
This is a repository copy of Self-embedding watermarking method for G-code used in 3D 
printing.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/186854/

Version: Accepted Version

Proceedings Paper:
Li, Zhenyu, Gong, Daofu, Tan, Lei et al. (3 more authors) (2021) Self-embedding 
watermarking method for G-code used in 3D printing. In: IEEE International Workshop on 
Information Forensics and Security (WIFS). IEEE International Workshop on Information 
Forensics and Security (WIFS), 01-03 Dec 2021 IEEE , FRA 

https://doi.org/10.1109/WIFS53200.2021.9648386

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Self-embedding watermarking method for G-code

used in 3D printing

Zhenyu Li∗, Daofu Gong, Lei Tan, Xiangyang Luo, Fenlin Liu

State Key Laboratory of Mathematical

Engineering and Advanced Computing

Zhengzhou, China

zheenyuli@gmail.com

Adrian G. Bors

Department of Computer Science

University of York

York, UK

adrian.bors@york.ac.uk

Abstract—3D printing is faced with a lot of security issues,
such as malicious tampering, intellectual property theft and so
on. This work aims to protect the G-code file which controls the
3D printing process by proposing a self-embedding watermarking
method for G-code file. This method groups the G-code lines
into code blocks and achieves a random mapping relationship
for each code block. Each code block is divided into two parts,
carrying the authentication and recovery bits, respectively. The
tampered regions are detected by leveraging the authentication
bits in each code block. Meanwhile, the G-code files are restored
based on the recovery bits and the geometric information of
the neighboring code blocks. Experimental results indicate that
the proposed method can effectively detect the tampered region
and restore the G-code file to a large extent, while limiting the
distortion caused to the 3D printed object by the watermarking.

Index Terms—Watermarking, G-code, 3D Printing, Self-
embedding

I. INTRODUCTION

3D printing, also known as Additive Manufacturing (AM),

is a significant technology for Industry 4.0. It has been widely

applied to many critical industries, such as car manufacturing,

healthcare, aeronautics, construction [1]. Therefore, the quality

and integrity of the 3D printed product is of great importance

to the security and reliability of its applications.

Disconcertingly, as more and more network-based 3D print-

ers are emerging, 3D printing is facing a lot of security

challenges and cyber-physical vulnerabilities. For example,

an attacker can get access to the PC connected to the 3D

printer and then operate various kinds of attacks. It is demon-

strated that an attacker can create defective parts by adding

a malicious infill void in the Computer-Aided Design (CAD)

files [2]. Meanwhile, it is possible to manipulate the printing

settings, such as high-temperature heaters, to cause a physical

hazard, similar to the Stuxnet [3]. In addition, if an attacker

would successfully apply man-in-the-middle attack between

the PC and the 3D printer, it may maliciously tamper the G-

code files controlling the movement of the tools in 3D printer.

Comparing to tampering the CAD files, tampering the G-code

files is more imperceptible, because usually little attention is

This work was supported by National Natural Science Foundation
of China (62002387, U1736214, 61872448, 62182435, 61772549) and
Zhongyuan Science and Technology Innovation Leading Talent Project (No.
214200510019).∗The corresponding author is Zhenyu Li.

paid to the G-code file. Besides, the intellectual property of

the to-be-printed 3D model may be stolen by the attacker as

well.

3D security issues are attracting increasing attention from

academia [4]–[11], especially the security of 3D printing. Gao

et al. [12] proposed an online monitoring approach to defend

against the adverse modifications of critical printing attributes

specified by the firmware of 3D printers. This approach

leverages multiple sensors to monitor the printing process,

which has the ability of reconstructing the infill path and

printing speed, analyzing the layer thickness and estimating the

fan speed. The attacks can be detected by comparing the results

obtained by the monitoring system and the original printing

settings. More recently, Rais et al. [13] proposed a framework

for checking the integrity of 3D printing process, utilizing the

G-code as the ground truth to verify the acquired sensors’ data,

in order to determine if the printing process has been attacked.

It is obvious that this framework is based on the assumption

that the security of G-code is not compromised by an attacker.

Besides, both of the methods above have the limitation that

they can only detect the attack after the printing is finished,

while cannot prevent the happening of the comprised printing

process in advance.

In order to overcome these limitations, the authentication

of the G-code files before printing is essential, as the G-code

files represent the ultimate 3D printer control mechanism by

means of machine readable command lines.

Fragile watermarking has been widely adopted for the

aim of authentication of digital images, audio, video, 3D

objects and other digital files [14]–[18]. For instance, fragile

watermarking algorithms for digital images have the ability

of detecting, localizing and recovering tampered pixels in

the image. There are some inspiring watermarking methods

for 3D CAD object authentication [19], [20], but they are

not applicable in the context of 3D printing. The G-code

file, which is obtained after the slicing of a CAD object, is

dramatically different from the structure of the CAD object.

In this study, we propose a self-embedding watermarking

method for the G-code file for 3D printing. Furthermore,

a novel measurement for assessing the difference between

two G-code files is proposed in this paper. To the best of

our knowledge, this is the first study for the G-code file



authentication and recovery using watermarking.

II. BACKGROUND

A. 3D Printing Preliminaries

There are several types of 3D printing technologies, while

the one used by most desktop 3D printers is the Fused

Deposition Modelling (FDM). We consider a FDM 3D printer

as an example to explain the process of 3D printing, as

illustrated in Fig. 1. First, a digital 3D object, which is in

the format of StereoLithography (STL) file, is created by the

user using CAD software. Then, the STL file is converted to

the machine language, namely a G-code file, by the slicing

software, such as Cura and Slic3r. In this step, the 3D object

seems like sliced into multiple layers, whereas it is planning

the sequence of operations for 3D printing of the object.

Besides, many other parameters of printing are set by the

slicing software, such as the heating temperature, fan speed,

extrusion rate, and so on. Finally, the G-code file is sent to

the 3D printer which is loaded with a spool of filament and

a heated nozzle. The filament is melt by the nozzles and laid

down at precise locations of a platform specified in the G-

code. Once a layer is finished, the platform moves down and

the process repeats until the part is complete.

STL file

3D Slicing G-code file 3D printer

3D prints

Fig. 1. The illustration of 3D printing process.

B. G-code File Format

G-code, which stands for “Geometric Code”, is the most

widely used Computer Numerical Control (CNC) program-

ming language in both subtractive and additive manufacturing.

To put it simply, G-code instructs the tools where to move,

how fast to move and what path to follow. In the case of 3D

printing, a G-code file includes the printing parameters and

the instructions controlling the movement of the nozzle. An

example of G-code file is shown in Fig. 2.

G0 and G1 are the top two most frequently used codes in

3D printing. More specifically, G0 command moves the nozzle

at maximum travel speed from a current position to the point

specified by the X, Y and Z values without extrusion. The

X and Y axes represent the lateral and longitudinal position

of a point, while Z-axis represents the elevation of the point.

G1 means move in straight line to a specific position with

;FLAVOR:RepRap

;TIME:5895

;Filament used: 3.0761m

;Layer height: 0.1

M190 S50

G28 ;Home

;Prime the extruder

G92 E0

;LAYER_COUNT:37

;LAYER:-9

G1 F3600 E-6.5

M107

G0 F1200 X138.449 Y113.897 Z0.36

G1 F3600 E0

G1 F900 X138.711 Y113.619 E0.04574

G1 X140.644 Y111.81 E0.36274

G1 X140.945 Y111.564 E0.40928

G1 X143.104 Y110.017 E0.72731

G1 X143.411 Y109.826 E0.7706

G1 X145.788 Y108.555 E1.09334

……
G-code file example

Printing parameters

G0: rapidly move the 

nozzle to the X, Y, Z 

coordinates without 

extrusion. 

F: the nozzle moving 

speed.

X,Y,Z: the coordinates 

of the ending position 

of the nozzle

G1: rapidly move the 

nozzle to the X, Y 

coordinates with 

extrusion. 

E:the accumulated 

length of the 

extruded filament.

Fig. 2. The illustration of G-code file format.

extrusion whose length is determined by E value, signifying

the cumulative amount of filament that has been extruded so

far. In addition, we have the F value, denoting the speed (in

mm/min) at which the nozzle is traveling. G0 and G1 do not

require values for all axes and only need to be set once and be

valid until it would be changed. So the Z value is usually set

at the beginning of building each new layer of the 3D print.

The range of X and Y values is related to the size of the 3D

printer’s platform, because the 3D printed object is usually

placed in the center of the platform during printing and the

origin of the X and Y-axis is in one corner of the platform.

III. THE PROPOSED SELF-EMBEDDING WATERMARKING

METHOD FOR G-CODE

A. The Watermarking Framework

The proposed self-embedding watermarking method for G-

code file includes the watermark embedding, authentication

and recovery of the G-code. The framework of the proposed

method is diagramed in Fig. 3. During the watermark em-

bedding procedure, the command lines in the G-code file

are grouped into code blocks. Then, the code blocks are

randomly permuted to obtain a mapping block for each code

block. Every code block is divided into two parts. The X

and Y coordinates in the first part of code block are used

to generate authentication and recovery bits. Afterwards, the

authentication bits of one code block is embedded into the

multiple least significant bits of the X and Y coordinates in

the first part of the block. Simultaneously, the recovery bits for

a code block are embedded into the second part of its mapping

block.

Once the 3D printer receives the G-code file compromised

by potential attacks, it identifies the tampered code blocks

by verifying the authentication bits in the first part of each



Original

G-code file
Code blocks

Permuted

code blocks

Watermarked 

G-code file

Watermark generation

Grouping Permuting

Embedding 

Potential attacks

Tampered 

code block list

Authentication

Authentication 

bits

Recovery 

bits

Restored 

G-code file

Received 

G-code file

Watermark

 extraction

Restoring

Watermark embedding

Authentication and recovery

Authentication 

bits

Recovery bits

Fig. 3. The diagram of the proposed watermarking framework.

code block. Then, in the recovery stage, if no code block is

identified as tampered, the first part of each code block is fully

restored based on the recovery bits embedded in its mapping

block. However, if any code block is tampered and its mapping

block is authentic, the first part of this block can still be fully

restored based on the recovery bits embedded in its mapping

block. In addition, the second part of this block is restored

based on the geometric information from the neighboring

blocks. When one code block and its mapping block are both

tampered, the recovery of the code block is merely based on

the geometric information from the neighboring blocks.

B. Watermark Embedding

The detailed steps of the watermark embedding process for

a given G-code file are as follows.

1) Group G0 and G1 command lines into code blocks. Based

on the assumption that an attacker has to tamper multiple

consecutive lines to make the prints defective, code block is

proposed as the basic unit for tamper detection and recovery.

Since G0 and G1 command lines contain most of the geometric

information used in the printing, we group the G0 and G1

command lines into code blocks and each block contains n
lines of code, denoted as {Cj |j = 1, 2, ..., ⌊N/n⌋}, where

N is the number of G0 and G1 command lines in the G-

code file. Then, the code blocks are permuted by the function

P with the random seed s, resulting in a new sequence of

blocks {CPs(j)|j = 1, 2, ..., ⌊N/n⌋}. We name the code block

CPs(j+1) as the mapping block of code block CPs(j). Besides,

the mapping block of the last code block in the permuted

sequence is the first code block in the sequence. This implies

a mapping of the code block set to itself, while avoiding any

block mapped to itself, which is the basis of self-embedding

watermarking.

2) Select the watermark embedding domain. Each code

block is separated into two parts: Part I) the first command line,

denoted as C1
Ps(j)

; Part II) the other n−1 command lines, de-

noted as {Ck
Ps(j)

|k = 1, ..., n−1}, where j = 1, 2, ..., ⌊N/n⌋.

Meanwhile, X and Y coordinates in C1
Ps(j)

are used to generate

authentication and the recovery bits. X and Y coordinates in

Part II of the block are utilized to carry the recovery bits.

3) Convert X and Y coordinates to binary representations.

Given that X and Y coordinates in the G-code file are usually

rounded to the precision of three decimal places, we shift all

the digits of X and Y coordinates to the left three number

places and obtain a decimal integer. Then, convert the decimal

integer to a binary integer with the length of p bits, denoted

as xi,2 ∈ Z
p
2 and yi,2 ∈ Z

p
2, where i = 1, 2, ..., N .

4) Embed the authentication bits into the code block itself.

For Part I of Ps(j)-th code block, the binary representation of

the X coordinate is denoted as x1
Ps(j)

∈ Z
p
2. The p − 6 most

significant bits of x1
Ps(j)

are input to a Fowler-Noll-Vo (FNV)

hash function to generate 6 authentication bits, Ax
Ps(j)

. Then

the 6 least significant bits of x1
Ps(j)

are replaced by Ax
Ps(j)

,

obtaining x′1
Ps(j)

. The same process as described above is also

applied to the Y coordinates.

5) Embed the recovery bits into the mapping block. The

original bits of x1
Ps(j)

and y1
Ps(j)

before embedding the au-

thentication bits are defined as the recovery bits for Ps(j)-th
code block. The m = ⌈ p

n−1⌉ least significant bits of the binary

X and Y coordinates {xk
Ps(j+1), y

k
Ps(j+1)|k = 1, ..., n− 1} in

Part II of the mapping code block C1
Ps(j+1) are replaced by

the recovery bits derived from the code block, C1
Ps(j)

. For

example, when p=20, n=5, the m = 5 least significant bits

of {xk
Ps(j+1)|k = 1, ..., 4} carry the 20 bits of x1

Ps(j)
. The

recovery bits of the last code block in the permuted sequence

are embedded into the first code block in the sequence.

6) After the embedding of authentication bits and recovery

bits, the binary representations of X and Y coordinates are

converted back to the decimal representation with the same

precision.

C. Authentication and Recovery of G-code

When the 3D printer receives a G-code file, it checks

whether the G-code has been tampered or not. If no tampering

is detected, it restores the distortion caused by the embedding

of authentication bits based on the recovery bits. If the G-

code file is tampered, it can be partially recovered with the

help of recovery bits and the geometric information from the

neighboring code blocks.

In the authentication procedure, the first three steps are the

same as those of the embedding procure. It first groups the

command lines into code blocks and permutes them using the

same method Ps. After obtaining the binary representations of

the X and Y coordinates in each code block, it calculates the

authentication bits of each code block, {Âx
Ps(j)

, Ây

Ps(j)
|j =

1, 2, ..., ⌊N/n⌋}. If Âx
Ps(j)

and Ây

Ps(j)
are identical to the 6

least significant bits of x1
Ps(j)

and y1
Ps(j)

, then the code block

CPs(j) is considered as genuine, otherwise the code block is

identified as tampered. If none of the code blocks of the G-

code file is tampered, the G-code file is authentic.

On one hand, if the G-code file is identified as authentic,

Part I of each code block is restored by the corresponding



recovery bits embedded in its mapping block. Namely, the

original bits of x1
Ps(j)

are obtained from the combination of

the m least significant bits of {xk
Ps(j+1)|k = 1, ..., n− 1}.

On the other hand, if the G-code file is identified as

tampered, the algorithm can partially recover the tampered

lines. Two cases may emerge, according to the authentication

results of all code blocks:

1) The code block CPs(j) is tampered and its mapping block

CPs(j+1) is authentic. If so, Part I of CPs(j) is fully recovered

based on the recovery bits embedded in CPs(j+1). Part II

of CPs(j) is estimated based on the geometric information

presented in Part I of CPs(j) and its subsequent code block

in the original sequence, CPs(j)+1. The fully recovered X

coordinates in Part I of CPs(j) and CPs(j)+1 in decimal

representation are denoted as {x̂1
Ps(j)

} and {x̂1
Ps(j)+1}. Then

the X coordinates in Part II of CPs(j) are calculated as,

x̂k
Ps(j)

= x̂1
Ps(j)

+ k ×
x̂1
Ps(j)+1 − x̂1

Ps(j)

n
, (1)

where k = 1, 2, ..., n− 1.

2) Both CPs(j) and CPs(j+1) are identified as tampered.

In this case, it is impossible to fully recover Part I or Part

II of code block CPs(j). Nevertheless, they can be estimated

based on the geometric information from the code blocks

before and after CPs(j) in the original G-code file, namely

CPs(j)−1 and CPs(j)+1. If X coordinates in Part I of CPs(j)−1

and CPs(j)+1 are fully recovered as x̂1
Ps(j)−1 and x̂1

Ps(j)+1,

the X coordinates in CPs(j) are estimated as

x̂k
Ps(j)

=
x̂1
Ps(j)+1 − x̂1

Ps(j)−1

2
+(k−1)×

x̂1
Ps(j)+1 − x̂1

Ps(j)−1

2n
,

(2)

where k = 1, 2, ..., n.

The estimation of the Y coordinates in CPs(j) is similar

in all the cases mentioned above. This estimation approach is

based on the observation that the X and Y coordinates in the

neighboring command lines have strong linear correlations.

IV. EXPERIMENTAL RESULTS

In this section we test the performance of the proposed

watermarking method. We perform experiments testing the in-

visibility of the watermark, test the tamper detection accuracy

and perform G-code file recovery.

Above all, we propose a novel measure named Averaged

Relative Difference (ARD) for the aim of properly assessing

the difference between two G-code files, denoted as G and G′,

which is calculated as,

ARD(G,G′) =
1
N

∑i=N

i=1

√

(xi − x′

i)
2 + (yi − y′i)

2

min{IQR(x), IQR(y)}
, (3)

where xi and yi are the X and Y coordinates in the i-th
command line of G-code file, G , while x′

i and y′i are those

of G′. x and y are the sets of the X and Y coordinates in G.

IQR(·) represents the interquartile range of the data.

This measurement reflects the average Euclidean distances

between the geometric information in two G-code files while

(a) Hammer (b) Barrel (c) Trigger (d) Grip

Fig. 4. The shapes of the 3D prints corresponding to the four G-code files
used in the experiments.

considering the whole size of the object. ARD is used for

evaluating the distortion in the G-code file caused by the

watermark embedding when G and G′ represent the original

and watermarked G-code files. We also consider ARD between

the original and tampered G-code files. We also evaluate the

recovery ratio using ARD when G and G′ represent the original

and restored G-code files, respectively. It should be noted that

this measurement assumes that the two G-code files have the

same number of command lines.

In the experiments, four G-code files for different 3D prints

are used as the original G-code files. The shape of the four

3D prints, which are parts of a revolver model, are shown in

Fig. 4. The G-code files are generated by Cura version 4.10.0,

with some printing parameters, infill density 20%, layer height

0.16 mm, print speed 60 mm/s.

A. Invisibility Analysis

When analyzing the invisibility of the watermarking

method, we apply the proposed self-embedding watermarking

method on the four G-code files corresponding to the shapes

from Fig. 4, setting the embedding parameters at different val-

ues to investigate their influence on the watermark embedding

distortion.

Theoretically analyzing the watermarking distortion, if the

G-code file is authentic, the distortion caused by the em-

bedding of authentication bits is reversible, because Part I

of each code block can be fully recovered based on the

recovery bits embedded in its mapping block. In conse-

quence, the only distortion is caused by the embedding of

the recovery bits in Part II of each block. In fact, these

embedding modifications are limited to the m = ⌈ p

n−1⌉
least significant bits of the binary representation of X and Y

coordinates, where n is the number of command lines in each

code block and p is the length of the binary representation

of X and Y coordinates. We set the embedding parameters

(p, n) ∈ {(20, 21), (20, 11), (21, 8), (20, 6), (20, 5), (21, 4)},

so that m ∈ {1, 2, 3, 4, 5, 7}, when applying the proposed

watermarking method on the four original G-code files.

The ARD between the original G-code file and the water-

marked one is denoted as ARDw and that of the original and

the restored ones is denoted as ARDr. The ARDw and ARDr

of the four testing G-code files are shown in Fig. 5. It is shown

that the distortion caused by the watermark embedding is very

limited when m 6 5. Meanwhile, it is shown that ARDr is



1 2 3 4 5 7
0

0.5

1

1.5

2

2.5

3
10-3

(a) Hammer

1 2 3 4 5 7
0

1

2

3

4

5

6
10-3

(b) Barrel

1 2 3 4 5 7
0

1

2

3

4
10-3

(c) Trigger

1 2 3 4 5 7
0

0.5

1

1.5

2

2.5

3
10-3

(d) Grip

Fig. 5. The ARD between the four original G-code files corresponding to the shapes shown in Fig. 4 and their watermarked ones, or restored ones, considering
various embedding settings. ARDw represents the ARD between the original G-code file and the watermarked one. ARDr the represents that of the original
and restored ones.

(a) Hammer (b) Barrel (c) Trigger (d) Grip

Fig. 6. The 3D prints obtained using the restored G-code files after watermark embedding.

less than ARDw in every case which verifies that the recovery

of Part I of each code block can further reduce the distortion.

In addition, the four 3D prints shown in Fig. 6 are created

using the restored G-code file, after it had been watermarked,

when m = 4. The model of the 3D printer is JGAURORA A8L

whose precision can be as high as 0.05mm. It can be observed

from Fig. 6 that the embedding distortion of the G-code files

has very limited influence on the resulting 3D prints.

B. Tamper Detection

In order to test the tamper detection accuracy, we simulate

the malicious tampering by shifting the X and Y coordinates

in multiple command lines of the watermarked G-code file.

We use the watermarked G-code file of the “Hammer” in

Fig. 4(a) in the tamper detection experiment. The tamper ratio,

T , is the parameter controlling the ratio of tampered command

lines compared to the total command lines, which is set to

{0.01, 0.02, 0.03, 0.04, 0.05}. The tampered command lines

is a group of successive command lines randomly selected

from the G-code file. The shifts of X and Y coordinates are

fixed at 10% × IQR(x) and 10% × IQR(y) respectively,

where x and y are the sets of the X and Y coordinates in

the watermarked G-code file. The embedding parameters are

set as (p, n) ∈ {(20, 11), (21, 8), (20, 6), (20, 5), (21, 4)}. The

tamper detection error rate is the sum of the miss detection

errors and false alarm errors compared to the total number of

command lines.

The tamper detection results of the G-code file under

different tampering levels are shown in Fig. 7. It can be

(20,11) (21,8) (20,6) (20,5) (21,4)
0

1

2

3

4

5

6
10-4

Fig. 7. Tamper detection error of the G-code files, watermarked by the
proposed method with different settings when assuming various tamper ratios.
T is the tamper ratio and (p, n) are the embedding parameters.

observed from Fig. 7 that the detection error rate is lower than

6× 10−4 and it even becomes much lower when n decreases.

This is because the tampered part is detected block by block

when using the proposed method, so a smaller code block size

can benefit the detection accuracy. It is indicated in Fig. 7 that

when n 6 6, the proposed method achieves relatively stable

tamper detection performance.



C. G-code Recovery

When testing the recovery ability of the proposed method,

we utilize the four G-code files corresponding to the ob-

jects shown in Fig. 4 as the original files. The watermark

embedding parameters are set to (p, n) = (20, 6) which

shows stable performance in tamper detection. The tamper-

ing process is the same as before with tamper ratio T ∈
{0.01, 0.02, 0.03, 0.04, 0.05}. We calculate the ARD between

the original G-code file and the tampered one, denoted as

ARDt, and that of the original and the restored ones, ARDr.

The recovery results of the tampered G-code file, indicated

by ARDt and ARDr, are shown in Fig. 8. It can be observed

from Fig. 8 that the proposed method can significantly reduce

the ARD caused by the tampering.

0.01 0.02 0.03 0.04 0.05
0

0.002

0.004

0.006

0.008

0.01

(a) Hammer

0.01 0.02 0.03 0.04 0.05
0

0.002

0.004

0.006

0.008

0.01

(b) Barrel

0.01 0.02 0.03 0.04 0.05
0

0.002

0.004

0.006

0.008

0.01

(c) Trigger

0.01 0.02 0.03 0.04 0.05
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

(d) Grip

Fig. 8. The ARD between the four original G-code files representing the
objects shown in Fig. 4 and their tampered ones, or restored ones, considering
various tamper ratios. ARDt represents the ARD between the original G-
code file and the tampered one. ARDr represents that of the original and the
restored ones.

V. CONCLUSION

With a focus on authenticating the G-code file used for 3D

printing, a self-embedding watermarking method for G-code

file is proposed. To the best of our knowledge, this is the

first watermarking method proposed for the authentication of

G-code file. The proposed method groups the G-code lines

into code blocks and obtains a random mapping relation-

ship for each code block. The authentication and recovery

bits are embedded in the code blocks and their mapping

blocks, respectively. The tampered parts are detected using

the authentication bits in each code block. Meanwhile, the

G-code files are restored based on the recovery bits as well

as the geometric information of the neighboring code blocks.

Experimental results indicate that the proposed method can

effectively detect the tampered parts and restore the G-code

file to a large extent, while limiting the distortion caused by

the watermarking. However, the proposed method still has

some limitations. For example, it cannot detect attacks that

remove the command lines from the G-code file. A more

comprehensive tamper detection and recovery ability is needed

for improving G-code watermarking in the future.

REFERENCES

[1] U. M. Dilberoglu, B. Gharehpapagh, U. Yaman, and M. Dolen, “The
role of additive manufacturing in the era of industry 4.0,” Procedia

Manufacturing, vol. 11, pp. 545–554, 2017.

[2] L. D. Sturm, C. B. Williams, J. A. Camelio, J. White, and R. Parker,
“Cyber-physical vulnerabilities in additive manufacturing systems: A
case study attack on the. stl file with human subjects,” Journal of

Manufacturing Systems, vol. 44, pp. 154–164, 2017.

[3] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security

& Privacy, vol. 9, no. 3, pp. 49–51, 2011.

[4] Z. Li and A. G. Bors, “Steganalysis of 3D objects using statistics of local
feature sets,” Information Sciences, vol. 415-416, pp. 85–99, 2017.

[5] Y. Yang, R. Pintus, H. Rushmeier, and I. Ivrissimtzis, “A 3D steganalytic
algorithm and steganalysis-resistant watermarking,” IEEE Transactions

on Visualization and Computer Graphics, vol. 23, no. 2, pp. 1002–1013,
Feb 2017.

[6] Z. Li, S. Beugnon, W. Puech, and A. G. Bors, “Rethinking the high
capacity 3D steganography: Increasing its resistance to steganalysis,” in
Proceedings of 2017 IEEE International Conference on Image Process-

ing (ICIP), 2017, pp. 510–414.

[7] X. Zhang, Q. Wang, and I. Ivrissimtzis, “Single image watermark
retrieval from 3D printed surfaces via convolutional neural networks.” in
Proceedings of 2018 Computer Graphics & Visual Computing (CGVC).

Eurographics Association, January 2018, pp. 117–120.

[8] Z. Li, D. Gong, F. Liu, and A. G. Bors, “3D steganalysis using the
extended local feature set,” in Proceedings of 2018 IEEE International

Conference on Image Processing (ICIP), 2018, pp. 1683–1687.

[9] S. Beugnon, W. Puech, and J.-P. Pedeboy, “Format-compliant selective
secret 3-D object sharing scheme,” IEEE Transactions on Multimedia,
vol. 21, no. 9, pp. 2171–2183, 2019.

[10] Z. Li and A. G. Bors, “Selection of robust and relevant features for 3-
D steganalysis,” IEEE Transactions on Cybernetics, vol. 50, no. 5, pp.
1989–2001, 2020.

[11] ——, “Steganalysis of meshes based on 3D wavelet multiresolution
analysis,” Information Sciences, vol. 522, pp. 164–179, 2020.

[12] Y. Gao, B. Li, W. Wang, W. Xu, C. Zhou, and Z. Jin, “Watching
and safeguarding your 3D printer: Online process monitoring against
cyber-physical attacks,” Proceedings of the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies, vol. 2, no. 3, pp. 1–27, 2018.

[13] M. H. Rais, Y. Li, and I. Ahmed, “Spatiotemporal G-code modeling for
secure FDM-based 3D printing,” in Proceedings of the ACM/IEEE 12th

International Conference on Cyber-Physical Systems, 2021, pp. 177–
186.

[14] X. Zhang, S. Wang, Z. Qian, and G. Feng, “Reference sharing mech-
anism for watermark self-embedding,” IEEE Transactions on Image

Processing, vol. 20, no. 2, pp. 485–495, 2011.

[15] P. Korus and A. Dziech, “Efficient method for content reconstruction
with self-embedding,” IEEE Transactions on Image Processing, vol. 22,
no. 3, pp. 1134–1147, 2013.

[16] M. Fallahpour, S. Shirmohammadi, M. Semsarzadeh, and J. Zhao,
“Tampering detection in compressed digital video using watermarking,”
IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 5,
pp. 1057–1072, 2014.

[17] C. Qin, P. Ji, C.-C. Chang, J. Dong, and X. Sun, “Non-uniform
watermark sharing based on optimal iterative BTC for image tampering
recovery,” IEEE MultiMedia, vol. 25, no. 3, pp. 36–48, 2018.

[18] F. Peng, Z.-X. Lin, X. Zhang, and M. Long, “A semi-fragile reversible
watermarking for authenticating 2D engineering graphics based on
improved region nesting,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 31, no. 1, pp. 411–424, 2021.

[19] C.-M. Chou and D.-C. Tseng, “Affine-transformation-invariant public
fragile watermarking for 3D model authentication,” IEEE Computer

Graphics and Applications, vol. 29, no. 2, pp. 72–79, 2009.

[20] F. Peng, B. Long, and M. Longa, “A general region nesting based semi-
fragile reversible watermarking for authenticating 3D mesh models,”
IEEE Transactions on Circuits and Systems for Video Technology, 2021,
DOI:10.1109/TCSVT.2021.3052468.


