

k
> D . Since the deadline fea-

sibility of each of the 2n−1 trial solutions can be evaluated in �(n) time, the overall 

complexity remains �(2n−1
n

2) . Below we provide an illustrative example.

Example 9 The parameters of the classifiers used in this example are given in 

Table 9, and are the same as those used in Example 6 in Sect.  5. IDK classifiers 

K
1
 and K

2
 , with parameters (C1 = 5, P1 = 0.5) and (C2 = 9, P2 = 0.8) respectively, 

are members of the same group �1 = {K1, K2} . IDK classifier K
3
 , with parameters 

(C3 = 10, P3 = 0.5) , is a member of a separate group �
2
= {K

3
} and hence is inde-

pendent of K
1
 and K

2
 . Finally, K

4
 , with parameters (C4 = 20, P4 = 1.0) is the deter-

ministic classifier.

Assuming a deadline D = 36 , then trial solutions {K1, K2, K3, K4} and {K2, K3, K4} 

are infeasible, since they have a maximum duration of 44 and 39 respectively. 

Table 9  Parameters of 

independent groups of 

dependent IDK classifiers for 

Example 9

K
i

C
i

P
i

�
i

K
1

5 0.50 �
1

K
2

9 0.80 �
1

K
3

10 0.75 �
2

K
4

20 1.00

8 Recall that groups of size one represent IDK classifiers that are independent of all other IDK classifiers.
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Examining all other trial solutions, it can be verified that the optimal IDK cascade 

compliant with the deadline is ⟨K1, K3, K4⟩ with an expected duration of

and a maximum duration of 35.   ◻

The Algorithms 3, 4, and 5 that are used to determine optimal IDK cascades with 

a bounded maximum duration have complexity of �(2n−1
n

2) , �(nD) , and �(n2
D) 

respectively. In cases where the run time of these algorithms becomes prohibitive, 

due to large numbers of classifiers or long deadlines, then heuristic methods could 

potentially be employed, as discussed in Baruah et al. (2021). Such heuristics are not 

explored further here.

8  Context and conclusions

Learning-enabled components, particularly those based on Deep Neural Networks 

(DNNs), are increasingly being used in safety-critical real-time systems. It is imper-

ative that the real-time scheduling theory community respond to this development 

by coming up with appropriate techniques to enable the offline analysis of systems 

that use such components.

In this work, we have adapted and applied algorithmic techniques from real-

time scheduling theory to a proposed DNN use-case (Wang et al. 2018) that seeks 

to strike a balance between accuracy and timeliness by arranging individual DNN-

based classifiers, augmented by the ability to classify inputs as belonging to an addi-

tional IDK class, into IDK cascades. The intuition behind the design of such IDK 

cascades is simple yet elegant: if the earlier classifiers in an IDK cascade can suc-

cessfully identify simple-to-classify inputs, then later more sophisticated and hence 

slower classifiers need only be invoked rarely on truly challenging inputs. We were 

able to formalize this intuition, and from that develop algorithms that synthesize 

optimal IDK cascades from a given set of classifiers, both when the sole objective 

is optimizing expected duration and when there is additionally a hard deadline con-

straint. We were able to provide optimal algorithms for collections of IDK classifiers 

that are respectively, (i) independent, (ii) fully dependent, and (iii) a mix of the two.

The research presented in this paper can be viewed as a proof of concept of the 

principle that real-time scheduling can contribute to better design of real-time sys-

tems that use learning-enabled components, and it behoves us, as a community, to 

take a closer look at such systems. Future research into the scheduling of IDK clas-

sifiers could investigate the complexity of the problem from a theoretical perspec-

tive. For example, is the problem of determining an optimal IDK cascade with a 

deadline constraint NP-hard? Are there more efficient solutions to the problem of 

determining an optimal IDK cascade with independent groups of dependent classi-

fiers with no deadline constraint than the one presented in this paper? Finally, this 

paper considered only the sequential execution of IDK classifiers, effectively the 

single processor case. There is a potentially rich area of associated research that can 

5 + (1 − 0.5) × 10 + (1 − 0.5)(1 − 0.75) × 20 = 12.5
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be undertaken focusing on similar problems in the multiprocessor case, where IDK 

classifiers can execute in parallel.
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