
This is a repository copy of Controllable model compression for roadside camera depth 
estimation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/186846/

Version: Accepted Version

Article:

Ople, J.J.M., Chen, S.-F., Chen, Y.-Y. et al. (4 more authors) (2023) Controllable model 
compression for roadside camera depth estimation. IEEE Transactions on Intelligent 
Transportation Systems, 24 (12). pp. 15478-15485. ISSN 1524-9050 

https://doi.org/10.1109/tits.2022.3166873

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



IEEE TRANSACTION ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. Y, JUNE 2022 1

Controllable Model Compression for Roadside

Camera Depth Estimation
Jose Jaena Mari Ople, Shang-Fu Chen, Yung-Yao Chen, Kai-Lung Hua, Senior Member, IEEE, Mohammad Hijji,

Po Yang, Senior Member, IEEE Khan Muhammad, Senior Member, IEEE

Abstract—In the Cooperative Intelligent Transportation Sys-
tem (C-ITS) paradigm, vehicles could communicate with roadside
units to augment their traffic knowledge. Smart roadside units
could provide second-order information (e.g., vehicle count) from
raw first-order data (e.g., visual feed, point clouds), and this
”smart” feature is usually provided using deep neural network
models. However, implementing these useful models implies a
cost for computational complexity that could hinder the future
deployment of smart roadside units needed for sustainability in
transportation systems. In this paper, we propose to use model
compression on deep image processing models to promote its
feasibility for usage in smart sensors. We formulated a control-
lable convolutional model compression (CCMC) algorithm that
can perform filter-wise evolutionary pruning on image processing
networks, along with a predefined compression ratio. CCMC is
applicable for image processing networks, which have multiple
possible traffic data sources (e.g., road camera surveillance). Fur-
thermore, CCMC has a definable target compression ratio that is
useful for controlling the trade-off between resource consumption
and output performance. We tested our proposed method on
depth estimation, which is useful for scene understanding and
mapping the locations of objects in the 3D space. Our exper-
iments show that the pruned model has minimal performance
discrepancy from the original one, supporting the sustainability
features needed for intelligent transportation systems.

Index Terms—Smart sensors, neural network compression,
depth estimation, genetic algorithm, sustainable solutions, intel-
ligent transportation systems.

I. INTRODUCTION

C-ITS involves multiple components (i.e., vehicles, roadside

units, traffic commands centers) that communicate with each

other to minimize traffic disruptions. A subset of roadside units

are sensors that gather environment and traffic information

for other components so that they can perform decisions

accordingly [1]. Traditionally, the sensors utilized are camera

surveillance systems that are manually observed by human op-

erators to perform traffic management. In the C-ITS paradigm,

Manuscript received December 29, 2021; Revised March 24; Accepted
April 6, 2022; Published XXXX. This paper was recommended by Associate
Editor XYZ. (Corresponding authors: Kai-Lung Hua and Khan Muhammad)

Jose Jaena Mari Ople, Shang-Fu Chen, Yung-Yao Chen, and Kai-
Lung Hua are with the National Taiwan University of Science and Tech-
nology, Taiwan (e-mail: josmople@gmail.com, chenshungfu@gmail.com,
yungyaochen@mail.ntust.edu.tw, kailunghua@gmail.com).

M. Hijji is with the Computer Science Department, Faculty of Computers
and Information Technology, University of Tabuk, Tabuk 47711, Saudi Arabia
(e-mail: m.hijji@ut.edu.sa).

Po Yang is with the Department of Computer Science, University of
Sheffield, United Kingdom (e-mail: po.yang@sheffield.ac.uk).

Khan Muhammad is with the Visual Analytics for Knowledge Laboratory
(VIS2KNOW Lab), Department of Applied Artificial Intelligence, School of
Convergence, College of Computing and Informatics, Sungkyunkwan Univer-
sity, Seoul 03063, Republic of Korea (e-mail: khan.muhammad@ieee.org).

the camera sensors can automatically provide information not

only limited to visual feed but also smartly compute second-

order information such as environmental structure [2]–[4], and

pedestrian flow [5], [6]. The information processing is usually

performed using deep neural models due to their excellent

performance. However, these models have computational com-

plexity that serves as an issue on the availability of smart

roadside sensors.

Using a camera surveillance system is a common traf-

fic management approach, which implies that there is an

availability of image sensors that could be re-purposed to

smart sensors. Furthermore, image processing models typi-

cally employ convolutional layers that—despite being able

to automatically learn meaningful and high-level features—

inherit a considerable amount of redundancy [7], [8]. The

combination of hardware accessibility and model redundancy

make computer vision models suitable targets for optimization.

To generate computer vision models with different levels

of compression, we propose our method Controllable Con-

volutional Model Compression (CCMC), which can prune

convolutional models until their size matches a specified

compression ratio. CCMC performs two-phase compression

using multiple evolutionary filter pruning. First, the initial-

ization phase acquires a compressed model with a minimal

performance drop. We use a Genetic Algorithm (GA) [9] to

prune those convolutional filters that least contribute to the

model’s performance score. To automatically generate a model

architecture with a balance of performance and compression,

we compute the fitness in this phase as the weighted sum of

both the model’s performance score and compression ratio.

Since we let the GA dictate the compression process, we may

not obtain the model with the desired compression ratio. Hence

in the second phase, the initially compressed model from the

first phase will be further adjusted to match the compression

ratio specified beforehand. We run another set of GA that

optimizes two populations to search the following: (1) filter

activations that have maximal performance increase and (2)

filter deactivations that yield minimal performance decrease.

We use the results from the second phase to loop back and

adjust the initially compressed network. If the network size

is below the compression ratio, we activate filters that have

maximal performance increase. If the network size is above

the compression ratio, we deactivate filters with a minimal

performance decrease. To be more specific, in this paper, we

focus on depth estimation as the computer vision task that

we want to optimize. Specifically, we perform compression

on monocular depth estimation networks, Monodepth2 [3]



IEEE TRANSACTION ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. Y, JUNE 2022 2

Fig. 1. Different model sizes could be used in different scenarios. (A) Ideal
scenario of having a full model deployed on a high-budget hardware. (B)
Low-cost model could be deployed for surveying simple road environments.
(C) With low-cost model and hardware, smart surveillance could be employed
on numerous minor roads and streets .

and GLPDepth [4]. We have chosen these models due to the

following reasons: (1) depth estimation from a single image is

a complex task that requires deep models, in which we could

showcase the compression ability of CCMC, (2) monocular

images are more common than other modalities that use

specialized hardware (e.g., point clouds from LiDAR and

stereo images). (3) In the context of a roadside camera, depth

estimation offers a 3D understanding of a scene, which is

useful for other traffic-related tasks (e.g., navigation [10], [11],

parking management [12], and traffic flow estimation [13]).

(4) Compressed depth estimation models have reduced fidelity,

however, they could still be applied for smart surveillance of

simple environments (e.g., few scene objects), see Figure 1.

Our main contributions can be summarized as follows:

1) We proposed a novel evolutionary filter-wise pruning

algorithm for convolutional models with a controllable

compression ratio that can be used as sustainable solu-

tion in transportation systems.

2) We implemented an evolutionary filter search algorithm

that finds performance-optimal filter activations and de-

activations.

3) We explored the effects of different levels of compres-

sion on depth estimation.

4) We conducted a series of experiments from different

perspectives and our experimental results show that

neural compression can reduce the computational com-

plexity with minimal performance degradation. Pruned

models could still work even if compressed to 20% of

their original size, which has applications in different

domains, including ITS.

II. RELATED LITERATURE

The goal of our paper is to increase the availability of

smart roadside units (i.e., monocular camera) with model com-

pression. We explore depth estimation and different available

compression methods.

A. Depth Estimation

Scene understanding is the process of interpreting and

analyzing the 3D dynamic scene [14], and this could be

done using different approaches such as semantic segmenta-

tion and depth estimation. In this paper, we focus on depth

estimation towards scene understanding, in which there are

multiple approaches. Point clouds from LiDAR can be used

to generate depth maps [2], as well as images from stereo

cameras [15]. However, these approaches use complicated and

expensive equipment. With the goal of this paper to increase

the availability of smart roadside units, we explore a depth

estimation algorithm using a monocular camera.

The work by [16] uses a feed-forward network to estimate

depth maps but its training is augmented with an additional

semantic segmentation network. Another paper from [17] uses

different networks to estimate low-depth and high-depth areas.

Other research [18] utilized a network architecture with multi-

ple aggregations of different convolutional layers. In [19], they

proposed an unsupervised adversarial depth estimation net-

work. Monodepth2 [3] uses multi-scale features and multiple

modalities to learn depth estimation. GLPDepth [4] deploys a

transformer to encode the global context and a lightweight

decoder that estimates depth map while considering local

connectivity.

Depth estimation could be used in multiple applications for

C-ITS, such as autonomous navigation [11], parking manage-

ment [12], and traffic flow estimation [13]. These approaches

typically use depth map estimations for generating the 3D

geometry of a scene.

B. Model Compression

There are multiple approaches for model compression, in-

cluding network pruning, sparse representation, bits precision,

and knowledge distillation [20]. In this work, our chosen

approach is network pruning, which reduces the model size

of a neural network by removing some of its parameters.

Existing pruning algorithms employ different search methods

(e.g., random, greedy [21], gradient [22], [23], and GA [24])

for parameter removal. For example, Elkerdawy et al. [22]

learned the pruning mask by joint optimization with the layer

weights. On the other hand, we focus on GA-based approaches

because of their advantages for neural architecture search,

such as flexibility for navigating complex search spaces [25],

and improved generalization through sparsity by evolutionary

pruning [26]. An example of this approach is by Wang et al.

[24], where they used GA to prune convolutional filters that

least contribute to the overall performance of the model. To

the best of our knowledge, there is no evolutionary filter-wise

pruning that allows a controllable compression ratio; hence,

we propose our method, CCMC.

III. THE PROPOSED METHOD

CCMC can compress convolutional models using two-

phase compression based on GA. The first phase is called

Initial Architecture Optimization (Sec. III-A), which yields an

initially compressed network. Whereas the second phase is

Model Size Adjustment (Sec. III-B), which further modifies the

compressed network to match the defined compression ratio

(within the range [0, 1]). Further processing of the model is



IEEE TRANSACTION ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. Y, JUNE 2022 3

Fig. 2. Overview of our proposed method, CCMC. GA is used to evolve the populations P (t), Q(t), and R(t), where t is the generation count. The original
network G will be propagated to population P (0), Q(0), and R(0), iteration t = 0. Population P will evolve by minimizing both parameter count and
performance drop. Q will try to find the filter changes that have the most performance improvement. R will maximize performance drop to find filter changes
that provide the least improvement. After iteration S, the filter changes from Q and R are used as the heuristic to decide which filters should be activated or
deactivated when the model size does not match the compression ratio C.

discussed in Sec. III-C (Fine-Tuning the Model). The high-

level visualization of our pipeline is presented in Figure 2,

while the pseudo-code is provided in Algorithm 1.

A. Initial Architecture Optimization

Given the original convolutional architecture G, we aim to

construct a compressed architecture Ĝ that has fewer trainable

parameters. To perform this task, we used GA [9] to optimize

the architecture of our chosen network. Optimization, in this

context, means the pruning of convolutional filters that least

contribute to the output. We closely follow the methodology

of [24] for the initial optimization of population P .

Bit String Representation. Every individual p in popula-

tion P represents a solution (chromosome) that is manipulated

by GA. This chromosome is a bit string (i.e., a list of 0s and 1s)

that represents the architecture of a generator network. Each

bit determines whether its corresponding convolution filter is

discarded (if 0) or retained (if 1). Considering the network G

with I convolutional layers, Fi is the i-th convolution layer,

where i ∈ [1, 2, . . . , I] and Fi ∈ R
Hi × Wi × Ci × Ni .

Here, Hi, Wi, Ci, and Ni are the height, width, channel size,

and number of filters for the i-th layer, respectively. The total

length of the bit string is defined as
∑I

i=1 Ni.

The input channels of the initial layer and the output channel

of the final layer cannot be pruned. This is to prevent zero

values as input and zero values as output. Additionally, we

imposed a soft restriction in which each convolutional layer

should have at least 10% of its filter active. Otherwise, a layer

with less than 10% of its filter will almost output nothing. Note

that this restriction is not mandatory, however, empirically,

layers that output almost nothing will cause the entire model

to have a bad performance.

Performance Metric. We compute the performance L of

an individual p using its depth estimation accuracy at 1.25
threshold (i.e., δ < 1.25). The estimation for a pixel is

considered correct if the relative error δ is within the threshold

(i.e., 1.25).

Fitness Function. In GA, the fitness function determines the

quality of an individual p in the population P . In the context

of our work, a higher fitness should reflect a better modeling

performance of the compressed network. The fitness of p is

computed as:

F (p) = L(Ĝ|p) + γ(1− N (p)), (1)

where Ĝ is the equivalent generator architecture from the

bit string of individual p, L(Ĝ) is the performance metric

function, N (p) is the compression ratio for p, and γ is

the hyperparameter for balancing between performance L(·)
and compression(N (·). A high fitness score is achieved by

maximizing performance and minimizing compression ratio.

Genetic Algorithm. Using the fitness function F (·) from

Eq (1), GA is used to find the fittest individual p through

S search generations. The roulette wheel selection is used

to pick the parents for the next evolutionary generation.

After S iterations, we have the latest population P (S), which

represents the generator architectures that possess the optimal



IEEE TRANSACTION ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. Y, JUNE 2022 4

Algorithm 1 CCMC

Require: Pretrained convolutional network G, Parameters:

K (population size), T (number of epochs), C (Target

compression ratio), S (Iterations before Q and R affects

P ); S < T

1: Initialize a population P (0) w.r.t. G with K individuals;

2: Copy population P (0) to population Q(0) and R(0);

3: for t = 1 to T do

4: Calculate the fitness of each individual in P (t) using

Eq. 1;

5: Obtain probabilities using roulette wheel selection;

6: for k = 1 to K do

7: Conduct GA’s selection, crossover, and mutation

on P (t) for generating new individuals according to a pre-

defined probability;

8: end for

9: Calculate the fitness of each individual in Q(t) using

Eq. 2;

10: for k = 1 to K do

11: Conduct Microbial GA’s selection, evaluation, re-

combination, mutation on Q(t) for generating new indi-

viduals according to a pre-defined probability;

12: end for

13: Find out which individual in Q(t) gained the most

fitness after Microbial GA and record in Q̂

14: Calculate the fitness of each individual in R(t) using

Eq. 3;

15: for k = 1 to K do

16: Conduct Microbial GA’s selection, evaluation, re-

combination, mutation on R(t) for generating new indi-

viduals according to a pre-defined probability;

17: end for

18: Find out which individual in R(t) gained the most

fitness after Microbial GA and record in R̂, see Figure 3;

19: if t > S then

20: if N(p(t)) >
N(G)

(C ∗ (1− 2%))
then

21: Check every convolution filter state in each

individual p(t) and deactivate those recorded in R̂;

22: else if N(p(t)) <
N(G)

(C ∗ (1 + 2%))
then

23: Check every convolution filter state in each

individual p(t) and reactivate those recorded in Q̂;

24: end if

25: end if

26: end for

27: Update fitnesses of individuals in Pt

28: Establish compressed Generator Ĝ by choosing the best

individual p̂(T )

Ensure: Compressed Generator Ĝ after fine-tuning using the

entire training set.

Fig. 3. Model size adjustment using population Q. Individual q
(t)
k

is
the k-th member of population Q at evolution step t. F (·) is the fitness

function defined in Eq. (2). Filter changes of q̂(t → t+1) with the best fitness
improvement will be recorded to cache Q∆. Items in Q∆ are used to adjust
the model size of the generator network. We use MGA since it improves the
population via self-mutation, which allows one-to-one correspondence to the
succeeding generations.

ratio between model size and performance, as per the selected

value of γ.

B. Model Size Adjustment

Even after the initial optimization (Sec. III-A), it is not

guaranteed that the final architectures (i.e., P (S)) has the spec-

ified compression ratio. After the S-th generation of the first

phase, the network architecture is further modified by either

activating filters if the model size is below the compression

ratio or deactivating filters if the model size is above the ratio.

To do this task, we use Microbial Genetic Algorithm (MGA)

to optimize additional populations, Q and R, as guidance for

further filter changes. We use MGA instead of GA because

we want to record the gradual development of the individuals

of populations Q and R, since MGA improves upon the

population via self-mutation. Specifically, the individual q
(s)
i

should correspond to the evolved individual q
(s+1)
i (this should

also apply to the individuals of p). In MGA, the individual

is modified by accepting genes from other individuals with

higher fitness; therefore, there is a correspondence between

individuals of succeeding generations. For GA, this does not

hold true.

Increase model size. We define population Q whose pur-

pose is to find filter activations with maximal performance

improvement. The fitness function for Q is defined as:

Fpos(p) = L(Ĝ|p). (2)

Fpos is similar to Eq. (1) but has no regard for the compres-

sion ratio. As illustrated in Figure 2, we populate the cache

Q∆ by finding the filter activations (i.e., 0 → 1 in the bit

string representation) with the best fitness increase for each

evolutionary generation of Q. For each item in Q∆, if there is

a similar configuration in P (S), we perform that filter change

to increase the model sizes of each individual in P (S).



IEEE TRANSACTION ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. Y, JUNE 2022 5

TABLE I
QUANTITATIVE RESULTS OF CCMC IN COMPRESSING DEPTH ESTIMATION MODELS

Model Compression Performance Metrics

Arch. Dataset Ratio Actual Ratio Actual Size Abs REL Sq REL RMSE RMSE log δ < 1.251 δ < 1.252 δ < 1.253

M
o

n
o

d
ep

th
2

C
it

y
sc

ap
es

0.8 0.8079 9.96 MB 0.0477 0.0001 0.0027 0.0681 0.9862 0.9987 0.9999

0.6 0.6196 7.64 MB 0.0494 0.0001 0.0026 0.0781 0.9733 0.9996 0.9999

0.4 0.4198 5.18 MB 0.0547 0.0002 0.0028 0.0845 0.9680 0.9985 0.9998

0.2 0.2200 2.71 MB 0.0684 0.0003 0.0040 0.0990 0.9561 0.9953 0.9998

C
it

y
C

am

0.8 0.8013 9.88 MB 0.0545 0.0002 0.0030 0.753 0.9821 0.9992 0.9998

0.6 0.6134 7.56 MB 0.0560 0.0002 0.0032 0.0803 0.9789 0.9993 0.9997

0.4 0.4086 5.04 MB 0.0581 0.0002 0.0033 0.0888 0.9664 0.9979 0.9996

0.2 0.2141 2.64 MB 0.0628 0.0002 0.0031 0.0914 0.9660 0.9971 0.9996

G
L

P
D

ep
th C
it

y
sc

ap
es

0.8 0.8132 192.29 MB 0.0833 0.0375 0.3550 0.1116 0.9823 0.9989 0.9999

0.6 0.6054 143.16 MB 0.0570 0.0140 0.2008 0.0756 0.9457 0.9978 0.9998

0.4 0.4113 97.26 MB 0.0992 0.0529 0.4289 0.1417 0.9073 0.9808 0.9976

0.2 0.2189 51.76 MB 0.1172 0.0741 0.4998 0.1660 0.8872 0.9700 0.9953

C
it

y
C

am

0.8 0.8172 193.24 MB 0.0166 0.0032 0.1265 0.0267 0.9998 0.9999 0.9999

0.6 0.6163 145.73 MB 0.0308 0.0075 0.1911 0.0407 0.9992 0.9999 0.9999

0.4 0.4049 95.74 MB 0.0584 0.0245 0.2990 0.0795 0.9791 0.9998 0.9998

0.2 0.2177 51.48 MB 0.0585 0.0252 0.3130 0.0817 0.9788 0.9998 0.9998

Decrease model size. We define population R whose pur-

pose is to find filter deactivations with minimal performance

improvement. The fitness function for R is defined as:

Fneg(p) =
1

L(Ĝ|p)
. (3)

Fneg encourages the network to have worse performance

than the original convolutional network G. We populate the

cache R∆ by following a similar process in Figure 2 but

using a different fitness function. Since R is optimizing for

architecture with worse performance, the filter activations

found in R∆ have a negative contribution to the overall

performance L(p) for individuals p in P (S). Therefore, for

each item in R∆, if there is a similar configuration in P (S),

we deactivate (i.e., 1 → 0) the filter to reduce its model size.

C. Fine-tuning the Model

After finding a suitable compressed network architecture

Ĝ that has good performance and satisfies the compression

ratio, we fine-tune Ĝ using the training dataset of the initial

network G. The original weights of G are preserved and

transferred to Ĝ but the removed parameters negatively affect

the performance. We fine-tune the network Ĝ using a subset

from the original training dataset. The network is trained using

different numbers of fine-tune batches, in which the batch size

is based on the original training procedures of the generator.

IV. EXPERIMENTS

In this section, we qualitatively and quantitatively evaluate

our proposed GA-based compression, CCMC, on depth esti-

mation task.

A. Implementation Details

The models and the GA pipeline are implemented in

PyTorch. For the fine-tuning step, the pruned models are

trained with the same configurations as their respective original

networks. The fine-tuning is performed with the configurations

stated in their respective implementations. The experiments are

run on a computer with NVIDIA GeForce GTX 2080 Ti GPU

and Intel Core i7-8700 CPU.

B. Models.

Using CCMC, we compress the depth estimation models,

Monodepth2 [3] and GLPDepth [4], to specific compression

ratios (i.e., 0.8, 0.6, 0.4, 0.2). For Monodepth2, we used the

model trained on the KITTI dataset [27] with the monocular

modality of resolution 640 × 192. For GLPDepth, we used the

model trained on [28]. Do note that we fine-tune the pruned

architectures derived from the original pretrained models.

C. Dataset.

The testing is performed using Cityscapes [29] and CityCam

datasets [30]. To compute performance metric L(Ĝ|p) in the

fitness formulas (Eq. 1,2,3), we use a randomly selected 10-

item subset from their test dataset. Only 10 items were chosen

for fast computation of the fitness since it will run for multiple

instances of pruned architectures. For computing the depth

metrics, the entire test images are used. For both datasets, we

post-process their images such that the longer side has a length

of 640 pixels while also preserving the aspect ratio.

Cityscapes [29] is a dataset that focuses on semantic under-

standing of urban street scenes. This dataset has similarities

with the training dataset [27], which is, both of them are from



IEEE TRANSACTION ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. Y, JUNE 2022 6

Fig. 4. Examples of generated depth maps. (Left) Depth maps produced
by Monodepth2 models [3] on Cityscapes [29] dataset. (Right) Depth maps
produced by GLPDepth models [4] on CityCam [30] dataset. The compression
ratio is indicated by the numbers at the lower right of each image. The upper-
left image from each image group is the input. The ratio of 1.0 indicates that
this is the output of the original network.

the point of view of the car. Cityscapes have stereo images

(i.e., left and right) but we just used the left test images for

the evaluation metrics. Images in this dataset have a resolution

of 2048× 1024.

CityCam [30] contains images from the point-of-view of

road surveillance cameras. This dataset fits more with the

desired use-case of this paper (i.e., more smart roadside units).

The original image resolution for this dataset is 352× 240.

D. Metrics

We use common evaluation metrics for depth estimation

such as Absolute Relative Difference (Abs Rel), Squared

Relative Difference (Sq Rel), Root Mean Squared Error

(RMSE), and accuracy with certain thresholds. For accuracy,

we consider the depth estimation for a pixel to be correct if its

error (δ = max(pred
gt

, gt
pred

)) is within a certain threshold.

Specifically, the thresholds are 1.251, 1.252, and 1.253—these

values are standard for depth estimation. The comparison is

performed relative to the original network. To reduce verbosity,

we refer to the compression ratio as C (e.g., 0.8C is 80%

compression ratio), from hereon.

E. Performance

In this section, we show the quantitative and qualitative

results of the model pruned to different compression ratios.

We compressed the models with the architectures from Mon-

odepth2 [3] and GLPDepth [4], then used these pruned models

to perform depth estimation on the datasets, Cityscapes [29]

and CityCam [30]. View the quantitative results in Table I and

the qualitative results view Figure 4.

Based on the table, the obvious trend is that performance

degrades as the compression ratio is minimized. However, we

could see that outputs of the pruned model have minimal

discrepancy from the original network. If we look at Figure 4,

the details of the depth map become blurrier with the lower

target compression size. But still, the general outline of the

depth map remains.

Do note that the performance of the compressed model is

derived from the original model. If the base model has a bad

performance to a dataset, this will carry over to the pruned

model.

Fig. 5. Statistics of the proposed solutions. (Left) Compression (x-axis)
vs Performance (y-axis). (Right) Compression (x-axis) vs Performance-per-
Compression (y-axis). Blue dots indicate proposed solutions of the entire
pipeline (Phase I and Phase II combined). Green boxes indicate outputs of
Phase I. Brown triangles indicate generated architectures of Phase II but with
a random population as input—Phase II only. The red dashed line (at the
graph on the right) indicates average performance for Blue dots. Best viewed
in color.

F. Memory

In Table I (Compression columns), we can see the actual

memory sizes of the pruned models used in the evaluation. We

could see that the actual compression ratio is not exactly the

same as the specified ratio. This is for the following reasons.

Evolutionary algorithms will take too long to generate the

desired filter activations with a specific number of activations;

hence, there is a margin of error for the compression ratio. In

this case, we set the margin of error as 0.02. The final size of

the pruned model still fits the specified ratio.

G. Ablation Study

We graphed the outputs of proposed solutions generated

by different configurations (i.e., Phase I only, Phase II only,

and full pipeline) in Figure 5. On the left side of the figure,

the compression (x-axis) and the performance (y-axis) values

of the proposed solutions present an upward trend. It is not

immediately obvious why the outputs of Phase I (green boxes)

are located around 0.6 to 0.8 compression values. However,

their coordinates make sense, if we look at the right side

of the figure, which graphs the compression (x-axis) and

the performance-per-compression (y-axis) scores. There is a

noticeable apex, hovering around 0.6 to 0.7. In other words,

Phase I outputs efficient pruned model architectures character-

ized by high values for performance-per-compression scores.

On the other hand, Phase II allows the initial solutions (i.e.,

Phase I outputs) to be adjusted to other compression ratios,

albeit with a sacrifice on the performance-per-compression

efficiency. If we don’t use Phase I proposals as Phase II inputs,

the generated solutions for Phase II have lower performance

(see brown triangles). Additionally, in Figure 5 (left), for

compression ratios less than 0.2, the actual performance of

the proposals hovers closely to zero.

H. Comparison with Other Compression Methods

To the best of our knowledge, we are the first paper address-

ing controllable compression for depth estimation models.

However, a previous work [22] already exists if limited only

for general model pruning. We compared our methods and

found that we could have comparable performance at the



IEEE TRANSACTION ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. Y, JUNE 2022 7

following compression ratios: 0.15 for [22] and 0.28 (Ours).

We hypothesize that their improved performance is due to

the joint learning of the weights and pruning mask. For our

method, we find the pruning mask first, then perform fine-

tuning.

V. CONCLUSION

We proposed Controllable Convolutional Model Compres-

sion (CCMC) that can perform evolutionary filter-wise pruning

to computer vision model, in which the desired compression

size can be specified. With CCMC, we increased the de-

ployability of image processing models so that more ”smart”

roadside sensors could be established. CCMC works by using

a Genetic Algorithm (GA) to generate an initial pruned archi-

tecture with a balance between performance and compression.

Then CCMC employs two additional GA that attempts to

perform the objectives: search for (GA.1) filter activations

that have maximal performance increase and (GA.2) filter

deactivations that have minimal performance decrease. With

these GA pipelines, we achieved efficient pruning of the base

model. Furthermore, we directly controlled the model size

of the final output by committing the findings of GA.1 for

upsizing or GA.2 for downsizing. We tested our method on

monocular depth estimation models and found that CCMC

can generate pruned depth estimation models with minimal

performance discrepancy from the original model. Further-

more, even with 20% compression, the pruned depth estimator

could still somewhat work, albeit only on the coarse-level

estimation. In addition to reducing hardware requirements for

the deployment of ”smart” roadside sensors, CCMC partially

solved the hardware compatibility issue for model sharing

between C-ITS agents.

REFERENCES

[1] Z. Lv, L. Qiao, and I. You, “6g-enabled network in box for internet
of connected vehicles,” IEEE Transactions on Intelligent Transportation

Systems, 2020.
[2] L. Chen, Y. He, J. Chen, Q. Li, and Q. Zou, “Transforming a 3-d lidar

point cloud into a 2-d dense depth map through a parameter self-adaptive
framework,” IEEE Transactions on Intelligent Transportation Systems,
vol. 18, no. 1, pp. 165–176, 2016.

[3] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow, “Digging
into self-supervised monocular depth estimation,” in Proceedings of

the IEEE/CVF International Conference on Computer Vision, 2019, pp.
3828–3838.

[4] D. Kim, W. Ga, P. Ahn, D. Joo, S. Chun, and J. Kim, “Global-
local path networks for monocular depth estimation with vertical
cutdepth,” CoRR, vol. abs/2201.07436, 2022. [Online]. Available:
https://arxiv.org/abs/2201.07436

[5] P. Yang, G. Zhang, L. Wang, L. Xu, Q. Deng, and M.-H. Yang, “A part-
aware multi-scale fully convolutional network for pedestrian detection,”
IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 2,
pp. 1125–1137, 2020.

[6] B. Han, Y. Wang, Z. Yang, and X. Gao, “Small-scale pedestrian detec-
tion based on deep neural network,” IEEE transactions on intelligent

transportation systems, vol. 21, no. 7, pp. 3046–3055, 2019.
[7] K. Kahatapitiya and R. Rodrigo, “Exploiting the redundancy in convolu-

tional filters for parameter reduction,” in IEEE/CVF Winter Conference

on Applications of Computer Vision, 2021, pp. 1410–1420.
[8] S. Chakraborty, S. Paul, R. Sarkar, and M. Nasipuri, “Feature map reduc-

tion in cnn for handwritten digit recognition,” in Recent Developments

in Machine Learning and Data Analytics. Springer, 2019, pp. 143–148.
[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[10] Z. Lv, D. Chen, H. Feng, H. Zhu, and H. Lv, “Digital twins in unmanned
aerial vehicles for rapid medical resource delivery in epidemics,” IEEE

Transactions on Intelligent Transportation Systems, 2021.
[11] R. de Queiroz Mendes, E. G. Ribeiro, N. dos Santos Rosa, and

V. Grassi Jr, “On deep learning techniques to boost monocular depth
estimation for autonomous navigation,” Robotics and Autonomous Sys-

tems, vol. 136, p. 103701, 2021.
[12] M.-R. Lee and D.-T. Lin, “Vehicle counting based on a stereo vision

depth maps for parking management,” Multimedia Tools and Applica-

tions, vol. 78, no. 6, pp. 6827–6846, 2019.
[13] F. Brickwedde, S. Abraham, and R. Mester, “Mono-sf: Multi-view ge-

ometry meets single-view depth for monocular scene flow estimation of
dynamic traffic scenes,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2019, pp. 2780–2790.
[14] Z. Lv, Y. Li, H. Feng, and H. Lv, “Deep learning for security in

digital twins of cooperative intelligent transportation systems,” IEEE

Transactions on Intelligent Transportation Systems, 2021.
[15] W. Chuah, R. Tennakoon, R. Hoseinnezhad, and A. Bab-Hadiashar,

“Deep learning-based incorporation of planar constraints for robust
stereo depth estimation in autonomous vehicle applications,” IEEE

Transactions on Intelligent Transportation Systems, 2021.
[16] P.-Y. Chen, A. H. Liu, Y.-C. Liu, and Y.-C. F. Wang, “Towards scene

understanding: Unsupervised monocular depth estimation with semantic-
aware representation,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2019, pp. 2624–2632.
[17] H. Ren, M. El-Khamy, and J. Lee, “Deep robust single image depth esti-

mation neural network using scene understanding.” in CVPR Workshops,
2019, pp. 37–45.

[18] W. Su, H. Zhang, Q. Zhou, W. Yang, and Z. Wang, “Monocular depth
estimation using information exchange network,” IEEE Transactions on

Intelligent Transportation Systems, 2020.
[19] A. Pilzer, D. Xu, M. Puscas, E. Ricci, and N. Sebe, “Unsupervised

adversarial depth estimation using cycled generative networks,” in 2018

International Conference on 3D Vision (3DV). IEEE, 2018, pp. 587–
595.

[20] R. Mishra, H. P. Gupta, and T. Dutta, “A survey on deep neural
network compression: Challenges, overview, and solutions,” CoRR, vol.
abs/2010.03954, 2020. [Online]. Available: https://arxiv.org/abs/2010.
03954

[21] J. Yu and T. S. Huang, “Universally slimmable networks and improved
training techniques,” in International Conference on Computer Vision,
2019, pp. 1803–1811.

[22] S. Elkerdawy, H. Zhang, and N. Ray, “Lightweight monocular depth
estimation model by joint end-to-end filter pruning,” in 2019 IEEE

International Conference on Image Processing (ICIP). IEEE, 2019,
pp. 4290–4294.

[23] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search,” in Conference on Computer

Vision and Pattern Recognition, 2019, pp. 10 734–10 742.
[24] Y. Wang, C. Xu, J. Qiu, C. Xu, and D. Tao, “Towards evolutionary

compression,” in 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2018, pp. 2476–2485.
[25] A. D. Martinez, J. Del Ser, E. Villar-Rodriguez, E. Osaba, J. Poyatos,

S. Tabik, D. Molina, and F. Herrera, “Lights and shadows in evolutionary
deep learning: Taxonomy, critical methodological analysis, cases of
study, learned lessons, recommendations and challenges,” Information

Fusion, vol. 67, pp. 161–194, 2021.
[26] R. C. Gerum, A. Erpenbeck, P. Krauss, and A. Schilling, “Sparsity

through evolutionary pruning prevents neuronal networks from overfit-
ting,” Neural Networks, vol. 128, pp. 305–312, 2020.

[27] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer

Vision and Pattern Recognition (CVPR), 2012.
[28] P. K. Nathan Silberman, Derek Hoiem and R. Fergus, “Indoor segmen-

tation and support inference from rgbd images,” in ECCV, 2012.
[29] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-

son, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for
semantic urban scene understanding,” in IEEE conference on computer

vision and pattern recognition, 2016, pp. 3213–3223.
[30] S. Zhang, G. Wu, J. P. Costeira, and J. M. Moura, “Understanding

traffic density from large-scale web camera data,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 5898–5907.



IEEE TRANSACTION ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. Y, JUNE 2022 8

Jose Jaena Mari Ople received his B.S. degree
in Computer Science from De La Salle University,
Philippines, in 2018, and an M.S. degree from Na-
tional Taiwan University of Science and Technology
(NTUST), in 2020. He is currently pursuing a Ph.D.
degree with the Department of Computer Science
and Information Engineering, NTUST. His research
interests include digital image processing and deep
learning applied to computer vision.

Shang-Fu Chen received his B.S. degree from
Department of Computer Science and Information
Engineering in National Taiwan University of Sci-
ence and Technology (NTUST), on 2021. He is cur-
rently pursuing a M.S. degree with the Department
of Computer Science and Information Engineering
in NTUST. His research interests include image
processing and deep learning applied to computer
vision.

Yung-Yao Chen received his B.S. (2004) and M.S.
(2006) degrees in Electrical and Control Engi-
neering from the National Chiao Tung University
from Hsinchu, Taiwan, and his Ph.D. (2013) degree
in Electrical Engineering from Purdue University,
USA. Before being a faculty, he has worked in HP
Labs - Printing and Content Delivery Lab (HPL -
PCDL) about one year. He is currently an Asso-
ciate Professor in the Department of Electronic and
Computer Engineering and the Co-Director of Tai-
wan Tech Smart Electric Vehicle Research Center,

National Taiwan University of Science and Technology, Taipei, Taiwan. His
current research interests include vision-based automation, automated/wisdom
factory, self-driving car, and human-computer interaction. Dr. Chen was
the recipient of the Best Paper Award of the International conference on
Advanced Robotics and Intelligent Systems (2015 and 2020), the Rotary
Foundational Scholarship, and the Ta-Yu Wu Memorial Award from Taiwan’s
Ministry of Science and Technology (MOST). He is a member of Golden Key
International Honor Society and Phi Tau Phi.

Kai-Lung Hua received the B.S. degree in electrical
engineering from National Tsing Hua University
in 2000, and the M.S. degree in communication
engineering from National Chiao Tung University
in 2002, both in Hsinchu, Taiwan. He received
the Ph.D. degree from the School of Electrical
and Computer Engineering, Purdue University, West
Lafayette, IN, in 2010. Since 2010, Dr. Hua has been
with the National Taiwan University of Science and
Technology, where he is currently a professor in the
Department of Computer Science and Information

Engineering. He has also been the vice dean of the College of Electrical
Engineering and Computer Science since 2019. He is the director of the
Artificial Intelligence Research Center. Dr. Hua is a member of Eta Kappa
Nu and Phi Tau Phi, as well as a recipient of MediaTek Doctoral Fellowship.
His current research interests include digital image and video processing,
computer vision, and machine learning. He has received several research
awards, including the 2019 Outstanding Research Award of Taiwan Tech,
2018 Young Scholar Award of Taiwan Tech, Top Performance Award of 2017
ACM Multimedia Grand Challenges, Top 10% Paper Award of 2015 IEEE
International Workshop on Multimedia Signal Processing, the Second Award
of the 2014 ACM Multimedia Grand Challenge, the Best Paper Award of the
2013 IEEE International Symposium on Consumer Electronics, and the Best
Poster Paper Award of the 2012 International Conference on 3D Systems and
Applications.

Mohammad Hijji [Member, IEEE] is currently
an Assistant Professor with the Faculty of Com-
puters and Information Technology, University of
Tabuk, Saudi Arabia. He is also the Chairman of
the Computer Science Department. He works with
a range of research centers, government sectors and
global companies related to “Artificial Intelligence”,
“Smart Cities”, and “Disaster/Emergency Manage-
ment”. He is also responsible for developing and
managing postgraduate programs with the Faculty of
Computers and Information Technology, University

of Tabuk. His research interests include Artificial Intelligence, Cyber Security,
Internet of Things (IoT), and Smart City.

Po Yang [Senior Member, IEEE] is a Senior
Lecturer in Large Scale Data Fusion in the De-
partment of Computer Science at the University
of Sheffield. He graduated with a BSc (Hons) in
Computer Science from Wuhan University in China
in 2004, before being awarded his MSc in Computer
Science from the University of Bristol in 2006.
In 2010 he graduated with a PhD in Electronic
Engineering from the University of Staffordshire.

From February 2015 to July 2019, he was a Senior
Lecturer in Computer Science at Liverpool John

Moores University. He worked as a Post-doc Research Fellow in Computer
Science at the University of Bedfordshire from January 2012 to January
2015. Previously, he has also held the positions of Research Associate in
Computer Science at the University of Teeside from September 2008 to
February 2010, a Research Assistant in image processing at the University of
Salford from March 2010 to December 2011. Since 2006 he has generated
over 90 international journal and conference papers in the fields of Pervasive
Healthcare, Image Processing, Parallel Computing and RFID related internet
of things (IoT) applications.

He serves as an Associate Editor in IEEE Journal of Translational En-
gineering in Health and Medicine and IEEE Access.He has over 12 years
full time research experience in computing areas (recent three years working
on Pervasive Healthcare), which includes the key participation and local
leadership of 6 EU funded projects CALLAS (RA in Affective Computing at
Teeside University), IMPACT (RA in Image Processing at Salford University),
GPSME, DRINVENTOR, MHA and CHIC (RF in Computer Science at
Bedfordshire University) and 3 EPSRC/TSB funded projects.

Khan Muhammad [S’16, M’18, SM’22] received
his PhD degree in Digital Contents from Sejong
University, Republic of Korea in February 2019.
He was an Assistant Professor at the Department
of Software, Sejong University from March 2019 to
February 2022. He is currently the director of Visual
Analytics for Knowledge Laboratory (VIS2KNOW
Lab) and an Assistant Professor (Tenure-Track) with
the Department of Applied AI, School of Con-
vergence, College of Computing and Informatics,
Sungkyunkwan University, Seoul, Republic of Ko-

rea. His research interests include intelligent video surveillance, medical image
analysis, information security, video summarization, multimedia data analysis,
computer vision, IoT/IoMT, and smart cities. He has registered 10 patents
and has contributed 200+ papers in peer-reviewed journals and conference
proceedings in his areas of research. He is an Associate Editor/Editorial Board
Member of more than 14 journals. He is among the highly cited researchers
in 2021 according to the Web of Science.


	Introduction
	Related Literature
	Depth Estimation
	Model Compression

	The Proposed Method
	Initial Architecture Optimization
	Model Size Adjustment
	Fine-tuning the Model

	Experiments
	Implementation Details
	Models.
	Dataset.
	Metrics
	Performance
	Memory
	Ablation Study
	Comparison with Other Compression Methods

	Conclusion
	References
	Biographies
	Jose Jaena Mari Ople
	Shang-Fu Chen
	Yung-Yao Chen
	Kai-Lung Hua
	Mohammad Hijji [Member, IEEE]
	Po Yang [Senior Member, IEEE]
	Khan Muhammad [S’16, M’18, SM'22]


