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STABLE MAPS TO LOOIJENGA PAIRS: ORBIFOLD EXAMPLES

PIERRICK BOUSSEAU, ANDREA BRINI, AND MICHEL VAN GARREL

In grateful memory of Boris Anatol’evich Dubrovin, 1950–2019

Abstract. In [15] we established a series of correspondences relating five enumerative theories of

log Calabi–Yau surfaces, i.e. pairs (Y,D) with Y a smooth projective complex surface and D =

D1 + · · ·+Dl an anticanonical divisor on Y with each Di smooth and nef. In this paper we explore

the generalisation to Y being a smooth Deligne–Mumford stack with projective coarse moduli space

of dimension 2, and Di nef Q-Cartier divisors. We consider in particular three infinite families of

orbifold log Calabi-Yau surfaces, and for each of them we provide closed form solutions of the

maximal contact log Gromov–Witten theory of the pair (Y,D), the local Gromov–Witten theory

of the total space of
⊕

i OY (−Di), and the open Gromov–Witten of toric orbi-branes in a Calabi–

Yau 3-orbifold associated to (Y,D). We also consider new examples of BPS integral structures

underlying these invariants, and relate them to the Donaldson–Thomas theory of a symmetric

quiver specified by (Y,D), and to a class of open/closed BPS invariants.
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1. Introduction

In [15], we established a series of correspondences between a priori distinct enumerative theories of

Gromov–Witten (GW)/Donaldson–Thomas (DT) type associated to smooth log Calabi-Yau surface

of maximal boundary with nef boundary components, or nef Looijenga pairs: these are pairs (Y,D)

where Y is a smooth projective surface and |−KY | ∋ D = D1+ · · ·+Dl is an anticanonical normal

crossings divisor with l > 1 smooth and nef irreducible components Dj . For a nef Looijenga pair we
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proved an equivalence between the log GW theory of the pair (Y,D), the local GW theory of the

total space of the sum of dual line bundles to the irreducible componentsDj , the open GW theory of

Aganagic–Vafa branes in a Calabi–Yau threefold associated to (Y,D), the DT theory of a symmetric

quiver specified by (Y,D), and a variety of BPS invariants considered by Klemm–Pandharipande,

Ionel–Parker, and Labastida–Mariño–Ooguri–Vafa. Moreover, we provided closed-form solutions

for the calculation of the these invariants in all the finitely many deformation families of such pairs.

In this companion note we explore the extension of such correspondences to include orbifolds, and

provide compelling evidence that the bulk of the correspondences put forward in [15] generalise to

this setting essentially verbatim. We consider pairs (Y, D = D1 + · · · +Dl) where Y is a smooth

complex Deligne–Mumford stack with coarse moduli space a normal Gorenstein projective surface

Y , (Y,D) is log smooth (in particular, the singularities are concentrated along the codimension

2 strata of D), D ∈ | − KY |, and the irreducible components Dj are nef and Q-Cartier for all

j = 1, . . . , l. In particular we will exemplify how and to what extent our circle of correspondences

in [15] generalises to this context in three infinite families of log Calabi–Yau orbifolds:

Example I: in this example, Y is taken to be the weighted projective plane P(1, a, b) for a, b

positive coprime integers with fan given in Figure 1.1. This surface has two orbifold singularities

that are locally quotients of C2 by the finite cyclic group µa, resp. µb, and there is a toric line

D(b,a) that joins both. Extending D(b,a) to an anticanonical divisor by adding a general member

D2 of |−KY −D(b,a)| gives the Looijenga orbi-pair P(1, a, b) := (P(1, a, b), D = D(b,a)+D2). It is

non-toric since the topological Euler characteristic of the complement of D is χ(P(1, a, b)\D) = 1.

Example II: in this case we blow up P(1, a, b) in a smooth point of D2. We denote the resulting

surface with its choice of 2-component boundary by Y
[2]
(a,b).

Example III: blowing up P(1, a, b) in a smooth point of one of its toric divisors leads to a non-toric

nef orbi-Looijenga pair with l = 3, which we denote by Y
[3]
(a,b).

2. Setup and main results

2.1. The enumerative theories. Let (Y,D) be a log smooth log Calabi-Yau surface with D =

D1 + · · · + Dl and each Dj irreducible and let d ∈ H2(Y,Z). Provided that étale-locally around

each singularity Y (D) is isomorphic to a toric variety with its toric boundary, Y (D) is log smooth.

In particular this applies to Examples I-III. We will use the short-hand notation Y (D) to denote

the log-scheme obtained by taking the divisorial log structure induced by D on Y . For n ≥ 0,

denote by [n]q the q-number q
n
2 − q−

n
2 , as well as the symmetrised q-factorials [n]q! :=

∏n
i=1[i]q and

q-binomials
[
n
m

]
q
:= [n]q!/([m]q![n−m]q!).

2.1.1. All genus log GW invariants. Let g ≥ 0. We are (virtually) counting genus g degree d curves

in X that have prescribed tangency conditions along the boundary D, namely we require the curves

to meet each of Dj in one point of maximal tangency d ·Dj . This is a moduli problem of virtual

dimension g + l − 1.
2
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Figure 1.1. The fan of P(1, a, b) with toric intersection numbers

Log smoothness of Y (D) guarantees the existence of the corresponding moduli space of basic stable

log maps M
log
g,m(Y (D), d) as constructed by Abramovich–Chen [1, 21] and Gross–Siebert [44] by

encoding the tangency conditions via log structures. It admits a rank g vector bundle E whose

fiber over f : C → Y (D) is the vector space H0(C, ωC) of sections of the dualising sheaf of the

domain curve. To cut down the virtual dimension to 0, we require the curves to pass through l− 1

general points in the interior Y \D and further cap the virtual fundamental class by the top Chern

class λg := cg(E) of E, leading to invariants

N log
g,d (Y (D)) :=

∫

[M
log
g,l−1(Y (D),d)]vir

(−1)g λg

l−1∏

j=1

ev∗j ([pt]), (2.1)

where evj : M
log
g,l−1(Y (D), d) → X is the morphism given by evaluation at the jth point. We denote

by N log
d (Y (D)) := N log

0,d (Y (D)).

We package the invariants into the fixed-degree, all-genus generating function

N
log
d (Y (D))(~) :=

1
(
2 sin

(
~
2

))l−2

∑

g>0

N log
g,d~

2g−2+l . (2.2)

By a combination of [11, 13] (see [15, Proposition 4.2]), after the change of variable q = ei~,

N
log
d (Y (D))(~) is the power series expansion in ~ of polynomials Nlog

d (Y (D))(q) in q
1
2 .

The invariants N log
g,d (Y (D)) can be naturally viewed as invariants of the 3-fold Y (D)×A1. Indeed,

the Gromov–Witten obstruction theories for stable maps to the surface Y (D) and the 3-fold Y (D)×

A1 differ by the space H1(C,OC) [54, Lemma 7], which by Serre duality is dual to H0(C, ωC). Thus,

the insertion of (−1)gλg in the Gromov–Witten theory of the surface Y (D) exactly reproduces

Gromov–Witten invariants of the 3-fold Y (D) × A1. Essentially for the same reason, the class

(−1)gλg appears also naturally in the higher genus extension of the log-local correspondence for a

smooth divisor presented in [16]. In [15], in particular Section 1.4, we explained how higher genus
3



log Gromov–Witten invariants of log Calabi-Yau surfaces with insertion of (−1)gλg fit into a web of

log-local-open correspondences. In the present paper, we use the invariants N log
g,d (Y (D)) to extend

this web of correspondences to the orbifold setting.

2.1.2. Local GW invariants. A different class of invariants of (Y,D) arises by considering the local

theory of Tot
(⊕

j OY (−Dj)
)
. This is a non-compact Calabi–Yau-(l + 2) fold, and since for l > 1

there are no non-zero Gromov–Witten invariants with point insertions for g > 0, we restrict below

to genus 0.

Suppose Y admits a presentation as a Gorenstein GIT quotient Y = Z//G for a complex smooth

projective variety Z and reductive group G, and write Y = [Z//G] for the Deligne–Mumford quotient

stack it represents. While the Gorenstein surface Y (with trivial log structure) is not smooth, Y (D)

and Y are smooth in the respective categories by definition. The genus 0 local GW theory of Y (D) is

a (virtual) count of rational orbi-curves in the (l+2)-dimensional non-compact Calabi–Yau orbifold

EY (D) := Tot(⊕l
i=1(OY(−Di))) with coarse space EY (D) := Tot(⊕l

i=1(OY (−Di))). Given that the

log GW theory is insensitive to the twisted sector, we will only be interested in the untwisted sector

of the orbifold GW theory of EY (D) [2].

Denote by M0,m(Y, d) the moduli stack of twisted genus 0 m-marked stable maps [f : C → Y] with

f∗([C]) = d and C an m-pointed twisted curve. We write M0,m(Y, d) for the substack of twisted

stable maps such that the image of the evaluation maps is contained in the age zero component of

the inertia stack of Y. The moduli stack M0,m(Y, d) has a perfect obstruction theory, inducing a

virtual fundamental class

[M0,m(Y, d)]
vir ∈ H2vdim(M0,m(Y, d),Q), (2.3)

where vdim = −KY · d+m− 1.

Assuming that d ·Dj > 0, there is a rank −KY ·d− l obstruction vector bundle ObD on M
log
0,m(Y, d)

with fibre H1(C, f∗
⊕l

j=1OY(−Dj)) over a twisted stable map [f : C → Y]. It is defined as

ObD := R1π∗(f
univ)∗

(⊕l
j=1OY (−Dj)

)
for π : Cuniv → M0,m(Y, d) the universal curve and funiv :

Cuniv → Y the universal twisted stable map. Restricting to the component of the inertia stack of

age zero, we obtain the virtual fundamental class

[M0,m(EY (D), d)]
vir := [M0,m(Y, d)]

vir ∩ ctop(ObD) ∈ H2(l−1+m)(M0,m(Y, d),Q).

Restricting to the untwisted sector yields evaluations maps evj : M0,m(Y, d) → Y and we define the

following two classes of local invariants

N loc
d (Y (D)) :=

∫

[M0,l−1(EY (D),d)]
vir

l−1∏

j=1

ev∗1([pt]) , (2.4)

N loc,ψ
d (Y (D)) :=

∫

[M0,1(EY (D),d)]
vir

ev∗1([pt])ψ
l−2
1 , (2.5)

where ψi = c1(Li) is the first Chern class of the ith tautological line bundle on M0,m(Y, d).
4



2.1.3. All genus open GW invariants. In [15, Construction 6.4], we showed how to associate to

a smooth Looijenga pair Y (D) satisfying certain positivity properties [15, Definition 6.3] a triple

Y op(D) = (X,L, f) with X a semi-projective toric Calabi–Yau 3-fold, L = L1 ∪ · · · ∪ Ll−1 a

disjoint union of l − 1 Aganagic–Vafa toric Lagrangians [7] in X and f a framing for L. At first

approximation, X is the total space of KY \(D1∪···∪Dl−1), the Lj ≃ S1 × R2 are Lagrangians that

contract to a vanishing cycle [S1] of Y near Dj , and f is determined by the compactification given by

adding back the Dj , j < l. See [15, Construction 6.4], the framing determines the compactification

of (a toric limit of) Y \ (D1 ∪ · · · ∪ Dl−1) to (a toric limit of) Y . At the level of their associated

polyhedra, the framing determines the additional halfspaces to intersect with to go from from the

polyhedron of Y \ (D1 ∪ · · · ∪Dl−1) to the polytope of Y (with anticanonical polarizations). The

framings correspond to the slopes of the edges.

It is immediate to verify from [15, Construction 6.4] that the above generalises to the case of

Looijenga orbi-pairs Y (D), for which Y op(D) = (X,L, f) is in general a semi-projective Goren-

stein orbifold X with fractionally framed orbifold toric Lagrangians (L, f) [17]. The orbifold case

introduces a small modification. If Y has orbifold singularities at the toric 0-strata, we obtain

rational framings. More precisely, denote by A1 one of the toric strata corresponding to an outer

edge of the toric graph with framing. Then the A1 is compactified in Y by adding a point in

Y that is a cyclic quotient singularity with isotropy group Z/rZ, for r the denominator of the

framing. Adapting it to the orbifold case, the construction moreover induces a natural injec-

tion ι : Hrel
2 (Y op(D), L;Z) →֒ A1(Y,Z) as we review in Section 2.2.2, with all the curve classes

d ∈ H2(Y,Z) lying in its image. In Examples I–III, X and L will always be smooth, but the fram-

ing f will be fractionally shifted by rational numbers fi = pi/ri from the canonical framing on each

connected component Li of L.

The open GW theory of Y op(D) was defined in the algebraic category1 in [50]. Given partitions µi of

length ℓ(µi), i = 1, . . . , l− 1, there is a virtual dimension zero moduli space Mg;β;µ1,...,µl−1
(Y op(D))

of relative degree β open stable morphisms to Y op from genus-g, open Riemann surfaces with∑l−1
i=1 ℓ(µi) connected components of the boundary mapping to Li with winding numbers around

S1 →֒ Li equal to the parts of µi. The corresponding open GW invariants,

Og,β,~µ(Y
op(D)) =

∫

[Mg;β;~µ(Y op(D))]vir
1 (2.6)

can be encoded into formal generating functions

Oβ;~µ(Y
op(D))(~) :=

∑

g

~2g−2+ℓ(~µ)Og;β;~µ(Y
op(D)) , (2.7)

with ℓ(~µ) =
∑s

i=1 ℓ(µi). We will write simply Og;β(Y
op(D)) and Oβ(Y

op(D))(~) for the (l − 1)-

holed open GW invariants obtained when µi = (mi), which are then determined by the class

β ∈ Hrel
2 (Y op(D), L;Z).

1See [17] for a definition of open GW invariants of toric orbifold Lagrangians using localisation, and [35] for a

definition for smooth toric Lagrangians with fractional framing using relative GW theory.
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2.1.4. Quiver DT invariants. Let Q be a symmetric quiver with n vertices and, for dimension

vectors d =
∑

i divi, e =
∑

i eivi ∈ NQ0 = Nv1 + · · ·+Nvn, denote by EQ(d, e) the Gram matrix of

the Euler form

EQ(d, e) :=
n∑

i=1

diei −
∑

α:vi→vj

diej . (2.8)

The motivic DT invariants DTd;i(Q) of Q are defined from the plethystic generating function

Exp


 1

[1]q

∑

d 6=0

∑

i∈Z

DTd;i(Q)x
d(−q1/2)−i


 =

∑

d∈Nn

(
− q1/2

)EQ(d,d)
xd∏n

i=1(q; q)di
, (2.9)

where xd =
∏n
i=1 x

di
i . Using the terminology of [10, §3.3], the right-hand side is the generating series

of Poincaré rational functions of the stacks of representations of Q. The numerical DT invariants

DTnum
d (Q) are non-negative [32] integers defined by

DTnum
d (Q) :=

∑

i∈Z

(−1)iDTd,i(Q) . (2.10)

2.1.5. BPS invariants. For a Looijenga orbi-pair Y (D), we define open BPS numbers as in [15,

Equation (1.21)] by

Ωd(Y (D))(q) := [1]2q

(
l∏

i=1

1

[d ·Di]q

)
∑

k|d

(−1)d/k·D+lµ(k)

[k]2−lq k2−l
N
log
d/k(Y (D))(−ik log q) . (2.11)

We will also denote just by Ωd(Y (D)) the genus-zero limit Ωd(Y (D))(1).

The log-open correspondence of Theorem 2.2 below implies that, for Examples I–III,

Ωd(Y (D))(q) = [1]2q

l−1∏

i=1

ri(d ·Di)

[d ·Di]q

∑

k|d

µ(k)(−1)
∑l−1

i=1 d/k·Di(ri+1)

k
Oι−1(d/k)(Y

op(D))(−ik log q) ,

(2.12)

where fi = pi/ri with (pi, ri) = 1 is the framing of the ith orbifold Aganagic–Vafa Lagrangian in

Y op(D). Even though Ωd(q) can at most be expected to be a rational function of q1/2, heuristically,

and for smooth, integrally framed Y op(D) [48, 49, 52, 56], Ωd(Y (D))(q) has an interpretation as

generating function of BPS domain walls counts in a type IIA string compactification on Y op(D),

with its coefficient computing degeneracies of D2-branes with fixed spin and charge ending on a

D4-brane wrapped around the Lagrangians Y op(D). The formula (2.12) generalises [52, Eq. 2.10]

to the orbifold setting, with an additional factor keeping track of the fractional framing of the

branes.

2.2. The correspondences. In our previous paper [15] we proposed that the invariants of the pre-

vious Section are related through a series of geometric correspondences. A conceptual explanation

of these was provided in [15, Section 1.4], and we briefly recall it in Section 2.2.4.
6



2.2.1. Numerical log-local. Our first result is the following

Theorem 2.1. Assume that Y (D) is one of P(1, a, b), Y [2]
(a,b) or Y

[3]
(a,b). Then

N loc
d (Y (D)) =




l∏

j=1

(−1)d·Dj−1

d ·Dj


N log

d (Y (D)) . (2.13)

Our proof of Theorem 2.1 follows from a stronger result, wherein we give a complete closed-form

solution of both sides of (2.13) in all degrees. In the case of an irreducible smooth nef divisor,

the correspondence between genus 0 log and local GW invariants was proven in all dimensions

at the cycle-level in [36], with various extensions in [8–10, 14, 15, 23–25, 34, 55, 61, 62]. The naive

conjectural extension of this log-local correspondence at the cycle level for normal crossings divisors

has been recently disproved [8,55]. However, the numerical version of the log-local correspondence

for normal crossing divisors seems to hold in a number of cases of great interest: for example this

was proved for point insertions of orbifold toric pairs in [14], and for point invariants of log Calabi–

Yau surfaces with nef Di in [15]. Theorem 2.1 simultaneously provides a non-toric, orbifold version

of the numerical version of the log-local correspondence of [14, 36].2

2.2.2. Log-open. Our second result is an orbifold generalisation of the higher genus log-open princi-

ple of [15, Conjecture 1.3]. Following [15, Definition 6.5], we canonically identify each curve degree

d ∈ H2(Y,Z) with a relative curve degree ι−1(d) in Y op(D). We recall how this identification works

and adapt it to the orbifold setting. The class of a Riemann surface with boundary in Y (op)(D) is

decomposed as an l-tuple (β, α1, . . . , αl−1). Here β is a 2-homology class, which decomposes as a

sum of the homological 2-spheres corresponding to the compact toric 1-strata of Y op(D) (the inner

edges of the toric graph). The αi are relative 2-homology classes corresponding to the outer edges

with framing. The morphisms

KY \D1∪···∪Dl−1

π
−→ Y \D1 ∪ · · · ∪Dl−1

i
−→ Y , (2.14)

with π : KY \D1∪···∪Dl−1
→ Y \D1∪· · ·∪Dl−1 the bundle projection and i : Y \D1∪· · ·∪Dl−1 →֒ Y

the canonical open immersion, induce an injective homomorphism of 2-homology groups

ιo : H2(Y \D1 ∪ · · · ∪Dl−1,Z) →֒ H2(Y,Z) . (2.15)

In fact, by sending the generators to the corresponding subvarieties, we identify ιo with a mor-

phism

H2(Y \D1 ∪ · · · ∪Dl−1,Z) →֒ A1(Y ) . (2.16)

2As discussed in more details in [15, §1.4], point insertions and the log Calabi–Yau condition are both crucial

assumptions allowing us to obtain the numerical log-local correspondence despite the general negative results of

[8, 55]. In [15, §5], we gave a conceptual proof by degeneration of the numerical log-local correspondence for log

Calabi-Yau surfaces with two boundary components. This completely general degeneration argument can be easily

extended to the orbifold setting in any dimension and can in principle be used to determine when the numerical

log-local correspondence holds and when correction terms are needed.

7



The edge of the toric graph with framing pi/ri corresponds to a toric (A1)i in KY \D1∪···∪Dl−1
that

meets the ith connected component Li of the toric Lagrangian L in a non-trivial minimal (S1)i ⊂ Li,

i.e. [(S1)i] generates H1(Li,Z). Moreover, [(S1)i] corresponds to the relative homology class

[(disk ⊂ (A1)i, ∂ disk = (S1)i)] ∈ Hrel
2 (Y op(D), L;Z).

The projection π((A1)i) is compactified to an orbifold P1
ri in Y , with the added point a cyclic

quotient singularity in Y with isotropy group Z/riZ, see [35, Section 3.11.3]. Furthermore, ri[P1
ri ]

is a well-defined class in H2(Y,Z). Following [15, Definition 6.5], we send [(S1)i] to [P1
ri ]. The

latter is not in H2(Y,Z), but it is in the Chow group A1(Y ). We will only be interested in winding

numbers whose image lies in H2(Y,Z). In particular, in the log-open correspondence of (2.18),

only winding numbers that are multiples of the ri of their respective framings can be compared

with curves classes on the log side, which introduces the correction term in (2.18) compared to

[15, Conjecture 1.3]. In summary, we extend ιo to an injective map

ι : H2(Y \D1 ∪ · · · ∪Dl−1,Z)⊕
l−1⊕

i=1

H1 (Li,Z) →֒ A1(Y ) (2.17)

by positing that ι : [(S1)i] 7→ [P1
ri ] for i = 1, . . . , l−1, and we will only be interested in curve classes

d ∈ H2(Y,Z) that admit an inverse ι−1(d).

Theorem 2.2. For each of Y (D) = P(1, a, b), Y [2]
(a,b) or Y

[3]
(a,b), writing fj =

pj
rj

with (pj , rj) = 1 for

the framing of the jth Aganagic–Vafa orbi-brane in Y op(D), we obtain

Oι−1(d)(Y
op(D))(−i log q) = [1]l−2

q

(−1)d·Dl−1

[d ·Dl]q

l−1∏

j=1

(−1)rj(d·Dj)−1

rj(d ·Dj)
N
log
d (Y (D))(−i log q) , (2.18)

as well as closed-form expressions of the invariants. The correction factor rj(d ·Dj) is the winding

number around Lj.

In the genus zero limit (q → 1) Theorem 2.2 recovers a version of the numerical log/local corre-

spondence of Theorem 2.1, with the genus zero open invariants equating the local invariants up to

a factor:

O0;ι−1(d)(Y
op(D)) =

l−1∏

j=1

(−1)d·Dj(rj−1)

rj
N loc
d (Y (D)) . (2.19)

The additional normalisation factor as compared to the case of smooth varieties (where rj = 1), and

especially the rescaling of the boundary circle classes by rj in the definition of ι are familiar in the

relation of fractionally framed toric branes to enumerative invariants, and they match identically

the correction factors relating open GW invariants of large N Lagrangians of torus links from

fractionally framed open GW invariants of toric orbi-branes; see [5, 18, 30,35].

2.2.3. KP/LMOV/DT integrality. The next Theorem substantiates the expectation that (2.11)-

(2.12) are particular open BPS/LMOV partition functions, and in particular integral Laurent poly-

nomials in q1/2.

Theorem 2.3. Let Y (D) be any of P(1, a, b), Y [2]
(a,b) or Y

[3]
(a,b). Then Ωd(q) ∈ Z[q±1/2].

8



In the genus zero limit, the combination of Theorems 2.1 and 2.2 gives

Ωd(Y (D)) =
1

∏l
i=1(d ·Di)

∑

k|d

(−1)d/k·D+l µ(k)

k4−2l
N log
d/k(Y (D))

=
∑

k|d

µ(k)

k4−l

l−1∏

j=1

rj(−1)d/k·Dj(rj+1)O0;ι−1(d/k)(Y
op(D)) (2.20)

=
∑

k|d

µ(k)

k4−l
N loc
d/k(Y (D)) . (2.21)

It follows directly from Theorem 2.3 that Ωd(Y (D)) ∈ Z. In particular, (2.21) implies that the

unrefined BPS invariants Ωd(Y (D)) coincide with an orbifold generalisation of the conjecturally

integral invariants KPd(EY (D)) of the local orbifold surfaces P(1, a, b), Y [2]
(a,b) and Y

[3]
(a,b) introduced

by Klemm–Pandharipande for l = 2 in [46] and by Ionel–Parker in [45] for smooth varieties.

Theorem 2.3 implies then immediately their integrality in the generalised orbifold context of this

paper.

Finally, when l = 2 and the Lagrangians of Y op(D) are integrally framed, the integrality statement

above is also a consequence of the following statement, which is a direct consequence of the strips-

quiver correspondence of [57] (see in particular [15, Theorem 7.3])

Theorem 2.4. Let Y (D) = P(1, a, b) or Y (D) = Y
[2]
(a,b) with either a = 1 or b = 1. Then there exists

a symmetric quiver Q(Y (D)) with χ(Y )− 1 vertices and a lattice isomorphism κ : Z(Q(Y (D)))0
∼
→

H2(Y,Z) such that

DTnum
d (Q(Y (D))) =

∣∣∣Ωκ(d)(Y (D)) +
∑

i

αiδd,vi

∣∣∣ , (2.22)

with αi ∈ {0, 1}. In particular, Ωd(Y (D)) ∈ Z.

2.2.4. Geometric motivation. In the smooth case, the rational underpinning of the web of corre-

spondences of the previous Section was described in [15, Section 1.4]; we recall it briefly here. Let

Y (D = D1 + · · · + Dl) be a log smooth log Calabi–Yau surface and let d be a curve class such

that d · Dl > 0. If Dl is nef, or more generally if d is Dl-convex [15, Section 1.4.1], then by the

main result of [36] the genus 0 log Gromov–Witten (GW) theory of maximal tangency of (Y,Dl) is

equivalent to the genus 0 local Gromov–Witten theory of Tot (O(−Dl) → S). This correspondence

extends to adding maximal tangency conditions along the divisors Dj on S, resp. O(−Dl)|Dj
on

Tot (O(−Dl) → S): in other words, there is a duality between imposing a maximal tangency con-

dition along Dl and twisting by O(−Dl). This insight forms the basis of many subsequent works

[8–10,14,15,23–25,34,55,61,62].

An important question is the extent to which the above generalises to simple normal crossings

divisors, particularly in light of a counter-example for the log-local correspondence which was given

in the log Fano case in [55]. On the other hand there is growing evidence that the equivalence could

persist in the log Calabi–Yau case in the stationary sector, see [14, Theorem 3.4], [15, Theorem 5.1],

and the geometric argument of [15, Section 5] which is further amenable to treating the log-local
9



correspondence for log smooth log Calabi–Yau varieties in any dimension. Theorem 2.1 further

corroborates this expectation in the orbifold context.

The log-open correspondence of Section 2.2.2 stems from one of the realisations of [15], whereby

a maximal tangency condition along Dj is proposed to be heuristically replaceable by an open

condition along a Lagrangian Lj near Dj . For log CY surfaces (Y,D1+· · ·+Dl) this entails a precise

correspondence at the level of logarithmic and open invariants, as we explain in [15, Section 1.4.2]:

one first employs the log-local correspondence above for the a single irreducible component Dl to

twist Y by O(−Dl), and then consider Lagrangians Lj near O(−Dl)|Dj
, j = 1, . . . , l−1. It is shown

in [15] that under suitable conditions these Lagrangians are singular Harvey–Lawson (Aganagic–

Vafa) branes, for which a rigorous construction of the open invariants exists [50]. The arguments of

[15, Section 1.4.2 and Construction 6.4], adapted to the orbifold context, lead then to the log-open

relations (2.18) and (2.19) above.

Finally, parallel to similar expectations for other enumerative theories, underlying the all genus

Gromov–Witten invariants of Y (D) are the BPS invariants defined by (2.11). These are conjectured

to be integer-valued Laurent polynomials in q1/2, which we prove for Examples I-III in Theorem 2.3.

When l = 2, it was proposed in [15, Section 1.4.3] that the unrefined (q → 1) limit of these

BPS invariants should recover, up to signs, the Donaldson–Thomas invariants of a symmetric

quiver. This is suggested by the conjectured relation of Gopakumar–Vafa invariants with sheaf-

counting theories on 4-folds [19, 20] and their connection, for local surfaces, to moduli of quiver

representations highlighted in [15, Section 1.4.3], and simultaneously by a joint use of the ‘branes-

quivers’ correspondence of [33, 47] and the log-open correspondence above. It was proposed in

[15, Section 1.5.4] that the same chain of ideas may apply in the orbifold context too: Theorem 2.4

indeed establishes this expectation for the l = 2 examples of this paper.

2.3. The techniques.

2.3.1. Scattering diagrams. Our main tool for the computations of Nlog
d (Y (D)) are multiplications

of quantum broken lines in the quantum scattering diagrams of [12,13,29,51]. In the classical limit,

this is treated in [39,40,42] in dimension 2 and in full generality in [41,43]. The quantum scattering

diagram associated to Y (D) consists of an affine integral manifold B and a collection of walls d

with wall-crossing functions fd. Here we content ourselves to give a brief overview, referring to

[15, Section 4.2] for details of the construction, the wall-crossing algorithm, broken lines and their

multiplication. In particular, [15, Proposition 4.2] explains how to extract the N
log
d (Y (D)) from

structural coefficients of the multiplication of theta functions.

As a topological manifold, B is homeomorphic to R2. It comes with some distinguished integral rays

ρ1, . . . , ρl+r emanating from the origin. Up to reordering, ρ1, . . . , ρl will correspond to D1, . . . , Dl.

The collection of all rays forms a fan with associated toric variety Y (D = Dρ1 + · · · + Dρl+r
) for

the toric prime divisors Dρ1 , . . . , Dρl+r
of Y . Some of these rays, say ρj1 , . . . , ρjs with possible

repetitions, have focus-focus singularities on them. For our purposes, we perturb these away from

their rays, which simply means the creation of lines parallel to the rays carrying the focus-focus

singularities. These walls are decorated with wall-crossing functions. When two walls meet, there
10



is scattering resulting in the creation of new walls carrying wall-crossing functions themselves. For

our examples, there will only be “simple” scattering.

For each focus-focus singularity on a line parallel to ρji , we blow up a smooth point of Dρji
. Taken

together, this yields a toric model

π : (Ỹ , D̃) −→ (Y ,D) . (2.23)

This means that there is a birational map

ϕ : (Ỹ , D̃) −→ (Y,D) (2.24)

that is a sequence of blow ups at codimension 2 strata of the boundary. By [3], (Ỹ , D̃) and (Y,D)

have the same log GW theory.

Then, B has integral asymptotic directions that correspond to weighted blow ups of (Y ,D). Theta

functions (which are sections of an ample line bundle on the mirror family) correspond to asymptotic

directions. Their values on open subsets of the mirror corresponding to the chambers of the

scattering diagram are given by the sums of the end-coefficients of broken lines coming from the

corresponding asymptotic directions. The broken lines can bend when crossing walls picking up

contributions from the wall-crossing functions.

Multiplying broken lines together corresponds to creating tropical curves with the correct weights

(=intersection multiplicities) with a selection of (possibly weighted blow ups of) boundary divisors.

The balancing condition has to be satisfied at each vertex except at the focus-focus singularities,

which are seen as sources of Maslov index 0 disks. These tropical curves furthermore are weighted

by contributions coming from the wall-crossing. Summing the weights of the tropical curves then

calculates the N
log
d (Y (D)) as described in [15, Proposition 4.2].

2.3.2. Local mirror symmetry. Since Y is a projective toric surface for all of Examples I–III, we

can avail ourselves of Givental-type mirror theorems to determine (2.4)-(2.5). Let T ≃ (C⋆)l be the

torus action on EY (D) covering the trivial action on the zero section ι : Y →֒ EY (D). Fix {ϕα}
χ(Y )−1
α=0

a H(BT )-basis of HT (EY (D)) given by lifts to T -equivariant cohomology of classes φα ∈ H(Y ) with

deg φα ≤ deg φα+1, and for θ, χ ∈ HT (EY (D)) denote ηY (D)(θ, χ) the T -equivariant Poincaré pairing

on EY (D),

ηY (D)(θ, χ) :=

∫

Y

ι∗θ ∪ ι∗χ

∪lm=1eT (OY (−Dm))
. (2.25)

In terms of the small T -equivariant J-function of EY (D),

J
Y (D)
small (t, z) := ze

∑ρ(Y )
i=1 tiϕi/z


1 +

∑

d∈NE(Y )

∑

α,β

η−1
Y (D)(ϕα, ϕβ)e

t·d

〈
ϕα

z(z − ψ1)

〉EY (D)

0,1,d

ϕβ


 , (2.26)

(2.5) is given by

N loc,ψ
d (Y (D)) = [zl−1et·d]ηY (D)

(
pt, J

Y (D)
small (t, z)

)
, (2.27)

where for a ring R and f(x1, . . . , xn) =
∑

i1,...,in≥0 ci1...inx
i1
1 . . . x

in
n ∈ R[[x1, . . . , xn]] a formal

power series with R-coefficients, we write [
∏n
l=1 x

il
l ]f(x) for the formal Taylor coefficient ci1,...,in

11



in (x1, . . . , xn), and we employed the usual correlator notation for GW invariants,

〈
τ1ψ

k1
1 , . . . , τnψ

kn
n

〉EY (D)

0,n,d
:=

∫

[M0,m(EY (D),d)]
vir

∏

i

ev∗i (τi)ψ
ki
i . (2.28)

We compute the r.h.s. of (2.27) using the Coates–Givental–Tseng twist [26, 28, 37, 38, 60] at the

J-function level, equating J
Y (D)
small (t, z), up to a mirror map t 7→ t(y), to an explicit generalised

hypergeometric series IY (D)(y, z), which is in turn read off from the fan of EY (D) [22,26,27,38]. In

all of Examples I–III we will have t = log y, and thus

N loc,ψ
d (Y (D)) = [zl−1yd]ηY (D)

(
pt, IY (D)(y, z)

)
. (2.29)

To compute (2.4), we use part of a reconstruction theorem due to Boris Dubrovin [31, Lecture 6],

combined with the vanishing of quantum corrections to certain products in quantum cohomology.

Recall that the components of the big J-function,

J
Y (D)
big (τ, z) := z + τ +

∑

d∈NE(Y )

∑

n∈Z+

1

n!

∑

α,β

η−1
Y (D)(ϕα, ϕβ)

〈
τ, . . . , τ,

ϕα
z − ψ1

〉EY (D)

0,n+1,d

ϕβ , (2.30)

form a basis of flat co-ordinates for the Dubrovin connection,

z∇θ∇χJ
Y (D)
big (τ, z) = ∇θ⋆τχJ

Y (D)
big (τ, z) , (2.31)

with τ ∈ HT (EY (D)) and ⋆τ the big quantum cohomology product, the restriction to small quantum

cohomology being τ →
∑ρ(Y )

i=1 tiϕi. Suppose now that there exist numbers ̟
Y (D)
ij , i, j = 1, . . . , ρ(Y )

such that
ρ(Y )∑

i,j=1

̟
Y (D)
ij ϕi ⋆τ ϕj

∣∣∣∣∣
τ→

∑ρ(Y )
i=1 tiϕi

=

ρ(Y )∑

i,j=1

̟
Y (D)
ij ϕi ∪ ϕj = pt. (2.32)

Then,

z

ρ(Y )∑

i,j=1

̟
Y (D)
ij ∂2titjJ

Y (D)
small (t, z) = ∇ptJ

Y (D)
big (τ, z)

∣∣∣∣∣
τ→

∑ρ(Y )
i=1 tiϕi

, (2.33)

from which we deduce

N loc
d (Y (D)) = [zl−1yd]ηY (D)


pt,

ρ(Y )∑

i,j=1

̟
Y (D)
ij qiqj∂

2
qiqjI

Y (D)(y, z)


 ,

=



ρ(Y )∑

i,j=1

̟
Y (D)
ij didj


N loc,ψ

d (Y (D)) . (2.34)

2.3.3. The topological vertex. The connected generating functions O~µ(Y
op(D))(Q, ~) of open GW

invariants in the ‘winding-number basis’ of [50],

O~µ(Y
op(D))(Q, ~) :=

∑

β

Oβ,~µ(Y
op(D))(~)Qβ , (2.35)

12



f1

f2

f3

f4

Figure 2.1. The toric graph of the resolved conifold with four outer framed La-

grangians.

can be reconstructed from the disconnected generating functions Z~µ(Y
op(D)) and W~µ(Y

op(D)) in

the ‘winding number’ and ‘representation’ bases defined by

exp




∑

~µ∈(P)l−1

O~µ(Y
op(D))(Q, ~)x~µ


 =:

∑

~µ∈(P)l−1

Z~µ(Y
op(D))(Q, ~)~x~µ,

=:
∑

~µ,~ν∈(P)l−1

l−1∏

i=1

χνi(µi)

zµi
W~ν(Y

op(D))(Q, ~)x~µ .

(2.36)

In the equation above, P denotes the set of partitions and χα(β) denotes the value of the irreducible

character of the symmetric group S|α| on the conjugacy class labelled by the partition β.

The theory of the topological vertex consists of a glueing procedure to algorithmically compute

W~ν(Y
op(D)) from the representation-basis generating functions of toric Lagrangian triples Y op(D)i,

i = 1, 2 openly embedded into Y (D). We content ourselves to state the consequences of the glueing

algorithm in the two cases needed for for the study of Examples I–III, referring the reader to

[15, Sec. 6.1.2] for a complete account. If Y op(D) =
(
Tot(O⊕2

P1 (−1)), L, f
)
is the resolved conifold

with L the disconnected union of four outer branes in representations µ1, . . . , µ4 and framing shifts

f = (f1, . . . , f4) as in Figure 2.1, we have

Wµ1,µ2,µ3,µ4

(
Tot
(
O⊕2

P1 (−1)
)
, L, f

)
(Q, ~) =

=
∑

ν∈P

Wµ1,µ2,ν

(
C3, (L1, L2, L0), (f1, f2, f0)

)
(~)(−Q)|ν|WνT ,µ3,µ4

(
C3, L, (−f0, f3, f4)

)
(~) ,

(2.37)

and if Y op(D) = (C3, L, f) is the affine space with three outer branes in representations µ1, . . . , µ3

and framing shifts f = (f1, . . . , f3) as in Figure 2.2 (the framed 3-legged vertex), we have [4,53]

Wµ1,µ2,µ3(C
3, L, f)(~) = qκ(µ1)/2

3∏

i=1

qfiκ(µi)/2(−1)fi|µi|
∑

δ∈P

sµt
1
δ

(qρ+µ3)sµ2
δ
(qρ+µ

t
3)sµ3(q

ρ) . (2.38)

13



f3

f1

f2

Figure 2.2. The toric graph of the framed 3-legged vertex.

where sµ(q
ρ+α) denotes the principally-specialised α-shifted Schur function in the representation

of GL(∞) labelled by µ (see [15, Appendix C] for details), κ(µ) is its second Casimir invariant of

the partition µ normalised as κ((1)) = 0, and again q = ei~.

3. Example I

Let a, b be coprime positive integers. Then P(1, a, b) has toric divisors D(−1,0), D(0,−1) and D(b,a)

with relations

D(−1,0) ∼ bD(b,a) , D(0,−1) ∼ aD(b,a) , (3.1)

intersections

D(−1,0) ·D(0,−1) = 1 , D(0,−1) ·D(b,a) =
1

b
, D(−1,0) ·D(b,a) =

1

a
, (3.2)

and self-intersections

D2
(−1,0) =

b

a
, D2

(0,−1) =
a

b
, D2

(b,a) =
1

ab
. (3.3)

To obtain a log smooth nef log Calabi–Yau surface, we choose D1 = D(b,a) and D2 a smooth element

of the linear system of D(−1,0) +D(0,−1) so that

D2
1 =

1

ab
, D2

2 =
(a+ b)2

ab
. (3.4)

Writing D = D1 +D2, the topological Euler characteristic of the complement of D is

χ(P(1, a, b) \D) = 1 . (3.5)

Denote by H the effective generator of H2(P(1, a, b),Z). Notice that H2 = ab, D1 ∼ 1
abH and

D2 ∼
a+b
ab H. Consequently, for a curve class d = dH,

d ·D1 = d, d ·D2 = d(a+ b) . (3.6)
14



3.1. Local GW invariants. Let T ≃ (C⋆)2 � EP(1,a,b) be the fibre-wise action on EP(1,a,b), and

denote by λi, i = 1, 2 its equivariant parameters. The inverse of the Gram matrix of the T -

equivariant Poincaré pairing in the basis {1, H,H2} reads

η−1
P(1,a,b) =




0 0 λ1λ2
ab

0 λ1λ2
ab −aλ1+bλ1+λ2

a2b2
λ1λ2
ab −aλ1+bλ1+λ2

a2b2
a+b
a3b3


 . (3.7)

From [38, Thm 0.1] and [26, Thm 4.6], the T -equivariant I-function of EP(1,a,b) is

IP(1,a,b)(y, z) = zyH/z
∑

d≥0

yd
∏d−1
m=0(λ1 −H/(ab)−mz)

∏(a+b)d−1
m=0 (λ2 − (a+ b)H/(ab)−mz)

∏d
m=1(H/(ab) +mz)

∏ad
m=1(H/b+mz)

∏bd
m=1(H/a+mz)

.

(3.8)

We have

IP(1,a,b)(y, z) = z + (log y)H +O

(
1

z

)
, (3.9)

and therefore, as alluded to in Section 2.3.2, the mirror map is trivial,

J
P(1,a,b)
small (t, z) = IP(1,a,b)(et, z) . (3.10)

Since l = 2 and thus N loc,ψ
d (P(1, a, b)) = N loc

d (P(1, a, b)), (2.27) gives

N loc
d (P(1, a, b)) =

1

ab

∑

i∈{0,1,2}

(ηP(1,a,b))2,i[H
iz−1yd]IP(1,a,b)(y, z) , (3.11)

where, from (3.8), we have

[z−1yd]IP(1,a,b)(y, z) =
(−1)d(a+b+1)Γ((a+ b)d)(H − abλ1)(H(a+ b)− abλ2)

a2b2dΓ(ad+ 1)Γ(bd+ 1)
, (3.12)

and we have used that H2 = (ab)pt. Combining (3.7), (3.11) and (3.12) finally yields

N loc
d (P(1, a, b)) =

(−1)d(a+b+1)

d2(a+ b)

(
(a+ b)d

ad

)
. (3.13)

3.2. Log GW invariants.

Proposition 3.1. Let a, b be coprime positive integers. Then

N
log
d (P(1, a, b))(~) =

[
(a+ b)d

ad

]

q

.

In the ~ → 0 (q → 1) limit, this recovers the log-local correspondence of Theorem 2.1 for Y (D) =

P(1, a, b).

Proof. We follow the computational technique sketched out in Section 2.3.1, and given in full detail

in [15, Section 4.2]. We start by finding a toric model for (P(1, a, b), D1 +D2). We view P(1, a, b)

as given by the fan generated by (−1, 0), (0,−1) and (b, a). We add a ray in the direction (−1, 1)

which yields a new divisor D3 and a birational map

ϕ :
(

˜P(1, a, b), (D1 −D3) + (D2 −D3) +D3

)
→ (P(1, a, b), D1 +D2) .
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x
y

D2

D1

D3
×

(b,a+b)
•

1+tx−1

Figure 3.1. The toric model of P(1, a, b).

Then the proper transform of D(−1,0) is a (−1)-curve, which we contract:

π :
(

˜P(1, a, b), (D1 −D3) + (D2 −D3) +D3

)
→
(
P(1, a, b), D1 +D2 +D3

)
.

The complement of the proper transform of D = D1 + D2 + D3 now has Euler characteristic 0,

hence is (C∗)2, therefore the variety is toric. We apply the SL2(Z) transformation given by

(
1 0

1 1

)

to the fan and obtain the toric model of Figure 3.1. The toric surface P(1, a, b) is the weighted

projective space P(1, a + b, b). π is determined by blowing up a smooth point on the divisor D3.

This yields a focus-focus singularity on the ray directed by (−1, 0) corresponding to D3.

Next we multiply the theta functions corresponding to D1 and D2 and extract the identity com-

ponent. To do so, we consider all the ways of combining two broken lines, one coming from the

direction D1 with weight d · D1, one coming from the direction D2 with weight d · D2, at a fixed

point p, so that they are opposite at p. Then the desired log Gromov–Witten invariant is the sum

of the product over the end-coefficients of all possible ways of combining two broken lines in that

way. There is only one configuration that solves this problem. This starts with a broken line β1

coming from the D1-direction carrying the monomial (xbya+b)d·D1 = xbdy(a+b)d and a broken line

β2 coming from the D2-direction carrying the monomial (y−1)d·D2 = y−(a+b)d. The focus-focus

singularity produces a wall with wall-crossing function 1 + tx−1, see [15, Section 4.2]. When β2

crosses this wall, it picks up a contribution from the wall-crossing function, see [15, Section 4.2].

In order to be opposite to β1 at p, β2 picks up the wall-crossing contribution that has degree −bd

in x. In fact, the resulting product of broken lines needs to respect the intersection profile of d.

Since the focus-focus singularity corresponds to D(−1,0) and d · D(−1,0) = bd, the product of the

end-coefficients of β1 and β2 needs to have degree bd in t, see [15, Section 4.2]. Either condition

determines the wall-crossing as sketched in Figure 3.2 and β2 picks up the q-binomial coefficient[(a+b)d
bd

]
q
=
[(a+b)d

ad

]
q
which is Nlog

d (P(1, a, b))(q) by [15, Proposition 4.2]. �
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x
y

D2

D1

D3
×

(b,a+b)

1+tx−1

y−(a+b)d

xbdy(a+b)d

[(a+b)d
bd ]

q
tbdx−bdy−(a+b)d

• p

Figure 3.2. ScattP(1, a, b)

3.3. Open GW invariants. By [15, Construction 6.4], (P(1, a, b))op is a toric Lagrangian triple

(X,L, f) depicted by the toric graph in Figure 3.3. In particular, deleting D1 = D(b,a) in P(1, a, b)

gives two dimensional affine space C2, and therefore X = KP(1,a,b)\D(b,a)
= KC2 ≃ C3. The

compactification to KP(1,a,b) induces a framing on an outer Lagrangian L on C3 shifted by b/a with

respect to the canonical framing, and the finite index morphism ι : Hrel
2 (C3, L,Z) ≃ H1(L,Z) →

A1(P(1, a, b)) is defined by [S1] → [D(−1,0)] = H/a. In particular, the winding number ad around

L corresponds to the curve class dH.

The all-genus, 1-hole open GW generating function of (P(1, a, b))op at winding j = ad is, by (2.35)

and (2.38):

Oj((P(1, a, b))
op) =

j−1∑

s=0

(−1)s

j
W(j−s,1s),∅,∅(C

3, L, f)

=

j−1∑

s=0

(−1)s

j
qb/aκ((j−s,1

s)/2)(−1)b/ajs(j−s,1s)(q
ρ) , (3.14)

where (j − s, 1s) denotes a partition represented by a hook Young diagram with j boxes and s+ 1

rows. Using the hook formula for Schur functions [59],

s(j−s,1s)(q
ρ) =

q
1
2(

j
2)−

js
2

[j]q[j − s]q![s]q!
, (3.15)

we get

Oj((P(1, a, b))
op) =

(−1)b/ajq(
b
a
+ 1

2)(
j
2)

j[j]q

d−1∑

s=0

(−1)sq−(
b
a
+ 1

2)js

[j − s− 1]q![s]q!
,

=
(−1)b/ajq(

b
a
+ 1

2)(
j
2)

j[j]q!

j−1∑

s=0

[
j − 1

s

]

q

(
− qbj/a

)s
q−

js
2 ,

=
(−1)b/ajq(

b
a
+ 1

2)(
j
2)

j[j]q!

j−1∏

k=1

(
1− q−k−bj/a

)
,

17
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Figure 3.3. The toric graph of (P(1, a, b))op, depicted for a = 3, b = 2.

=
(−1)b/aj

j[j]q!

[(1 + b/a)j − 1]q!

[b/aj]q!
=

(−1)jb/a

j[(1 + b/a)j]q

[
(1 + b/a)j

j

]

q

. (3.16)

In this case, the map ι : H1(L,Z) → A1(P(1, a, b)) of (2.17) is

ι : [S1] 7→ [D(−1,0)] =
H

a
, (3.17)

therefore, setting j = da,

Oda((P(1, a, b))
op) =

(−1)db

da[(a+ b)d]q

[
(a+ b)d

ad

]

q

, (3.18)

which proves Theorem 2.2 for P(1, a, b).

4. Example II

Define Y
[2]
(a,b) by considering the blow up π : Y

[2]
(a,b) −→ P(1, a, b) at a smooth point of the second

divisor of P(1, a, b). Torically, we take the fan with rays (−1, 0), (−1,−1) (0,−1) and (b, a) and

choose D1 = D(b,a) as well as D2 a smooth member of the linear system D(−1,0)+D(−1,−1)+D(0,−1).

The relations are

D(−1,0) +D(−1,−1) ∼ bD1, D(0,−1) +D(−1,−1) ∼ aD1, (4.1)

the intersections are

D(−1,0) ·D(−1,−1) = D(−1,−1) ·D(0,−1) = 1, D(0,−1) ·D(b,a) =
1

b
, D(−1,0) ·D(b,a) =

1

a
, (4.2)

and the self-intersections are

D2
(−1,0) =

b

a
− 1, D2

(−1,−1) = −1, D2
(0,−1) =

a

b
− 1, D2

(b,a) =
1

ab
. (4.3)

Writing D = D1+D2, the topological Euler characteristic of the complement of D is χ(Y
[2]
(a,b)\D) =

2. Then, H2(Y(a,b),Z) is generated by the proper transform π∗H ∼ abD1 and by the class of

D(−1,−1). We write an effective curve class as d = d0f + d1E with

E := D(−1,−1), f := π∗H −D(−1,−1) , (4.4)
18



so that

d ·D1 = d0, d ·D2 = (a+ b− 1)d0 + d1, d · π∗D(−1,0) = bd0 d ·D(−1,−1) = d0 − d1 . (4.5)

4.1. Local GW invariants. In this case, the (inverse) Gram matrix of the T -equivariant Poincaré

pairing in the basis {ϕ0, ϕ1, ϕ2, ϕ3} = {1, E, f, pt} reads

η−1

Y
[2]
(a,b)

=




0 0 0 λ1λ2

0 −λ1λ2(ab−1)
ab

λ1λ2
ab −−a(b−1)λ1+bλ1+λ2

ab

0 λ1λ2
ab

λ1λ2
ab −aλ1+bλ1+λ2

ab

λ1λ2 −−a(b−1)λ1+bλ1+λ2
ab −aλ1+bλ1+λ2

ab
1
a +

1
b


 , (4.6)

and the T -equivariant I-function is

I
Y

[2]
(a,b)(y, z) =

∑

d0,d1≥0

[
zy

p0/z+p1/z
0 yd00 y

d1
1

∏d0−1
m=0 (λ1 − p0 −mz)

∏d0
m=1(p0 +mz)

∏(b−1)d0+d1
m=1 ((b− 1)p0 + p1 +mz)

∏(a+b−1)d0+d1−1
m=0 (λ2 + (1− b− a)p0 − p1 −mz)

∏d0−d1
m=1 (p0 − p1 +mz)

∏(a−1)d0+d1
m=1 ((a− 1)p0 + p1 +mz)

]
, (4.7)

where p0 := H/(ab), p1 := H/(ab)− E. At O(1) around z = ∞ we have

I
Y

[2]
(a,b)(y, z) = z + (log y0)p0 + (log y1)p1 +O

(
1

z

)
, (4.8)

so the mirror map is once again trivial:

J
Y

[2]
(a,b)

small (t, z) = I
Y

[2]
(a,b)(et, z) . (4.9)

From (2.27) we obtain

N loc
d (Y

[2]
(a,b)) =

∑

i∈{0,1,2,3}

(
η
Y

[2]
(a,b)

)
3,i
[ϕi z

−1yd]I
Y

[2]
(a,b)

(y, z) , (4.10)

where, from (4.7), we have

[z−1yd]I
Y

[2]
(a,b)(y, z) =

Γ (d0) (p0 − λ1) (−1)d0(a+b)+d1Γ (ad0 + bd0 − d0 + d1) (p0(a+ b− 1)− λ2 + p1)

Γ (d0 + 1)Γ (d0 − d1 + 1)Γ (ad0 − d0 + d1 + 1)Γ (bd0 − d0 + d1 + 1)
.

(4.11)

Piecing (4.6), (4.10) and (4.11) together finally leads to

N loc
d

(
Y

[2]
(a,b)

)
=

(−1)d0(a+b)+d1 ((a+ b− 1)d0 + d1 − 1)!

d0 (d0 − d1)! ((a− 1)d0 + d1)! ((b− 1)d0 + d1)!
. (4.12)

4.2. Log GW invariants.

Proposition 4.1. Let a, b be coprime positive integers. Then

N
log
d

(
Y

[2]
(a,b)

)
(q) =

[
ad0

d0 − d1

]

q

[
(a+ b− 1)d0 + d1

ad0

]

q

. (4.13)

In conjunction with (4.12), taking the q → 1 limit recovers the numerical log-local correspondence

of Theorem 2.1.
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Proof. Given that Y(a,b) differs from P(1, a, b) by blowing up a smooth point of D2, the toric model

of Y
[2]
(a,b) differs from that of P(1, a, b) by additionally blowing up a smooth point of D2. At the

level of scattering diagrams, we start with the one for P(1, a, b) as in Figure 3.2 and add a focus-

focus singularity in the direction (0,−1) (corresponding to D2). This creates simple scattering (see

[15, Section 4.2]) as described in Figure 4.1. The broken line calculation proceeds as for P(1, a, b),

with now both broken lines crossing a wall. Which walls which broken lines cross depends on

the location of p. However, the end-result of multiplying the theta functions is independent from

the location of p, see [41]. Figure 4.1 shows where the broken lines bend. As for P(1, a, b), the

bending is determined by the intersection profile of d with D1, D2 and the two exceptional divisors

corresponding to the focus-focus singularities.

x
y

D2

D1

×

×

(b,a+b)

1+t0x−1
1
+
t 1
y
−
1

1+
t 0
t 1
x
−

1 y
−

1

y−(a+b−1)d0−d1

xbd0y(a+b)d0

2

1

•p

Figure 4.1. ScattY
[2]
(a,b)

At 1 , the broken line coming from the D1-direction picks up

[
bd0

d0 − d1

]

q

td0−d11 xbd0y(a+b−1)d0+d1 .

At 2 , the broken line coming from the D2-direction picks up

[
(a+ b− 1)d0 + d1

bd0

]

q

tbd00 x−bd0y−(a+b−1)d0−d1 .

We conclude by [15, Proposition 4.2], noting that

[
bd0

d0 − d1

]

q

[
(a+ b− 1)d0 + d1

bd0

]

q

=

[
ad0

d0 − d1

]

q

[
(a+ b− 1)d0 + d1

ad0

]

q

.

�
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Figure 4.2. The toric graph of (Y
[2]
(a,b))

op, depicted for a = 3, b = 5.

4.3. Open GW invariants. To construct (Y
[2]
(a,b))

op, as for P(1, a, b), we take the canonical bundle

on the complement of D1 = D(b,a). From the toric description of Y
[2]
(a,b) we have that Y

[2]
(b,a) \D(b,a)

is described by a fan with 1-dimensional cones D(−1,0), D(0,−1) and D(−1,−1), hence Y
[2]
(b,a) \D(b,a) ≃

OP1(−1), and K
Y

[2]
(b,a)

\D(b,a)
≃ OP1(−1)⊕OP1(−1). By [15, Construction 6.4], the compactification

to K
Y

[2]
(a,b)

induces a framing of b/a − 1 on the outer Lagrangian corresponding to the deletion of

D(b,a); see Figure 4.2.

From (2.37) and (2.38), we have

Wα((Y
[2]
(a,b))

op)(Q, ~) = q(
b
a
−1)κ(α)/2(−1)(

b
a
−1)|α|

∑

ν∈P

sνt(q
ρ+α)sα(q

ρ)sν(−Qq
ρ)

= q(
b
a
−1)κ(α)/2(−1)(

b
a
−1)|α|sα(q

ρ)
∏

i,j≥1

(
1−Qq−i−j+1+αi

)
, (4.14)

so that

W(j−s−1,1s)((Y
[2]
(a,b))

op)(Q, ~)

W∅((Y
[2]
(a,b))

op)(Q, ~)
=

(−1)(b/a−1)jq(
b
a
− 1

2)((
j
2)−js)

∏j−1
k=0(1− qkQq−s)

[j]q[j − s− 1]q![s]q!
. (4.15)

Using the Cauchy binomial theorem we get

Oj((Y
[2]
(a,b))

op)(Q, ~) =
j−1∑

s=0

(−1)s

j

W(j−s−1,1s)((Y
[2]
(a,b))

op)(Q, ~)

W∅((Y
[2]
(a,b))

op)(Q, ~)

=
(−1)(b/a−1)jq(

b
a
− 1

2)(
j
2)

j[j]q!

∞∑

l=0

q
l(j+1)

2

[
j

l

]

q

(−Q)lq−l
j−1∑

s=0

[
j − 1

s

]

q

(−q−(b/a−1)j−l)sq−
1
2
js,

=
(−1)(b/a−1)jq(

b
a
− 1

2)(
j
2)

j[j]q!

∞∑

l=0

q
l(j−1)

2

[
j

l

]

q

(−Q)l
j−1∏

k=1

(1− q−(b/a−1)j−l−k), (4.16)

so the O(Ql) coefficient reads

Ol;j((Y
[2]
(a,b))

op)(~) =
(−1)(b/a+1)j+l

j[b/aj + l]q

[
b/aj + l

j

]

q

[
j

l

]

q

. (4.17)
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The morphism ι : H2(P1,Z)⊕H1(S
1,Z) → A1

(
Y

[2]
(a,b)

)
in (2.17) reads

ι : [S1] 7→ [D(−1,0)] =
H

a
− E,

ι : [P1] 7→ [D(−1,−1)] = E , (4.18)

and, accordingly, the change-of-variables relating the curve degrees (d0, d1) in H2(Y(a,b),Z) and the

relative homology variables (l; j) in Hrel
2 ((Y(a,b))

op, L,Z) is

j → d0a ,

l → (a− 1)d0 + d1 ,
(4.19)

verifying Theorem 2.2 for Y
[2]
(a,b).

5. Example III

Start with the toric pair P(1, a, b) and blow up a smooth point of the toric divisor D(−1,0) ∼ H/a,

see Figure 1.1. The result is a toric surface Y
[3]
(a,b) with non-toric boundary D = D1 + D2 + D3

determined as follows. Torically, the fan of Y
[3]
(a,b) is given by the rays directed by (b, a), (−1, 0),

(−1,−1) and (0,−1). The boundary D consists of two toric divisors, D1 corresponding to the

ray (b, a) and D2 corresponding to the ray (−1, 0), as well as a non-toric divisor D3 which is a

smooth member of the linear system determined by the sum of the rays (−1,−1) and (0,−1). The

topological Euler characteristic of the complement of D is χ(Y
[3]
(a,b) \ D) = 1. As before, we write

an effective curve class as d = d0f + d1E, where f,E ∈ H2(Y
[3]
(a,b),Z) are defined in (4.4) and

d ·D1 = d0, d ·D2 = (b− 1)d0 + d1, d ·D3 = ad0, d · E = d0 − d1. (5.1)

5.1. Local GW invariants. In this case, the (inverse) Gram matrix of the T -equivariant Poincaré

pairing in the basis {ϕ0, ϕ1, ϕ2, ϕ3} = {1, E, f, pt} reads

η−1

Y
[3]
(a,b)

=




0 0 0 λ1λ2λ3

0 −λ1λ2λ3(ab−1)
ab

λ1λ2λ3
ab

bλ1(aλ3−λ2)−λ3(aλ1+λ2)
ab

0 λ1λ2λ3
ab

λ1λ2λ3
ab −λ3(aλ1+λ2)+bλ1λ2

ab

λ1λ2λ3
bλ1(aλ3−λ2)−λ3(aλ1+λ2)

ab −λ3(aλ1+λ2)+bλ1λ2
ab

λ2
a + λ3

b + λ1


 , (5.2)

and the T -equivariant I-function is

I
Y

[3]
(a,b)(y, z) =

∑

d0,d1≥0

[∏d0−1
m=0 (λ1 − p0 −mz)

∏(a−1)d0+d1−1
m=0 (λ2 + (1− a)p0 − p1 −mz)

∏d0
m=1(p0 +mz)

∏(a−1)d0+d1
m=1 ((a− 1)p0 + p1 +mz)

zy
p0/z+p1/z
0 yd00 y

d1
1

∏bd0−1
m=0 (λ3 − bp0 −mz)

∏d0−d1
m=1 (p0 − p1 +mz)

∏(b−1)d0+d1
m=1 ((b− 1)p0 + p1 +mz)

]
, (5.3)

where p0 := H/(ab), p1 := H/(ab) − E. It is immediate to check that there are no non-trivial

contributions to the mirror map,

[z0]I
Y

[3]
(a,b)(y, z) = (log y0)p0 + (log y1)p1 , (5.4)

22



and so we obtain

J
Y

[3]
(a,b)

small (t, z) = I
Y

[3]
(a,b)(et, z) . (5.5)

For the O(1/z) term in the expansion of the J-functions we have quantum corrections only when

d0 = 0 or d1 = (1− a)d0:

[z−1]I
Y

[3]
(a,b)(y, z) =

(
(1− ab) log2 y1 + log2 y0 + 2 log y1 log y0

)

2ab
pt

+
∑

d>0

(−1)(b+1)d (p0 − λ1) (bd− 1)! (bp0 − λ3) y
d−ad
1 yd0

dz(ad)!((b− a)d)!

+
∑

d>0

(p1 − p0) ((a− 1)p0 − λ2 + p1) y
d
1

d2
. (5.6)

Acting on (5.6) with θ0((b − 1)θ0 + θ1), where θi := yi∂yi , annihilates the quantum corrections in

the last two rows. This entails that the small quantum cohomology product of p0 and (b−1)p0+p1

is equal to their classical cup product:

p0 ⋆y ((b− 1)p0 + p1) = p0 ∪ ((b− 1)p0 + p1) =
H2

a2b
=

pt

a
. (5.7)

At the next order in O(1/z), we have

[z−2]I
Y

[3]
(a,b)(y, z) =

∑

(d0,d1) 6=(0,0)

yd00 y
d1
1 (−1)d0(a+b)+d1 (bd0 − 1)! (p0 − λ1) ((a− 1)p0 − λ2 + p1) (bp0 − λ3)

d0 ((a− 1)d0 + d1) (d0 − d1)! ((b− 1)d0 + d1)!
, (5.8)

so that

N loc,ψ
d

(
Y

[3]
(a,b)

)
= η

Y
[3]
(a,b)

(
pt, [z−2yd00 y

d1
1 ]I

Y
[3]
(a,b)

)

=
(−1)d0(a+b)+d1+1 (ad0 − 1)!

d0 ((b− 1)d0 + d1) (d0 − d1)! ((a− 1)d0 + d1)!
, (5.9)

and thus

N loc
d

(
Y

[3]
(a,b)

)
= η

Y
[3]
(a,b)

(
pt, [z−2yd00 y

d1
1 ]bθ0((a− 1)θ0 + θ1)I

Y
[3]
(a,b)
))

= ad0((b− 1)d0 + d1)N
loc,ψ
d

(
Y

[3]
(a,b)

)
. (5.10)

5.2. Log GW invariants.

Proposition 5.1. Denote by N log,ψ
d

(
Y

[3]
(a,b)

)
the genus 0 log GW invariant of Y

[3]
(a,b) with a point

class with psi insertion [15, (4.2)]. Then

N log,ψ
d

(
Y

[3]
(a,b)

)
=

(
ad0

d0 − d1

)
, (5.11)

N
log
d

(
Y

[3]
(a,b)

)
(~) =

[ad0 ((b− 1)d0 + d1)]q
[1]q

[
ad0

d0 − d1

]

q

. (5.12)
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x
y

D3

D1

D2
× 1+tx−1

x−(b−1)d0−d1

y−ad0

xbd0yad0

1

•
p

Figure 5.1. ScattY
[3]
(a,b)

The genus zero (q → 1) limit of Proposition 5.1, combined with (5.10), concludes the proof of

Theorem 2.1.

Proof. Since Y
[3]
(a,b) is obtained from P(1, a, b) by blowing up a smooth point onD(−1,0), the scattering

diagram of Y
[3]
(a,b) is given by the fan of P(1, a, b) with a focus-focus singularity in the direction (−1, 0).

By [15, Section 4.2], we now need to extract the identity component of the multiplication of three

broken lines corresponding to the directions Di with weights d · Di, i = 1, 2, 3. The broken line

calculation is given in Figure 5.1. Choosing the location of p as in Figure 5.1, there is only one

possible wall-crossing for the broken line coming from the D1-direction. After crossing the wall at

1 , the broken line coming from the D1-direction carries the monomial
[

ad0
d0 − d1

]

q

td0−d1x(b−1)d0+d1yad0 .

The result then follows from [15, Proposition 4.1] for the invariant with psi class and by [15,

Proposition 4.2] for the invariant with two point classes. �

5.3. Open GW invariants. For Y
[3]
(a,b) the relevant open geometry is a toric Lagrangian triple

given by affine space C3 with two toric Lagrangians L1, L2 at framing f1 = (a/b− 1) and f2 = 0;

see Figure 5.2.3 For this setup, denoting ji the winding number of open stable maps around

S1 →֒ Li, i = 1, 2, we have

Oj1,j2

(
(Y

[3]
(a,b))

op
)
=

j1−1∑

i1=0

j2−1∑

i2=0

(−1)i1+i2

j1j2
W

(c)

(j1−i1,1i1 ),(j2−i2,1i2 )

(
(Y

[3]
(a,b))

op
)
, (5.13)

3A strict application of [15, Construction 6.4] would in fact return C3 with two toric Lagrangians at framing

(−1,−a/b); the equivalence of these two open Gromov–Witten setups is a consequence of the well-known symmetries

of the topological vertex, see [6, Section 3.4], as can also be easily verified in the foregoing formulas.
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f1

f2

Figure 5.2. The toric graph of
(
Y

[3]
(a,b)

)op
for a = 2, b = 1.

where W
(c)
αβ is the connected 2-leg topological vertex at framing (a/b− 1, 0),

W
(c)
αβ

(
(Y

[3]
(a,b))

op
)

:= Wαβ

(
(Y

[3]
(a,b))

op
)
−Wα∅

(
(Y

[3]
(a,b))

op
)
W∅β

(
(Y

[3]
(a,b))

op
)

= qa/bκ(α)/2(−1)(a/b−1)|α|
∑

δ 6=∅

sαt

δ

(qρ)sβ
δ

(qρ) . (5.14)

We can express (5.13) as a q-series using the q-factorial expression for hook skew Schur functions

[15, App. C],

s (d,1i)
δ

(qρ) =





(−1)−d−i+k+rq
1
2(d2−2dk+i+k2−r)

(q;q)d−k(q;q)i−r
, δ = (k, 1r) ,

0 else ,
(5.15)

as

Oj1,j2

(
(Y

[3]
(a,b))

op
)

=
(−1)a/bj1+j2+1q

1
2

(

aj21
b

+j1(a
b
+1)+j22

)

j1j2

∞∑

k,l1,l2=0

k−1∑

r=0

q
arj1
b al1,j1,kbl2,j2,kck ,

(5.16)

where we have shifted the indices of summation as i1 = l1+k−r−1, i2 = l2+r, and moreover

al1,j1,k :=
(−1)l1q

1
2
l1(l1−1−2a/bj1)

(q; q)l1(q; q)j1−k−l1
,

bl2,j2,k :=
(−1)l2q

1
2
l2(l2+1+2k−2j2)

(q; q)l2(q; q)j2−k−l2
,

ck := (−1)kq
1
2
k(k−1−2a/bj1−2j2) . (5.17)

In the formulas above, (q; q)n is the usual q-Pochhammer symbol, (q; q)n := (−1)nq
1
4
n(n+1)[n]q!.

Performing the l2 summation using the Cauchy binomial theorem in the form

(qy; q)n =
∞∑

m=0

(−y)mq
m(m+1)

2 (q; q)n
(q; q)m(q; q)n−m

(5.18)
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gives
∞∑

l2=0

bl2,j2,k =
(qk−j2+1; q)j2−k

(q; q)j2−k
=

1

(q; q)j2−k(q; q)k−j2
= δj2k . (5.19)

The sum over k consists then of a single summand at k = j2, and the sum over l1, using (5.18),

is
j1−j2∑

l1=0

al1,j1,j2 = (−1)j1−j2q
1
2
(j2−j1)(j1a/b+1)

[
aj1/b

j1 − j2

]

q

(5.20)

Therefore,

Oj1,j2

(
(Y

[3]
(a,b))

op
)

=
(−1)j1(1+a/b)+1+j2

j1j2
q−

aj1(j2−1)
2b

[
aj1/b

j1 − j2

]

q

j2−1∑

r=0

qrj1a/b

= (−1)j1(1+a/b)+j2+1

[
aj1/b

j1 − j2

]

q

[j1j2a/b]q
[j1a/b]qj1j2

. (5.21)

From (2.17), the winding number variables in (Y
[3]
(a,b))

op and curve degrees in Y
[3]
(a,b) are related

as

j1 → bd0 ,

j2 → (b− 1)d0 + d1 , (5.22)

which combined with (5.21) and Proposition 5.1 concludes the proof of Theorem 2.2.

6. BPS invariants

The closed-form higher genus GW expressions of the previous Sections put us now in a position to

prove Theorem 2.3. Write

Ωd(Y (D))(q) =
[1]2q∏l

i=1[d ·Di]q

∑

k|d

(−1)
∑l

i=1 d/k·Di+1µ(k)

(
[k]q
k

)3−l

N
log
d/k(−ik log q) . (6.1)

From (3.1), (4.13) and (5.12), we have that obviously N
log
d/k(−ik log q) ∈ Z[q±1/2] since it is a product

of q-binomial coefficients. Then (6.1) implies a priori that Ωd(Y (D))(q) ∈ Q(q1/2) with poles at

q = 0,∞ and at most double poles at q = exp(2πil/d̂), with d̂ := lcm{d · Di}
l
i=1. We have the

following

Proposition 6.1. Let Y (D) = P(1, a, b), Y [2]
(a,b), Y

[3]
(a,b). Then

∏l
i=1[d ·Di]q

[1]2q
Ωd(Y (D))(q) = O

(
q − e

2πil

d̂

)2
, l = 0, . . . , d̂− 1. (6.2)

Proof. The vanishing at linear order can be shown with the exact same arguments of the proof of

[15, Thm 8.1] by replacing therein Θd(q) → Nloc
d (−i log q) (for P(1, a, b) and Y

[2]
(a,b)) and Ξd(q) →

Nloc
d (−i log q) (for Y

[3]
(a,b)): the summands in the divisor sums in (6.1) can be grouped in pairs with

leading order terms at q = e
2πil

d̂ having opposite signs, ensuring the l.h.s. is zero at that order. The

quadratic vanishing is a consequence of [15, Lemma 8.3]. �
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Figure 6.1. The quiver for P(1, a, b) for a = 1, b = 3.

Figure 6.2. The quiver for Y
[2]
(a,b) for a = 1, b = 3.

The Proposition then implies that Ωd(Y (D)) ∈ Q[q±1/2]. Since 1/[d·Di]q ∈ q−d·Di/2Z[[q]], from (6.1)

we have Ωd(Y (D)) ∈ Z[q−1/2][[q1/2]], and thus Ωd(Y (D)) ∈ Z[q±1/2] from the previous Proposition.

The claim of Theorem 2.3 then follows.

6.1. Quiver DT invariants. For l = 2 and whenever a = 1 or b = 1, Y op(D) is an integrally

framed toric Lagrangian triple of ‘strip’ type [57], that is, it consists of a single integrally framed

outer Aganagic–Vafa Lagrangian on a smooth toric Calabi–Yau threefold whose fan is a cone over

an integral polytope of unit width. Then Theorem 2.4 follows from a proof identical in all its parts

to that of [15, Thm 7.3], with framings now equal to f = b (for P(1, a, b) with a = 1) and f = b− 1

(for Y
[2]
(a,b) with a = 1).

Example 6.1. For Y (D) = P(1, 1, b)[2], Y op(D) is the 1-legged vertex at framing b, for which

the corresponding quiver is the b + 1-loop quiver [57] (see Figure 6.1). The dimension vector is

here identically identified with the curve degree d, κ = id, and the integral shift in Theorem 2.4

vanishes, αi = 0. The Klemm–Pandharipande invariants KPd(EP(1,1,b)[2]) are then up to a sign the

polynomials in 1
d!Z[b] computed by Reineke in [58, Thm 3.2]. Explicitly, we have

KPd
(
EP(1,1,b)[2]

)
=

{
(−1)b,

1

4

(
(2b+ 1)− (−1)b

)
,
1

2
(−1)bb(b+ 1),

1

3
b(b+ 1)(2b+ 1),

5

24
(−1)bb(b+ 1)(5b(b+ 1) + 2), . . .

}

= (−1)b+d+1DTd
(
Q(P(1, 1, b)[2])

)
(6.3)

Example 6.2. For Y (D) = Y
[2]
(1,b), the corresponding quiver is given in Figure 6.2.

The map between vertices of the quiver and effective generators of H2(Y(1,b),Z) is

v1
κ

−→ f

v2
κ

−→ E (6.4)

and the integral shifts in Theorem 2.4 are α1 = 0, α2 = 1. Klemm–Pandharipande invariants for

small degrees d0, d1 > 0 are given in Table 1: note that despite being rational polynomials in b,
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they take integer values for b ∈ Z+. The quiver DT invariants of Q(Y
[2]
(1,b)) are obtained as their

absolute values.

d0

d1
1 2 3 4

1 (−1)b 0 0 0

2 −b
(−1)b((−1)b(2b+1)−1)

4 0 0

3 (−1)bb(3b−1)
2 − (−1)bb(3b+1)

2
(−1)bb(b+1)

2 0

4 −
b(8b2−6b+1)

3 4b3 − b(2b+1)(4b+1)
3

b(b+1)(2b+1)
3

5 (−1)bb(5b−3)(5b−2)(5b−1)
24

(−1)b+1b(5b−2)(5b−1)(5b+1)
12

(−1)bb(5b−1)(5b+1)(5b+2)
12

(−1)b+1b(5b+1)(5b+2)(5b+3)
24

Table 1. BPS/KP invariants of Y
[2]
(1,b).
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