
This is a repository copy of Adaptable adapters.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/186938/

Version: Published Version

Proceedings Paper:
Moosavi, N.S., Delfosse, Q., Kersting, K. et al. (1 more author) (2022) Adaptable adapters.
In: Carpuat, M., de Marneffe, M.-C. and Meza Ruiz, I.V., (eds.) Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. NAACL 2022 - Annual Conference of the
North American Chapter of the Association for Computational Linguistics, 10-15 Jul 2022,
Seattle, WA, USA. ACL - Association for Computational Linguistics , pp. 3742-3753.

https://doi.org/10.18653/v1/2022.naacl-main.274

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 3742 - 3753

July 10-15, 2022 ©2022 Association for Computational Linguistics

Adaptable Adapters

Nafise Sadat Moosavi1∗, Quentin Delfosse3, Kristian Kersting2,3, Iryna Gurevych2,4

1 Department of Computer Science, The University of Sheffield
2 Hessian Center for AI (hessian.AI)

3 AI & Machine Learning Lab, 4 Ubiquitous Knowledge Processing Lab (UKP Lab),

Department of Computer Science, Technical University of Darmstadt

https://www.ukp.tu-darmstadt.de

Abstract

State-of-the-art pretrained NLP models con-

tain a hundred million to trillion parameters.

Adapters provide a parameter-efficient alterna-

tive for the full finetuning in which we can only

finetune lightweight neural network layers on

top of pretrained weights. Adapter layers are

initialized randomly. However, existing work

uses the same adapter architecture—i.e., the

same adapter layer on top of each layer of the

pretrained model—for every dataset, regardless

of the properties of the dataset or the amount

of available training data. In this work, we

introduce adaptable adapters that contain (1)

learning different activation functions for dif-

ferent layers and different input data, and (2) a

learnable switch to select and only use the ben-

eficial adapter layers. We show that adaptable

adapters achieve on-par performances with the

standard adapter architecture while using a con-

siderably smaller number of adapter layers. In

addition, we show that the selected adapter ar-

chitecture by adaptable adapters transfers well

across different data settings and similar tasks.

We propose to use adaptable adapters for de-

signing efficient and effective adapter architec-

tures. The resulting adapters (a) contain about

50% of the learning parameters of the stan-

dard adapter and are therefore more efficient

at training and inference, and require less stor-

age space, and (b) achieve considerably higher

performances in low-data settings.1

1 Introduction

Recent improvements in NLP are heavily skewed

towards using larger pretrained models (Roberts

et al., 2020) and given their considerably better

performances, using them is becoming unavoid-

able (Kaplan et al., 2020). Their improvements,

however, come at the cost of significant computa-

tional resources at training and inference times. For

∗The work has been mostly carried out during the employ-
ment at the UKP Lab, TU Darmstadt.

1The code is available at https://github.com/

UKPLab/adaptable-adapters.

instance, the number of parameters in recent pre-

trained models can vary from 110M in BERT-base

(Devlin et al., 2019) to 11 billion in T0 (Sanh et al.,

2022) to trillion parameters in Switch Transformers

(Fedus et al., 2021). Using such models for each

downstream application requires a vast amount of

storage, training, and inference computation budget

that is not accessible to every user.

Instead of fine-tuning these massive numbers of

parameters for each downstream task, we can use

adapter architectures (Houlsby et al., 2019; Pfeiffer

et al., 2020). Adapters are lightweight neural net-

work layers that are added on top of each layer of

the pretrained model. As opposed to the standard

model fine-tuning, in which all layers are fine-tuned

for the target task, adapter-based tuning freezes the

transformer layers and only trains the newly added

adapter layers. Since the majority of parameters—

i.e., the layers of the large pretrained model—are

shared between different downstream tasks, the use

of adapters results in parameter-efficient transfer

learning. In addition to their parameter-efficiency,

He et al. (2021) show that training adapter-layers

(a) outperforms fine-tuning the whole model on

low-data and cross-lingual settings, and (b) is more

robust to overfitting.

Existing work suggests that (a) different layers

of the pretrained models may capture different as-

pects of the form, syntax, or meaning of the input

text (Tenney et al., 2019; Clark et al., 2019), and

(b) they may not be all needed for performing a

given task (Houlsby et al., 2019; Fan et al., 2020;

Rücklé et al., 2021). In addition, adapter layers are

initialized randomly. Therefore, it is not necessary

to use the same adapter architecture for different

downstream tasks and given different amounts of

annotated data. However, existing works use the

same adapter architecture for all the different in-

put data, i.e., (a) one adapter layer on top of all

the pretrained layers while using all the layers may

not be necessary, and (b) the same activation func-

3742

tion for all the layers and different tasks while the

best activation function may vary for different tasks

(Delfosse et al., 2021).

In this paper, we propose a systematic approach

for designing more adequate and flexible adapter

architectures by introducing the adaptable adapter

(AA). Adaptable adapters (1) use a learnable activa-

tion function—called Rational activation (Molina

et al., 2020)—instead of a constant activation in

adapter layers allowing the adapter model to learn

different activation functions at different adapter

layers and for different tasks, and (2) consist of a

learnable switch at each adapter layer to determine

the beneficial adapter layers during training and to

only use the selected layers during inference.

We evaluate adaptable adapters on the GLUE

benchmark (Wang et al., 2018) that consists of var-

ious text classification tasks. We perform evalu-

ations based on different data settings in which

different amounts of annotated examples are avail-

able for training. Our results show that adaptable

adapters achieve on-par performances with the full

adapter architecture while using considerably fewer

adapter layers at the inference.

We further propose to use adaptable adapters for

designing efficient adapter architectures—i.e., to

only add an adapter layer to the layers that are se-

lected by the adaptable adapter. We show that while

the selected adapter architecture by AA, called AA-

focused, is considerably more efficient at both train-

ing and inference times and requires less storage, it

achieves on-par performances with the full adapter

architecture when trained on all available training

data and considerably outperforms it on low-data

settings. In addition, we show that the selected

adapter architecture by AA transfers well across

similar tasks and different data settings. Therefore,

we can train AA using a limited amount of training

data, and for one of the tasks, and then use the re-

sulting AA-focused architecture for different data

settings and other similar tasks.

Overall, the contributions of this paper are as

follows:

• We propose adaptable adapters that introduce

flexibility in adapter architectures by (a) se-

lecting the beneficial adapter layers to use, and

(b) learning the suitable activation function for

each layer and each task.

• We propose to use adaptable adapters to de-

sign efficient adapters that require less training

time, inference time, and storage space.

• We show that using fewer adapter layers with

a learnable activation function considerably

improves the performance on low-data set-

tings.

2 Related Work

2.1 Rational Activation

Rational activation functions, empirically intro-

duced as Padé Activation Units (Molina et al.,

2020), are learnable activation functions that can

approximate common activation functions as well

as learn new ones. The rational activation function

R(x) of order m,n is defined as follows:

R(x) =

∑m
j=0 ajx

j

1 + |
∑n

k=1 bkxk|
(1)

where aj and bk are learnable parameters. These ra-

tional functions use an absolute value in the denom-

inator to avoid potential poles, which will make the

training unstable. Such rational activation func-

tions provide stable training, as empirically shown

in image classification and reinforcement learning

(Molina et al., 2020; Delfosse et al., 2021). R(x)
can be initialized to initially approximate any of the

known activation functions or with constant func-

tions. Molina et al. (2020) show that rationals out-

perform other commonly used activation functions

in common image classification tasks. Rational

activation functions are also integrated in Gener-

ative Adversarial Networks (Boullé et al., 2020).

Delfosse et al. (2021) show that some of the layers

in very deep pretrained Residual Networks tend

to approximate activation functions’ behavior, and

we can achieve on-par or better performances with

the full network by replacing some of the complete

layers with rational activation functions. Similar to

this observation, as we show in § 5, using rational

activation functions instead of a constant activation

(ReLU) in adapters allows them to achieve high

accuracy using a fewer number of adapter layers.

2.2 Reducing Model’s Size for Efficiency

Improving the efficiency of large pretrained models

has received particular attention for the inference

time. The argument is that the effect of training cost

is limited, i.e., the model can be trained once but it

will be used many times. However, the inference

time has a wide impact on the everyday use of NLP

models.

Existing approaches for improving the inference-

time efficiency belong to two different categories:

3743

(a) the distillation and pruning techniques that cre-

ate a smaller model for inference but often require

re-training or fine-tuning the smaller model (Tang

et al., 2019; Sanh et al., 2019; Voita et al., 2019;

Sun et al., 2020; Bai et al., 2021), and (b) on-

demand network size reduction at the inference

time.2 There are two different approaches in the

second category, namely layer dropping and early

exiting.

Fan et al. (2020) use layer dropping during the

training that randomly drops the model’s layers to

make the model robust to the inference time layer

selection. They show that it is possible to select

sub-networks of any depth from large models at in-

ference with limited impact on the performance and

without the need for additional finetuning. Layer

dropping was previously investigated by Huang

et al. (2016) who propose to drop layers during

training for regularizing the model and reducing

the training time of deep convolutional networks.

Rücklé et al. (2021) use layer dropping for adapter

architectures. They show that by randomly drop-

ping adapter layers during training, they can prune

the adapter model on-demand at the inference time.

Schwartz et al. (2020) propose to add an output

layer to each transformer layer. At inference time,

while the model calculates the layer-wise represen-

tation, from the bottom layer to the top layer, it

also makes the prediction using the associated clas-

sification layer. They use the output labels’ scores

of the classification layers as confidence scores to

decide whether to exit early if the classifier is con-

fident or to proceed to process the input with the

next layers. This hierarchical architecture offers

an inference time-accuracy tradeoff by setting the

confidence threshold. The early exiting approach

is similar to layer dropping in which the dropped

layers are always from the last top layers.

All these approaches select the number of lay-

ers to drop and the dropped layers heuristically

at the inference time with the goal of improving

the inference time. Instead, the adaptable adapter

is a systematic approach for selecting the useful

adapter layers for the given task during training.

Besides layer selection, an adaptable adapter al-

lows for learning the desired activation function for

different inputs. As we show, we can use adaptable

2There is another category that requires changes in the
models’ architectures. However, it would require re-training
the large model. E.g., Sukhbaatar et al. (2019) propose new
attention mechanisms that can process larger context with no
additional computational or memory costs.

adapters to design efficient adapter architectures

with a considerably smaller number of training pa-

rameters with on-par or considerably higher per-

formances, especially with larger models and in

low-data settings.

3 Proposed Architecture

3.1 Learnable Activation

Empirical observations of performances have led

experts in several fields to use different activation

functions for different tasks. Functions from the

ReLU family are usually used for neural network-

based visual computing, Tanh has been used in

PPO for reinforcement learning, while GeLU has

progressively been adopted in transformers. With

the growth of the models, and the complexity of

the tasks they are applied to, choosing one fixed ac-

tivation function to equip the complete architecture

is suboptimal. By using rational (§ 2.1), we let the

adapter layer learn the suitable activation function

at each different adapter layer, task, and dataset.

In adaptable adapters, we replace the constant acti-

vation function of each adapter layer—i.e., ReLU

in the default configuration used in AdapterHub

(Pfeiffer et al., 2020)—with rational.

Figure 1 shows a standard adapter layer as well

as an adapter layer in adaptable adapters.

Feedforward down-project

Activation
function

Feedforward up-project

(a)

Feedforward down-project

Rational

Feedforward up-project

(b)

Figure 1: (a) a standard adapter layer with linear feedfor-

ward layers and a fixed activation, (b) an adapter layer

in adaptable adapters with linear feedforward layers and

a rational activation. Learnable parameters are shown

within pink boxes.

3.2 Learnable Layer Selection

Houlsby et al. (2019) examined various choices

of adapter architectures. They report that using

3744

two feedforward linear layers—one down-project

and one up-project layer—results in good perfor-

mances while only introducing a few parameters.

Assuming d is the dimensionality of the input—i.e.,

the embedding size of the transformer layer—the

down-project layer maps the input dimension to

n where n < d, and the up-project layer maps

the input dimension back to d. n is called the hid-

den size of the adapter. Each adapter contains a

skip-connection that lets an adapter layer approx-

imate an identity function, i.e., to pass the input

of a transformer layer unchanged to the next layer.

The learnable switches in adaptable adapter explic-

itly model the selection between the feedforward

adapter layer and the identity function. By exam-

ining the switch probabilities we can determine

the adapter layers that are beneficial for the overall

performance of the model.

As mentioned in § 1, existing work shows that

different layers of the pretrained models capture

different aspects of the input data, and not all of

them are necessary for performing various tasks.

Therefore, for different input data, different layers

may be of different importance. Adding a learn-

able switch at each adapter layer provides a more

systematic approach to determining the beneficial

layers for each input task during training. We use

the Gumbel Softmax (GS) estimator as an end-to-

end differentiable switch (hard attention) to make

the network attend to an element of a set. Assuming

πi are the probabilities of selecting each element

of the set, i.e., ∀iπi ≥ 0,
∑

i πi = 1, GS estimates

the hard attention yi as follows:

yi =
exp((log(πi) + gi)/τ)

∑
j exp((log(πj) + gj)/τ)

(2)

where gi are i.i.d. samples from a Gumbel distribu-

tion, and τ is a temperature parameter. Setting τ to

small values results in distributions that are similar

to categorical ones.

3.3 Adaptable Adapters

The adaptable adapter (AA) is the combination of

the learnable layer selection and the learnable ac-

tivation function. The learnable layer selection—

i.e., a Gumbel Softmax estimator—selects between

an adapter layer, with no skip connection, and an

identity function with zero parameters that passes

the input without any changes to the next layer.

The adapter layers in adaptable adapters consist

of two linear layers—i.e., down-project and up-

Feedforward down-project

Rational

Feedforward up-project

Gumbel Softmax
π0

π1

Figure 2: The adaptable adapter layer that consist of a

Gumbel Softmax to choose between an adapter layer

with a rational activation and an identity function.

project layers—, and the non-linearity function be-

tween these two linear layers consists of a rational

activation function. The adaptable adapter allows

to learn different adapter architectures for different

input data by (a) learning to use a subset of adapter

layers, and (b) learning a potentially different ac-

tivation function at each layer. Figure 3 shows the

structure of an adapter layer in adaptable adapters.

4 Experimental Setup

4.1 Datasets

We use the English text classification datasets from

the GLUE benchmark (Wang et al., 2019) including

MNLI (Williams et al., 2018), QQP3, QNLI (Ra-

jpurkar et al., 2016), SST-2 (Socher et al., 2013),

CoLA (Warstadt et al., 2019), STS-B (Cer et al.,

2017), MRPC (Dolan and Brockett, 2005), RTE

(Dagan et al., 2006), and WNLI (Levesque et al.,

2011). Table 1 shows the number of training exam-

ples and the evaluation metric for each dataset.

Dataset |Train| Metric Dataset |Train| Metric

MNLI 393k acc. STS-B 7k Pearson/Spearman

QQP 364k acc./F1 MRPC 3.7k acc./F1

QNLI 105k acc. RTE 2.5k acc.

SST-2 67k acc. WNLI 634 acc.

CoLA 8.5k Matthews

Table 1: GLUE datasets with their number of training

examples and the corresponding evaluation metric.

3https://www.quora.com/profile/Ricky-

Riche-2/First-Quora-Dataset-Release-

Question-Pairs

3745

4.2 Transformer Model

As the base model, we use the BERT-large model

(Devlin et al., 2019). BERT-large contains 24 lay-

ers, an embedding size of 1024, and a total number

of 340M parameters.4

4.3 Adapter Models

Baseline As a baseline adapter, we use the

adapter layers with the pfeiffer configuration from

AdapterHub (Pfeiffer et al., 2020). The adapter

layers with the pfeiffer configuration are similar to

the one in Figure 1, in which learnable parameters

include two feedforward layers. For BERT-base,

each pfeiffer layer consists of 73.7k parameters5

resulting in a total number of 884.7K. For BERT-

large, the number of parameters for each adapter

layer is 131K, and the total number of parameters

is 3.1M. We see that as the underlying model gets

larger, the number of parameters in adapters also

increases notably. Therefore, adapter architecture

selection using AA is a potential solution to control

this exponential increase to some extent.

Adaptable Adapter (AA) For the rational ac-

tivation, similar to Molina et al. (2020), we use

order m = 5 and n = 4 for rational. Therefore,

the rational activation function only consists of ten

learnable parameters. The rational activation can

be initialized to initially estimate an existing func-

tion. Based on our preliminary experiments, using

f(x) = 1 for initializing R(x) results in better

performances on the GLUE benchmark.

For the Gumble-Softmax switch, we set the tem-

perature parameter τ to 0.1, and we initialize πi to

0.5 for both inputs—i.e., the same initial probabil-

ity for the rational adapter and the identity function.

AA-focused We can use the selected architecture

by AA for designing a new adapter architecture, i.e.,

to only include an adapter layer—with a rational

function—at layers in which the switch has selected

the adapter layer over the identity function. We call

this architecture AA-focused. Note that compared

to AA, AA-focused is more efficient both at training

and inference time, as it includes a fewer number of

layers and no switch functions. It also requires less

storage space for saving the new adapter weights.

4The results for BERT-base are reported in the appendix.
BERT-base contains 12 layers, an embedding size of 768, and
110M parameters.

5The reduction factor in the down-project layer is 16 which
results in (768/16) x 768 x 2 parameters for each adapter layer.

Also, training AA includes both the architecture se-

lection and training of the adapter layers, which are

initialized randomly, simultaneously. As a result,

as we see in our evaluations, AA-focused achieves

higher performances as its training is only focused

on training the adapter layers.

AdapterDrop (Rücklé et al., 2021) During train-

ing, AdapterDrop randomly drops the first n layers

in which n varies for different iterations. At infer-

ence, n can be set to any desired number of layers.

In our experiments, we select n based on the num-

ber of dropped layers by AA, i.e., the number of

layers that are not selected by the switch functions.

4.4 Experiments

We evaluate the models in different settings: (a)

using full training data, and (b) low-data settings.

For all the experiments, we consider 25% of the

training data as the development set and use the

official development sets as the test data. We per-

form the low-data evaluations when 100, 300, and

500 annotated examples are available.6 The test

data is the same for all the evaluations. We run all

the low-data experiments for 20 epochs and five

different random seeds7. We report the average

and standard deviation over the five different runs.

When training on full datasets, the experiments are

computationally very expensive using BERT-large.

Therefore, for this setting, we only report the re-

sults using the first random seed. All experiments

are done on one A100 NVIDIA GPU. All imple-

mentations are based on AdapterHub (Pfeiffer et al.,

2020).

5 Evaluation

Table 2 presents the results of Baseline, Adapter-

Drop, AA, and AA-focused. AA selects different lay-

ers for different tasks and different random seeds.8

We evaluate three configurations for AA-focused:

• AA-focusedspec: for each task, we design the

corresponding AA-focused based on the se-

lected architecture by AA for that task given

and the first random seed (42). For instance,

the AA-focused architecture is the same for all

6Selected training examples for low-data experiments are
the same for all models given the same random seed.

742, 92, 111, 245, and 651.
8For instance, the selected layers for RTE are as follows

for different runs of Low-data-100: {0, 2, 5, 11, 12, 13, 16,
17}, {3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 19, 21}, {2, 3, 4, 6, 9,
12, 14, 16, 17, 18, 20, 22, 23}, {0, 2, 6, 8, 9, 11, 13, 14, 17,
19, 23}, {1, 2, 5, 10, 11, 14, 16, 20, 21, 22, 23}.

3746

MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Avg

Low-data-100

Baseline 33.893.02 30.650.38 58.784.81 56.013.68 5.204.84 40.009.64 74.800.0 49.392.86 55.213.01 44.87

AA 33.642.66 30.880.39 59.616.19 51.282.52 -0.551.87 45.1814.17 74.800.0 50.113.44 55.482.46 44.49

AdapterDropAA 33.722.84 30.620.40 57.505.78 54.012.59 4.107.95 36.538.93 74.80.0 49.392.86 56.061.38 44.08

AdapterDrop13 33.712.76 30.610.4 58.394.27 53.442.56 3.917.6 36.238.68 74.80.0 49.462.81 55.761.91 44.04

AA-focusedspec 35.282.06 44.3716.31 63.754.39 52.944.64 5.6810.91 62.793.34 74.800.01 51.482.72 54.084.51 49.47

AA-focuseduni 36.362.61 44.3716.31 63.364.86 55.874.42 4.754.9 59.376.78 74.940.2 51.123.45 51.834.12 49.11

AA-focusedsim 34.773.18 45.7814.40 63.134.30 61.5810.95 17.5411.19 59.897.70 74.770.07 52.202.93 51.835.52 51.28

|Baseline| 24 24 24 24 24 24 24 24 24

|AA| 13.21.7 15.03.0 13.62.2 14.64.0 15.82.1 16.42.7 13.01.8 11.21.8 12.35.7
|AdapterDropAA| 14 13 15 16 16 14 15 13 16

|AdapterDrop13| 13 13 13 13 13 13 13 13 13

|AA-focusedspec| 14 13 15 16 16 14 15 13 16

|AA-focuseduni| 13 13 13 13 13 13 13 13 13

|AA-focusedsim| 13 13 13 13 13 13 13 13 13

Low-data-300

Baseline 36.554.76 61.508.66 69.621.24 79.8614.15 30.405.48 78.242.81 76.551.31 51.623.21 45.924.33 58.91

AA 37.142.49 66.070.38 71.331.82 72.5216.59 26.058.74 82.081.6 74.032.21 51.832.84 47.044.76 58.68

AdapterDropAA 38.865.93 62.984.85 66.712.91 79.2914.17 16.8912.06 78.51.99 75.740.67 51.193.35 46.764.02 57.44

AdapterDrop13 37.955.56 63.724.84 66.712.91 80.014.47 16.312.05 77.522.08 76.030.92 51.333.4 46.484.27 57.34

AA-focusedspec 44.624.11 66.831.06 73.721.09 85.872.94 34.518.3 81.162.04 76.721.06 54.584.72 46.203.92 62.69

AA-focuseduni 46.694.29 69.251.33 74.162.95 87.570.72 35.653.26 81.712.64 75.971.55 56.895.56 52.397.26 64.48

AA-focusedsim 45.972.08 68.361.36 73.982.68 86.831.90 37.433.10 78.813.58 76.661.30 55.962.81 48.445.53 63.61

|AA| 17.01.3 16.21.0 14.81.8 12.83.2 16.82.2 18.61.9 16.01.1 12.41.2 12.42.1
|AA-focusedspec| 18 16 13 9 17 16 16 13 13

Low-data-500

Baseline 44.356.08 69.491.12 73.481.89 88.261.53 37.984.42 82.070.99 78.331.11 59.281.76 49.866.08 64.79

AA 47.335.11 67.522.99 75.02.3 84.933.06 39.964.87 84.560.87 78.381.0 59.283.18 50.135.16 65.23

AdapterDropAA 42.667.02 69.521.03 74.152.19 89.010.49 38.444.51 82.051.05 78.191.04 59.282.6 49.36.36 64.73

AdapterDrop13 43.056.41 69.120.88 72.821.83 88.970.6 36.895.03 80.771.32 77.860.8 58.562.44 49.016.57 64.12

AA-focusedspec 54.962.66 69.521.14 77.301.27 87.941.10 39.513.47 84.300.69 78.921.70 59.202.58 48.736.27 66.71

AA-focuseduni 56.131.88 69.322.29 76.852.37 87.891.47 41.753.83 83.481.25 78.000.35 60.421.75 50.425.07 67.14

AA-focusedsim 55.852.62 69.862.56 77.301.93 87.571.69 39.791.42 83.231.61 78.751.26 60.071.62 49.586.75 66.89

|AA| 12.86.0 16.81.3 16.42.6 14.62.1 10.68.3 19.61.4 16.62.4 14.36.8 12.63.2
|AA-focusedspec| 14 17 18 15 17 18 14 16 14

Full Data

Baseline 85.08 88.68 91.95 93.00 58.28 89.75 83.12 70.39 56.34 79.62

AA 84.73 88.38 91.01 92.55 57.60 90.11 82.36 63.18 53.52 78.16

AdapterDropAA 84.96 88.75 91.38 93.35 58.63 89.85 82.84 66.06 56.34 79.12

AdapterDrop13 84.73 87.15 90.92 92.78 57.42 88.84 83.34 64.25 56.34 78.42

AA-focusedspec 84.77 88.46 91.38 92.32 56.79 89.74 83.42 64.98 57.75 78.84

AA-focuseduni 85.41 88.61 91.51 92.66 54.62 89.34 84.88 67.15 56.34 78.94

AA-focusedsim 85.32 88.41 91.85 91.4 57.96 89.38 84.42 67.86 57.75 79.37

|AA| 14 18 17 18 20 20 18 16 15

|AA-focusedspec| 14 18 17 18 20 20 18 16 15

Table 2: Comparing the results of (a) the standard adapter model that includes an adapter layer on all the 24

BERT-large layers (Baseline), (b) adaptable adapter (AA), (c) AdapterDrop, and (d) AA-focused adapters, in which

the architecture of the adapter is selected based on the selected layers by AA. The architecture of AA-focusedspec

is selected based on the selected layers by AA for the corresponding task and data setting when the random seed

is 42. The architecture of AA-focuseduni is selected based on the selected layers by AA for the task of QQP on

the Low-data-100 setting and for random seed 42. AA-focusedsim only contains an adapter layer with a rational

activation function at the last 13 layers of BERT-large, i.e., the total number of adapter layers in AA-focuseduni. The

number of layers at the inference time for the AdapterDropAA experiments are selected based on the number of

layers in the corresponding AA-focusedspec experiments. The number of inference time layers for AdapterDrop13

equals 13. Except for Full Data, the reported results are averaged over five random seeds. The subscript reports

the corresponding standard deviation. The Full Data results are reported for one random seed. The |AA| rows

report the average number of selected adapter layers by AA using different random seeds. |AA-focused∗| rows

report the number of added adapter layers in the corresponding |AA-focused∗| experiments. |AA-focuseduni| and

|AA-focusedsim| are the same for all data settings. |AdapterDrop∗| rows report the number of included adapter

layers for the corresponding AdapterDrop experiment at the inference time. |AdapterDropAA| is always the same

as the corresponding |AA-focusedspec|, and |AdapterDrop13| is always the same as AA-focusedsim. The test data

is the same for all the experiments. The Avg column reports the average score across all datasets. The highest

performances for each dataset and each data setting are boldfaced.

3747

the experiments of RTE for Low-data-100—

i.e., over the five different random seeds—.

However, it is different for the rest of the tasks

and different data settings.

• AA-focuseduni: we design this adapter archi-

tecture of all tasks and data settings based on

a single random seed, single task, and a sin-

gle data regime, i.e.— random seed 42, the

QQP task, and low-data-100. We choose low-

data-100 because the architecture selection

process—i.e., training AA—is very fast in this

setting. We select the selected architecture by

QQP because AA selects the smallest number

of layers for QQP when the random seed is 42.

The selected layers are {2, 6, 10, 12, 14, 15,

16, 18, 19, 20, 21, 22, 23}, i.e., three layers

from the first half of the original 24 layers, and

ten layers from the second half. The results of

AA-focuseduni compared to AA-focusedspec

indicate whether the selected architecture by

AA transfers between similar tasks and differ-

ent data settings.

• AA-focusedsim: we design a simplified

adapter based on AA in which we only use the

number of selected layers, instead of the layer

numbers, in a single random seed, single task,

and a single data setting. We use the num-

ber of selected layers when the random seed

is 42 for the QQP task and the low-data-100

setting, i.e., 13. As investigated by Houlsby

et al. (2019), the last adapter layers are in

general more effective. As a result, we add

adapter layers, with rational activation, to the

last 13 transformer layers in AA-focusedsim

experiments. The results of AA-focusedsim

compared to AA-focuseduni show whether

only the number of selected layers by AA mat-

ters or it is also important to specify at which

layers to add the adapters.

The number of inference layers for

AdapterDropAA are equivalent to the num-

ber of layers in AA-focusedspec experiments for

each task and data setting. The number of layers

for AdapterDrop13 is 13, which is the same as

AA-focuseduni and AA-focusedsim. Note that the

number of layers for AA-focused experiments are

the same both at training and inference while it is

not the case for AdapterDrop.

The |AA| rows in Table 2 show the average num-

ber of selected layers for each task over the five dif-

ferent random seeds. |AA-focused∗| rows report the

number of added adapter layers in the correspond-

ing AA-focused∗ experiments. |AdapterDrop∗|

rows report the number of included adapter layers

for the corresponding AdapterDrop experiments at

the inference time.

We make the following observations from the

results of Table 2:

• AA achieves on-par performances with the

Baseline, and on average it uses about 13-15

layers out of 24 layers. We can use this insight

for designing efficient adapter architectures.

• All AA-focused architectures considerably out-

perform Baseline in all the the tasks in low-

data settings while using considerably smaller

number of parameters, and therefore, being

considerably more efficient. For instance,

while AA-focuseduni only uses 13 layers out

of 24 layers—i.e., reducing the number of

training parameters from 3M to 1.7M—, it

outperforms the Avg score by 4.24, 5.57, and

2.35 points in Low-data-100, Low-data-300,

and Low-data-500, respectively.

• The high performances of AA-focuseduni

show that the selected architecture by AA for

one task and one data setting transfers well to

other data regimes and similar tasks.9 There-

fore, it is not necessary to design the adapter

architecture separately for a different amount

of available data and similar tasks.

• AA-focusedsim and AdapterDrop13 both use

the last 13 adapter layers during the inference

while the results of AA-focusedsim are con-

siderably higher for all data regimes. This

indicates the importance of rational activation

in adaptable adapters. We will further inves-

tigate the impact on rational activation in the

next section.

• In average, AdapterDropAA contains more in-

ference layers compared to AdapterDrop13.

However, there is not a significant difference

between their performances. They achieve

on-par or lower results compared to Baseline.

9It even outperforms AA-focusedspec showing that AA-
focusedspec may have overfitted to the development sets. We
have not performed hyperparameter selection for our experi-
ments. Using better hyperparameters may improve the results
of different settings.

3748

Adap. layers MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Avg

Low-data-300

13 45.972.08 68.361.36 73.982.68 86.831.9 37.433.1 78.813.58 76.661.3 55.962.81 48.445.53 63.61

12 36.845.51 62.435.65 65.773.43 84.633.64 13.2312.63 77.082.36 75.270.39 54.303.75 46.765.45 57.37

11 36.165.12 62.595.8 67.931.42 79.9514.16 16.3211.65 73.226.75 76.421.19 56.532.02 46.24.12 57.26

Table 3: Evaluating the impact of the number of adapter layers on the overall performance. The adapter layers are

added to the top n layers of the model for n = 13, 12, 11. Adapter layers contain rational activation, i.e., n = 13 is

equivalent to AA-focusedsim. Results are reported for the low-data-300 setting.

MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Avg

Low-data-300

Baseline 36.554.76 61.508.66 69.621.24 79.8614.15 30.405.48 78.242.81 76.551.31 51.623.21 45.924.33 58.91

AA 37.142.49 66.070.38 71.331.82 72.5216.59 26.058.74 82.081.6 74.032.21 51.832.84 47.044.76 58.68

Switch-Only 35.052.81 43.816.02 65.592.61 61.866.26 9.7712.86 75.413.29 75.370.7 50.183.44 45.923.03 51.44

Rational-Only 37.723.88 64.752.51 69.691.04 79.8614.15 23.208.33 78.581.94 75.841.07 52.273.11 46.483.88 58.70

Baseline13 37.985.80 63.374.72 68.761.55 85.163.63 12.1112.69 77.962.23 75.250.71 54.442.06 45.353.72 57.80

AA-focusedsim 45.972.08 68.361.36 73.982.68 86.831.90 37.433.10 78.813.58 76.661.30 55.962.81 48.445.53 63.61

|AA| 17.01.3 16.21.0 14.81.8 12.83.2 16.82.2 18.61.9 16.01.1 12.41.2 12.42.1
|Switch-Only| 14.01.1 15.82.5 17.01.9 16.22.8 16.41.9 16.41.5 17.81.7 15.02.1 14.01.7

Table 4: Evaluating the impact of rational in adaptable adapters. Experiments are run for five different random seeds.

Switch-only shows the results when learnable switches are used with standard adapter layers, i.e., linear layers with

the ReLU activation. Rational-only shows the result when all the activation functions in the standard adapter are

replaced with rational. Baseline13 contains a standard adapter layer on the last 13 transformer layer. AA-focusedsim

contains adapter layers with rational activation on the last 13 layers.

Evaluating the impact of AA on selecting the

number of beneficial layers. In the results of

Table 2, we select the number of layers in AA-

focusedsim, i.e., 13 , based on the minimum num-

ber of selected layers by AA on the low-data-100

setting and for random seed 42. AA-focusedsim is

equivalent to an adapter architecture in which only

the last 13 adapter layers are added to the model.

To investigate whether the improvements of AA-

focusedsim over the baseline are only due to using

a fewer number of adapter layers, we report the

results of an adapter architecture in which only the

last n adapter layers are added to the model, e.g.,

for n = 13 the resulting architecture is the same

as AA-focusedsim. Table 3 shows the result of this

experiment for n = 13, 12, 11. We observe that by

decreasing the number of layers from 13 to 12, the

overall performance drops notably from 63.61 to

57.37.

Evaluating the impact of rational activation.

The results of AA-focused experiments vs. Baseline

in Table 2 mostly emphasize the impact of layer

selection by the learnable switches in AA. In this

section, we investigate the impact of learnable acti-

vation functions in more details in the evaluations

of Table 4.

First, we replace all rationals in AA with ReLU.

The results are reported in the Switch-Only row. By

comparing the results of AA and Switch-only we

observe that the use of rational activation consid-

erably improves the performance of AA, i.e., using

rational is a key component to achieving higher

performances with fewer layers.

Second, we replace the activation functions in

the standard adapter with rational. The results are

reported in Rational-only rows. The results of Base-

line compared to Rational-only show that the im-

pact of rational is prominent when the model con-

tains fewer parameters and using rational with an

overparameterized model is not very effective, i.e.,

both layer selection and learnable activation play

an important role.

Third, we only add a standard adapter layer

at the last 13 layers of BERT-large (Baseline13),

which is the same number of adapter layers in

AA-focusedsim. The difference is the activation

function that is used in these 13 adapter lay-

ers is ReLU in Baseline13 and rational in AA-

focusedsim. The considerably higher performances

of AA-focusedsim show that higher performances

of AA-focused are due to both layer selection as

well as a learnable activation function.

Learned rational activation functions. Figure 3

shows the learned activation functions across differ-

ent layers of the same trained adapter and different

tasks. We see that the learned activation differs

3749

Figure 3: Learned rational activation functions differ according to their place within the network and to the task

they are trained for. Right: activation functions at different layers within adapters trained on the QNLI task. Left:

activation functions trained at layer 2 of adapters trained on different tasks.

for different layers of the same task as well as for

different tasks.

6 Conclusion

In this paper, we propose adaptable adapters. They

consist of a learnable switch to select a subset of

beneficial adapter layers and a learnable activation

function to learn the suitable activation at each

adapter layer and for each input data. The results

of adaptable adapters show that we can achieve

on-par performances with the full adapter archi-

tecture by using a smaller subset of layers. We

show that adaptable adapters are viable tools for

designing efficient and effective adapter architec-

tures that require less storage space, lower training

and inference time with high performances.

Acknowledgements

The authors would like to thank Jorge Cardona for

his valuable contribution to the implementation of

adaptable adapters. We thank Michael Bugert, Ji-

Ung Lee, and Soumya Sarkar for their constructive

suggestions and feedback on this work. We would

like to thank Jonas Pfeiffer and Clifton Poth for

always being very helpful with all questions about

adapters and AdapterHub. This research work has

been funded by the German Federal Ministry of

Education and Research and the Hessian Ministry

of Higher Education, Research, Science and the

Arts (HMWK) within their joint support of the Na-

tional Research Center for Applied Cybersecurity

ATHENE. It benefited from the HMWK cluster

project “The Third Wave of AI”.

References

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin Jin,
Xin Jiang, Qun Liu, Michael Lyu, and Irwin King.
2021. BinaryBERT: Pushing the limit of BERT quan-
tization. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 4334–4348, Online. Association for Computa-
tional Linguistics.

Nicolas Boullé, Yuji Nakatsukasa, and Alex Townsend.
2020. Rational neural networks. In Advances in
Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Sys-
tems (NeurIPS).

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276–286, Florence, Italy. Association for Com-
putational Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evaluat-
ing predictive uncertainty, visual object classification,
and recognising tectual entailment, pages 177–190.
Springer.

Quentin Delfosse, Patrick Schramowski, Alejandro
Molina, and Kristian Kersting. 2021. Recurrent ra-
tional networks. arXiv preprint arXiv:2102.09407.

3750

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In International Conference on Learn-
ing Representations.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv
preprint arXiv:2101.03961.

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng
Ding, Liying Cheng, Jiawei Low, Lidong Bing, and
Luo Si. 2021. On the effectiveness of adapter-based
tuning for pretrained language model adaptation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2208–
2222, Online. Association for Computational Lin-
guistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and
Kilian Q Weinberger. 2016. Deep networks with
stochastic depth. In European conference on com-
puter vision, pages 646–661. Springer.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Hector J Levesque, Ernest Davis, and Leora Morgen-
stern. 2011. The Winograd schema challenge. In
AAAI Spring Symposium: Logical Formalizations of
Commonsense Reasoning, volume 46, page 47.

Alejandro Molina, Patrick Schramowski, and Kristian
Kersting. 2020. Padé activation units: End-to-end
learning of flexible activation functions in deep net-
works. In International Conference on Learning Rep-
resentations.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya
Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020. Adapterhub: A
framework for adapting transformers. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2020): Systems
Demonstrations, pages 46–54, Online. Association
for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5418–5426,
Online. Association for Computational Linguistics.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. AdapterDrop: On the efficiency
of adapters in transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7930–7946, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. In Proceed-
ings of the 5th Workshop on Energy Efficient Machine
Learning and Cognitive Computing - NeurIPS 2019.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In International Conference on Learning
Representations.

Roy Schwartz, Gabriel Stanovsky, Swabha
Swayamdipta, Jesse Dodge, and Noah A. Smith.
2020. The right tool for the job: Matching model and
instance complexities. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 6640–6651, Online. Association
for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and

3751

Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bo-
janowski, and Armand Joulin. 2019. Adaptive at-
tention span in transformers. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 331–335, Florence, Italy.
Association for Computational Linguistics.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2158–2170, Online. Association for Computa-
tional Linguistics.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from bert into simple neural net-
works. arXiv preprint arXiv:1903.12136.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5797–5808, Florence, Italy.
Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Interna-
tional Conference on Learning Representations.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American

Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

A BERT-base Results

3752

MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Avg

Baseline 83.530.19 88.120.14 90.630.26 91.740.36 56.510.84 88.480.14 84.81.07 63.831.4 54.086.64 77.97

AA 82.890.43 88.090.16 89.960.25 91.310.51 51.441.82 88.250.17 85.091.06 64.251.72 52.117.61 77.05

AA-Layers 9.80.3 11.20.7 10.61.0 9.81.1 8.62.1 11.40.4 9.00.6 9.40.7 8.01.4
Low-data-100

Baseline 35.663.38 29.700.86 60.514.5 51.542.14 -1.273.56 41.525.93 74.860.12 50.42.98 54.935.84 44.21

AA 37.052.35 30.590.68 62.524.27 52.732.55 -0.080.16 48.7323.91 74.830.07 50.183.21 55.216.13 45.75

|AA| 6.41.8 8.62.1 8.81.7 8.61.6 7.42.4 10.80.7 9.41.4 9.41.4 8.20.9
Low-data-300

Baseline 37.884.09 49.2410.32 68.172.9 75.533.49 3.408.59 69.3915.05 75.991.2 54.222.96 47.614.91 53.49

AA 40.274.78 66.311.86 74.032.03 76.426.07 3.565.49 82.062.24 76.120.89 54.733.09 47.045.46 57.84

|AA| 10.41.6 10.80.7 11.00.8 9.41.3 7.62.0 10.80.7 9.61.0 9.81.4 8.21.1
Low-data-500

Baseline 42.822.4 67.631.44 72.71.31 83.460.64 20.94.14 81.970.89 76.510.95 57.112.93 52.116.96 61.69

AA 47.721.67 69.270.89 75.6491.9 84.521.18 19.1314.46 83.740.67 78.032.33 55.963.08 51.836.13 62.87

|AA| 9.81.1 10.41.3 10.00.8 9.20.7 9.41.8 10.61.4 9.81.6 9.61.0 8.01.5

Table 5: Comparing the results of (a) the baseline adapter model that includes an adapter layer on all BERT-base

layers (Baseline), and (b) the adaptable adapter (AA). The reported results are averaged over five different random

seeds. The subscript reports the corresponding standard deviation. |AA| reports the average number of selected

adapter layers by the adaptable adapter over different runs. The full data results show the performance when the

model is trained on all the available training data. The Low-data-X settings report the results when only X examples

are used for training the model. The test data is the same for all the experiments.

3753

