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Aims Pulmonary arterial hypertension (PAH) is a rare but serious disease associated with high mortality if left untreated. This

study aims to assess the prognostic cardiac magnetic resonance (CMR) features in PAH using machine learning.

Methods

and results

Seven hundred and twenty-three consecutive treatment-naive PAH patients were identified from the ASPIRE registry;

516 were included in the training, and 207 in the validation cohort. A multilinear principal component analysis (MPCA)-

based machine learning approach was used to extract mortality and survival features throughout the cardiac cycle. The

features were overlaid on the original imaging using thresholding and clustering of high- and low-risk of mortality pre-

diction values. The 1-year mortality rate in the validation cohort was 10%. Univariable Cox regression analysis of the

combined short-axis and four-chamber MPCA-based predictions was statistically significant (hazard ratios: 2.1, 95%

CI: 1.3, 3.4, c-index= 0.70, P= 0.002). The MPCA features improved the 1-year mortality prediction of REVEAL

from c-index= 0.71 to 0.76 (P≤ 0.001). Abnormalities in the end-systolic interventricular septum and end-diastolic

left ventricle indicated the highest risk of mortality.

Conclusion The MPCA-based machine learning is an explainable time-resolved approach that allows visualization of prognostic car-

diac features throughout the cardiac cycle at the population level, making this approach transparent and clinically inter-

pretable. In addition, the added prognostic value over the REVEAL risk score and CMR volumetric measurements allows

for a more accurate prediction of 1-year mortality risk in PAH.
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Graphical Abstract

Prognostic features on CMR can be extracted using multilinear principal component analysis (MPCA)machine learning to predict outcome in pulmonary

arterial hypertension (PAH).

Keywords Machine learning • Artificial Intelligence • Cardiac MRI • Prognosis • Mortality • Pulmonary hypertension

Introduction

Cardiacmagnetic resonance (CMR) is a powerful prognostic tool ow-

ing to its ability to assess cardio-physiological parameters such as the

volume and function of the cardiac chambers, tissue characterization,

and anatomical structure. Machine learning methods harnessing

CMR’s prognostic abilities remain rare and mainly focus on segment-

ing cardiac chambers to automate CMRmeasurements.1The process

of automating CMR measurements has matured over recent years,

proving to be accurate and comparable with results obtained from

manual segmentation.2–4However, there is a wealth of data available

in CMR studies other than those based on volumetric measurements.

A recent machine learning model based on the motion of segmented

right ventricle predicted mortality in a mixed cohort of pulmonary

hypertension patients.5 This study linked impaired basal longitudinal

shortening and transverse contraction at the interventricular septum

and free wall with an increased risk of mortality.5Another recent ma-

chine learning model based on CMR disease features extracted by

multilinear principal component analysis (MPCA) has been used to

predict the presence or absence of pulmonary arterial hypertension

(PAH)6 without the need for segmentation.

The MPCA-based model is interpretable because MPCA is a linear

and transparent feature extraction method, thus a particularly prom-

ising machine learning approach for CMR imaging. Each CMR image

sequence is a three-dimensional array (e.g. 512× 512pixels× 6 mm

slice thickness ×20images throughout the cardiac cycle), with each

element being a voxel capturing different tissue characteristics, ana-

tomical location, and temporal variation in the cardiac cycle. Such a

multidimensional array can be naturally represented as a mathemat-

ical object called a tensor. MPCA extracts features directly from such

multidimensional tensor representation which preserves the multidi-

mensional structure of the original CMR data more accurately than

reshaping it into one-dimensional, vector representation.7 The ex-

tracted MPCA features can then be weighted in classification or re-

gression models to optimize the prediction of the desired outcome.

Pulmonary arterial hypertension is a rare but serious disease that is

associatedwith highmortality if left untreated.8This study aims to assess

the prognostic accuracy of the above MPCA-based model to predict

2 S. Alabed et al.
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1-year mortality in PAH. Therefore, evaluating prognosis is key to iden-

tifying high-risk patients and optimizing their management strategies as

recommended by the European Society of Cardiology guidelines.9,10

Multiple clinical parameters are routinely obtained to evaluate PAHdis-

ease progression, including pulmonary haemodynamics from right heart

catheterization (RHC), functional data from exercise tolerance and pul-

monary function tests, biochemistry including N-terminal pro-B-type

natriuretic peptide (NT-proBNP) and imaging including echocardio-

gram and CMR. The REVEAL score is a composite clinical risk score

for mortality that combines these clinical parameters to predict

1-year mortality.11 In addition, CMR measurements such as right ven-

tricular volumes and function have been shown to predict mortality in

PAH.12Thus, the availability of detailed patient phenotyping and predic-

tion scores allows setting a clinical benchmark for the performance of

machine learning prognostic models in PAH. This study assesses the

additive value of theMPCA-basedmodel to predictmortality compared

with established prognostic parameters such as the REVEAL risk score

and CMR measurements.

Methods

The TRIPOD checklist for reporting prediction model development and

validation was followed13 and is available in the supplemental material.

Study population
All consecutive treatment-naïve patients with PAH referred for a base-

line CMR between 2008 and 2019 were identified from the ASPIRE

Figure 1 Model pipeline flow chart.

Figure 2 Study participants flow chart.
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registry.14 Eligibility criteria included: (i) a baseline CMR study per-

formed within 14 days of a PAH diagnosis, confirmed by RHC, and be-

fore the commencement of PAH treatment. (ii) Minimum 12 months

follow-up or death within 12 months post-CMR study. The study

population was divided into two cohorts: (i) a training cohort whose

CMR images were used to develop and optimize the prognostic

algorithm and (ii) a validation cohort that was left out of training and

used to validate the performance of the prognostic model. The cohort

was split 70:30 into the model development and model validation

cohort.

Ethical approval was obtained from the local ethics committee and

written consent was waived for this retrospective study (ref c06/

Q2308/8).

MR imaging protocol
Cardiac magnetic resonance was performed with a 1.5 Tesla GE HDx

(GE Healthcare, Milwaukee, USA) system using an eight-channel cardiac

coil. Four-chamber (4Ch) and short-axis (SA) cine images were acquired

using a cardiac-gated multislice balanced steady-state free precession se-

quence (20 frames per cardiac cycle, slice thickness 10 mm, 0 mm inter-

slice gap, field of view 480 mm, acquisition matrix256× 200, flip angle

60°, BW 125 KHz/pixel, TR/TE 3.7/1.6 ms). A stack of images in the

SA plane were acquired fully covering both ventricles from base to

apex. End-systole was considered to be the smallest cavity area.

End-diastole was defined as the first cine phase of the R-wave triggered

acquisition or largest volume. Patients were in the supine position with a

surface coil and with retrospective ECG gating.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline characteristics

Training Validation P

N=516 N=207

Age (years) 62 (22) 62 (24) 0.667

Sex (female) 376 (72%) 166 (80%) 0.040

BSA (m2) 1.82+ 0.2 1.83+ 0.2 0.933

Diagnosis

CHD 71 (13%) 34 (16%)

CTD 242 (46%) 96 (46%)

IPAH 137 (26%) 55 (26%)

Portal hypertension 35 (6%) 17 (8%)

other PAH 31 (6%) 5 (2%)

WHO functional Class 0.331

I 2 (0%) 0 (0%)

II 37 (7%) 11 (5%)

III 409 (79%) 170 (82%)

IV 58 (11%) 26 (12%)

RHC parameters

mPAP (mmHg) 46 (22) 48 (18) 0.164

PVR (dyns.s.cm-5) 608 (556) 822 (791) ,0.001

PAWP (mmHg) 11 (5) 10 (4) ,0.001

RA mean (mmHg) 9 (8) 9 (8) 0.548

CO (L/min) 5 (2) 4 (2) ,0.001

SvO2 (%) 66 (13) 66 (14) 0.632

CMR parameters

RVEF (%) 37+ 13 36+ 11 0.539

RVESVi (ml/m2) 74+ 35 76+ 31 0.122

RVEDVi (ml/m2) 113+ 41 115+ 39 0.163

RVEDMi (g/m2) 27+ 8 28+ 8 0.016

LVEF (%) 53+ 10 53+ 9 0.966

LVESVi (ml/m2) 31+ 11 31+ 16 0.212

LVEDVi (ml/m2) 67+ 19 64+ 21 0.079

LVSVi (ml/m2) 36+ 12 34+ 9 0.130

VMI (ratio) 0.58+ 0.2 0.62+ 0.2 0.010

Data presented as mean+ standard deviation or median (range).

BSA, body surface area; CHD, congenital heart disease; CO, cardiac output; CTD, connective tissue disease; CTEPH, chronic thromboembolic pulmonary hypertension; EDVi,

end-diastolic volume index; ESVi, end-systolic volume index; IPAH, idiopathic pulmonary arterial hypertension; LV, left ventricle; mPAP, mean pulmonary artery pressure; PAH,

pulmonary arterial hypertension; PAWP, pulmonary arterial wedge pressure; PH, pulmonary hypertension; PVR, pulmonary vascular resistance; RA, right atrium; RHC, right

heart catheterization; RV, right ventricle; RVEF, right ventricle ejection fraction; RVEDMi, right ventricular end-diastolic mass index; SV, stroke volume; SvO2=mixed venous

oxygen saturation; VMI, ventricular mass index; WHO, World Health Organization

4 S. Alabed et al.
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Volumetric and ventricular function analysis was performed by con-

touring the ventricular endocardial borders at end-diastole and end-

systole on the SA images using MASS software (MASS, 2020; Leiden

University Medical Center, Leiden, the Netherlands). Papillary muscles

and trabecula were included in the blood volume.

Image preprocessing
Mid-chamber SA and 4Ch cine images were used in this study. Images

were processed following methods in a previous study.15 In brief, images

were preprocessed by standardizing CMR voxel units between subjects,

registering to each other using three anatomical landmarks, masking sur-

rounding tissues, and downscaling image size (Figure 1).

Cardiac magnetic resonance voxel units were standardized between

subjects by z-scores. Rigid image registration was used based on three

predefined fixed anatomic landmarks. The landmarks were manually

placed on SA (superior insertion point; right ventricular freewall inflexion;

mid-left ventricular lateral wall) and 4Ch (left ventricle apex; lateral mitral

annulus; lateral tricuspid annulus). Cardiac magnetic resonance images

were landmarked by a single reader (S.A.) with independent visual quality

assurance checks (S.A.; J.U.). To focus on spatially relevant features, an el-

lipsoidal maskwas fitted around the heart. Downsamplingwas performed

to four image sizes (32× 32, 64× 64, 128× 128, and 256× 256).

Multilinear principal component analysis

pipeline
The prognostic prediction was achieved by training support vector ma-

chines (SVMs) on MPCA features extracted from CMR studies.6,7 The

methodology followed the MPCA-based pipeline in previous studies.6,15

This pipeline was trained through 10 rounds of 10-fold cross-validation

on the development cohort (n= 516). For each fold during training,

MPCA features were extracted and ranked for prognostic capability

using Fisher’s Discriminant Analysis in the following way. Extracted fea-

tures were ranked and selected using a step-wise feature inclusion meth-

od. This was performed using a random tuning-set (n≈50) of cases. The

feature set with the highest tuning-set performance was used to train an

SVM and tested on the left-out fold. The feature set with the highest fold-

performance was used to train the final development SVM. This

MPCA-based machine learning model was then applied to the complete-

ly left-out validation cohort (n= 207). On a standard computer, the time

it takes to process each image and perform inference is much ,0.1

second. A Jupyter notebook tutorial of the open-source pipeline code

is available at: https://colab.research.google.com/github/pykale/pykale/

blob/main/examples/cmri_mpca/tutorial.ipynb

Visualization of tensor features
Trained features were visualized by using MPCA reconstruction to ob-

tain spatially relevant feature maps. To visually inspect the impact of spe-

cific regions on high- and low-risk of mortality prediction, a two-step

procedure of thresholding and clustering was implemented. Voxels con-

taining high absolute values (high positive= high-risk, high negative=

low-risk) of MPCA features were thresholded. Morphological

dilation-erosion using a spherical structural element (r= 2) was per-

formed and clusters of visually significant size were overlaid on individual

patients’ original CMR scans.

Figure 3 Kaplan–Meier curve. The Kaplan–Meier curve shows the survival of high- and low-risk patients based on the combined short-axis and

four-chamber model predictions. The risk threshold was determined based on the median value of the MPCA predictions. The Kaplan–Meier ana-

lysis shows a significant difference in survival between the high and low risk of mortality patient groups (log-rank P, 0.001).
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Clinical and mortality data
Clinical data including intermittent shuttle walking test, pulmonary func-

tion test, and serum level ofNT-proBNPwere collected before treatment

was commenced. Demographic data, WHO functional status, PAH sub-

group diagnosis, and outcomewere collected from the electronicmedical

system.Mortality data were collected from the electronic records of

the National Health Service (NHS) Personal Demographics Service.

The NHS automatically updates the mortality records once a death is

registered in the United Kingdom. All patients were followed up as

part of the national service specification for patients with pulmonary

hypertension for a minimum of 12 months. No patients were lost to

follow-up.

Statistical analysis

Continuous variables are presented as proportions, means+ standard

deviations, or median and interquartile range for data not following a nor-

mal distribution. The sample size for developing the predictionmodel was

calculated using a 1-year mortality prevalence of 10% and seven predictor

parameters and required 420 patients to develop themortality prediction

model.16 The REVEAL score was calculated from composite clinical para-

meters11 andmodified to include the incremental shuttlewalk test instead

of the 6 min walking test.17,18 The CMR volumetric measurements were

indexed for body surface area and corrected for age and sex by calculating

the percentage predicted values as per published reference data.19,20 The

outcome of the MPCA-based pipeline was calculated as the SA and 4Ch

probabilities based on the SVM prediction. A combined probability was

calculated by further training a dual-scan SVM from the selected features

of both individual models—SA and 4Ch. All variables were standardized

by subtracting the mean for each variable and dividing it by its standard

deviation (SD) to allow for more meaningful comparisons. A univariable

Cox proportional hazards regression was performed to estimate the

1-year mortality prediction of the REVEAL score, CMR measurements,

and the MPCA probabilities. For the multivariable analysis, we planned

to include the CMRmeasurements that were identified in previous prog-

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Univariable Cox proportional hazard
regression ratios for 1-year mortality

HR 95% CI P

Age (years) 1.039 1.005, 1.075 0.026

Sex 1.036 0.346, 3.098 0.950

WHO class 2.033 0.781, 5.292 0.146

REVEAL 1.339 1.109, 1.618 0.002

RHC parameters

mPAP (mmHg) 0.982 0.947, 1.017 0.311

PVR (dyns.s.cm-5) 1.000 0.999, 1.001 0.616

PAWP (mmHg) 1.012 0.866, 1.183 0.879

RA mean (mmHg) 1.081 1.020, 1.146 0.008

CO (L/min) 0.842 0.599, 1.185 0.324

SvO2 (%) 0.969 0.929, 1.009 0.127

CMR parameters

RVEF (% pred) 0.762 0.445, 1.306 0.324

RVESVi (% pred) 1.699 1.099, 2.628 0.017

RVEDVi (% pred) 1.443 0.972, 2.141 0.069

RVEDMi (% pred) 1.113 0.781, 1.587 0.554

LVEF (% pred) 1.275 0.790, 2.060 0.320

LVESVi (% pred) 1.036 0.652, 1.646 0.881

LVEDVi (% pred) 0.918 0.559, 1.509 0.736

LVSVi (% pred) 0.933 0.592, 1.471 0.767

VMI (ratio) 0.962 0.530, 1.748 0.899

PA RAC (%) 0.911 0.838, 0.991 0.031

Septal angle systole 0.999 0.972, 1.027 0.941

Septal angle

diastole

0.987 0.935, 1.042 0.636

MPCA-based

features SA features 2.401 1.459, 3.951 0.001

4-chamber features 1.472 0.978, 2.216 0.064

Combined features 1.97 1.282, 3.028 0.002

CMR parameters are corrected for age and sex (%pred). For abbreviations see

Table 1.

Figure 4 Receiver-operating characteristic curves for 1-year

mortality prediction. The prognostic accuracy of the different

machine learning models were compared (A) combined model,

(B) short-axis model and (C ) four-chamber model. The highest

area under the curve was achieved with the short-axis model

(AUC= 0.73).

6 S. Alabed et al.
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nostic studies, namely right ventricular ejection fraction (RVEF), right ven-

tricular end-systolic volume index (RVESVi), right ventricular end-

diastolic volume index (RVEDVi), left ventricular end-diastolic volume in-

dex (LVEDVi), left ventricular stroke volume index (LVSVi) and pulmon-

ary artery relative area change (PA RAC).12,21 Owing to the high

correlation between RVESVi and RVEDVi (r= 0.89), we only included

RVESVi as the stronger predictor in the multivariable analysis. The pro-

portional hazards assumption was confirmed using scaled Schoenfeld re-

siduals. The c-index was used to measure the relative goodness of fit

between the different regression models. The c-index indicates the rate

of correct predictions of survival the model makes. We also computed

theAkaike information criterion (AIC) for eachmodel. TheAIC estimates

the rate of incorrect prediction and compares the quality of different

models relative to each other while penalizing themodels withmore vari-

ables. While a higher c-index indicates a better model fit, a lower AIC va-

lue indicates fewer prediction errors.22

In addition, the likelihood ratio test was performed to assess if

there is a statistically significant difference between the different

models and to determine the additive predictive value of the

MPCA probabilities. The models compared were the univariable

REVEAL score, the REVEAL score combined with prognostic CMR

measurements, and finally a multiple variable model including the

REVEAL score, CMR measurement, and the MPCA probabilities.

Kaplan–Meier curves were analysed to demonstrate the prognostic

value of MPCA predictions dividing patients based on the median

MPCA value as the threshold. The high and low mortality risk groups

were compared using the log-rank (Mantel–Cox) test. The receiver-

operating characteristic curve (ROC) and the area under the curve

(AUC) were used to estimate the prognostic accuracy of the differ-

ent MPCA features.

Results

Study population characteristics
A total of 737 consecutive incident patients with PAH were identi-

fied. Incomplete scans because of claustrophobia or patient intoler-

ance were excluded, leaving 723 scans for the analysis. The training

cohort included 516 and the validation cohort 207 subjects (Figure 2).

The baseline characteristics of both cohorts are presented in

Table 1. In summary, the study population were 74% females aged

59+ 16 years and included PAH secondary to connective tissue dis-

ease (CTD) (46%), idiopathic PAH (IPAH) (27%), congenital heart

disease (CHD) (16%), secondary to portal hypertension (7%) and

other PAH subtypes (4%).

Mortality prediction
Survival analysis
The 1-year mortality rate in the validation cohort was 10% with an

overall mortality rate over the total follow-up period of 29%.

Kaplan–Meier survival analysis demonstrated a significant difference

in survival in patients with high and lowmortality risk in the validation

cohort (log-rank test ,0.001) (Figure 3). The ROC curve for each

model is shown in Figure 4. The AUC was 0.73 for the SA model,

0.64 for 4Ch, and 0.70 for the combined MPCA-based features to

predict 1-year mortality in the validation cohort.

Univariable Cox regression analysis confirmed a strong prog-

nostic utility of the SA and combined SA and 4Ch MPCA-based

predictions (Table 2). However, the 4Ch features alone were

not significant predictors of mortality. The univariable Cox

regression hazard ratios for the demographics, RHC and CMR

measurements, functional tests and clinical parameters are

shown in Table 2. The REVEAL score and, PA RAC and age

and sex-adjusted RVESVi were significant predictors of 1-year

mortality.

Additive prognostic value
Several multivariable prognostic models were compared in Table 3

to compare the predictive value of the REVEAL score alone,

REVEAL score combined with CMR measurements or MPCA fea-

tures and finally REVEAL score combined with CMR measure-

ments and MPCA features. The prognostic models were

compared using the c-index and AIC test for goodness of fit and

the log-rank test to assess the statistical significance of the differ-

ence between the models. The univariable REVEAL model allows

the assessment of the 1-year risk of mortality based on available

composite clinical data alone. Adding the MPCA-based predictions

allows evaluating the added incremental value in predicting death

compared with REVEAL and segmentation-based CMR

parameters.

The REVEAL score alone had a c-index of 0.71 and AIC of 203.

Adding CMR measurements improved the model statistically sig-

nificantly, to 0.78 and AIC of 205 (log-rank test P= 0.003). The

model including MPCA prediction, REVEAL score and CMR mea-

surements, showed the strongest prognostic utility (c-index: 0.83

and AIC 193, log-rank test P≤ 0.001). The MPCA model alone

had similar accuracy to the REVEAL score with a c-index of

0.71 and AIC of 204.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 C-index and Akaike information criterion
(AIC) for the univariable and multiple variable Cox
regression analysis for the REVEAL score, CMR
measurements, and theMPCAmachine learningmodel

C-index 95% CI AIC P

Log-rank

test

CMR measurementsa 0.70 0.60–0.80 211

MPCAb 0.70 0.59–0.81 204

REVEAL score 0.71 0.61–0.81 203

REVEAL+MPCA 0.76 0.67–0.85 197 0.003

REVEAL+CMR

measurements

0.78 0.70–0.86 205 0.003

REVEAL+CMR

measurements+

MPCA

0.83 0.76–0.90 193 ,0.001

A higher c-index indicates a better model fit and a lower AIC indicates a relative

lower prediction error. The log-rank test indicates that the combination of

MPCA, CMR measurements, and REVEAL is statistically significantly more

predictive than REVEAL score alone (c-index 0.83 vs. 0.72, P, 0.001).
aCMR measurements included age and sex corrected right ventricular ejection

fraction, right ventricular end-systolic volume index, left ventricular end-diastolic

volume index, left ventricular stroke volume index and pulmonary artery relative

area change.
bMPCA combined short-axis and four-chamber features
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Figure 5 Time-resolved prognostic cardiac features. Features of poor prognosis and also protective features were examined throughout the

cardiac cycle on the short-axis and four-chamber views. The most significant cardiac features were the end-systolic and early diastolic septum

on both the short-axis and four-chamber views. The RV during systole and LV during diastole also were predictive of 1-year mortality. In contrast,

the most important features of survival were the end-diastolic septum on short-axis and four-chamber views and the LV at systole.
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Temporal prognostic dynamics
The MPCA-based features were assessed throughout the cardiac

cycle and grouped according to the anatomical region into the

right ventricle (RV), left ventricle (LV) and septum. For visualiza-

tion purposes, we manually segmented the averaged SA and

4Ch slice to group the MPCA features into anatomical regions.

The features were divided into low and high-risk features based

on the median MPCA feature values used in the Kaplan–Meier

analysis (Figures 5, 6). On the SA views, abnormal interventricular

septum during systole and particularly at end-systole and the LV

chamber during diastole and particularly at end-diastole indicated

a higher risk of mortality. On 4Ch views, the features with the

highest impact on predicting mortality were at the RV at early sys-

tole. A normal LV and interventricular septum in diastole on SA

and 4Ch imaging were the strongest predictors of survival, where-

as the RV was a poor indicator of survival (Figure 5).

Discussion

This study assessed the prognostic utility of an MPCA-based machine

learning model in CMR in patients with treatment-naïve PAH. This is

the first study to localize prognostic PAH features with an explain-

able AI approach dynamically over the cardiac cycle. In addition,

we have shown the incremental prognostic value of the MPCAmod-

el compared to known prognostic markers such as the REVEAL

score and CMR volumetric measurements.

The advantage of using MPCA is its interpretability. The ability to

directly relate prognostic features identified in the machine learning

process helps understand and explain the machine learning model’s

findings. Diagnostic and prognostic models based on deep learning

methods have been criticized for creating a ‘black-box’ situation

where the predictions are often difficult to comprehend and re-

trace.23 Visualizing the MPCA features throughout the cardiac cycle

allowed discerning the most significant discriminatory predictors of

death on CMR in PAH. The known prognostic features identified

in pulmonary hypertension of diastolic interventricular septal flatten-

ing,24 reduced LV size and increased RV size25 can all be visually

assessed on SA images. The most significant features identified in

non-survivors on SA imaging were located at the septum at end-

systole and LV at end-diastole. Changes in the interventricular

septum at end-systole are the result of RV pressure overload. The

altered pressure gradient between the LV and RV results in flattening

of the septum giving a characteristic D-shaped LV and eventually re-

sults in impaired LV diastolic function and reduced LV filling.26,27

Survivors showed the opposite with features in the septum at end-

diastole and LV at end-systole. We found fewer overall features on

SA images at the RV. However, on 4Ch imaging the most significant

features were identified in RV systole. Whereas the septal and LV

features were less important on 4Ch imaging. The 4Ch view allows

assessing the longitudinal RV contractility which for example can be

inferred on echocardiogram by assessing the tricuspid annular plane

systolic excursion (TAPSE). Right ventricle longitudinal contraction is

known to be the larger component of RV contraction and a key

prognostic indicator28–30 which explains its prognostic importance

in PAH.

The MPCA-based model was developed and validated on CMR

imaging performed at diagnosis and in treatment-naive PAH patients.

Disease severity assessed at baseline assessment is important for

planning an optimal treatment strategy. Almost all published prog-

nostic CMR studies in PAH are based on disease prevalent PAH pa-

tients in later stages of the disease process.12 A meta-analysis of 22

studies and almost 2000 patients with PAH showed that RVEF,

RVESVi, RVEDVi, LVEDVi and LVSVi were significant predictors of

mortality.12 Right ventricle ejection fraction, RVEDVi, LVEDVi, and

LVSVi did not predict mortality in our baseline PAH cohort. The

MPCA pipeline can therefore elicit cardiac changes before they affect

RV function and size and adds prognostic value at baseline evaluation.

In addition, comparing the MPCA to the REVEAL score allowed us to

evaluate the incremental value benchmarked against a clinically vali-

dated baseline prognostic tool. The MPCA-based predictions signifi-

cantly improved the 1-year mortality prediction of the REVEAL

score. The prognostic model accuracy (c-index) using REVEAL im-

proved from 71% to 83% (log-rank test P, 0.001) when it was com-

bined with CMR data including MPCA predictions and CMR

measurements. However, even without REVEAL data, mortality

can still be accurately predicted based on MPCA features alone

with an accuracy (c-index) of 70%.

The application of step-wise cardiac features extraction using

CMR has further potential that can be evaluated in future

Figure 6 Visualization of prognostic mortality and survival features learnt from the training data. The features were overlaid on three example

short-axis/4-chamber images from three different patients with PAH to interpret the corresponding anatomical regions. Left: septum and LV fea-

tures of high risk of mortality at end-systole. Middle image: Features of survival visualized at the septum at end-diastole. Right: four-chamber view

showing high-risk features in the septum and LV in diastole
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developments. Comparing prognostic features at follow-up with

baseline features might provide a better understanding of disease

progression on CMR andmight offer a standardized disease monitor-

ing tool. In addition, technical improvements would allow to fully

automate the prognostic model, which currently requires manual im-

age registration. Deep learning automated landmarking for image

registration would reduce the manual processing of CMR images

and reduce the time and cost associated with it.31,32

Limitations
This was an exploratory retrospective single centre study on patients

with PAH. Findings will need to be confirmed in a prospective trial

with an external validation cohort. In addition, applying the model

to other diseases and MRI systems would further validate its

generalizability.

The MPCA method was applied on cine images of the mid-

chamber slice throughout the cardiac cycle. Stack imaging of the

whole heart can currently not be included in the MPCA model train-

ing. However, because of the strong prognostic signal from the SA

and 4Ch cine images we envisage that future developments including

3D data of the heart will further improve prognosis prediction.

Conclusion

Patient outcome prediction in PAH can be enhanced by adding

MPCA-based machine learning to CMR volumetric data and clinical

risk scores. The MPCA analysis gives a population insight into the

prognostic cardiac features in PAH in an explainable and visualisable

approach.
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