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Abstract. We describe and analyze the parallel implementation of a
novel domain decomposition preconditioner for the fast iterative solution
of linear systems of algebraic equations arising from the discretization of
elliptic partial differential equations (PDESs) in three dimensions. In pre-
vious theoretical work, [3], this preconditioner has been proved to be op-
timal for symmetric positive-definite (SPD) linear systems. In this paper
we provide details of our 3-d parallel implementation and demonstrate
that the technique may be generalized to the solution of non-symmetric
algebraic systems, such as those arising when convection-diffusion prob-
lems are discretized using either Galerkin or stabilized finite element
methods (FEMs), [9].

1 Introduction

Domain decomposition (DD) techniques for the solution of sparse linear alge-
braic systems arising from the discretization of PDEs have become extremely
popular in recent years due to their obvious potential for parallel implementa-
tion. Typically, two main approaches have been followed: generating and solving
systems of equations on the subdomain interfaces (e.g. [6, 8], which each require
exact subdomain solves at each iteration) or solving the complete system as a
partitioned matrix (e.g. [5,7]). In this work we focus on a recently proposed
method of the second type ([2,3]) which we refer to as a weakly overlapping
additive Schwarz (AS) preconditioner.

Typical AS preconditioners (see, for example, [13]) require a fixed amount
of overlap between subdomains in order to guarantee that the preconditioned
linear systems which arise following discretization have a condition number which
is independent of the mesh size h'. For practical applications therefore this
optimality property is usually discarded in favour of keeping a fixed number of

! It is also necessary to add the solution of a restricted coarse grid problem at each
iteration for such an optimal preconditioner (again see [13], or [5]).
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Fig. 1. An example (in 2-d for clarity) of two weakly overlapping finite element meshes
generated from a coarse grid of 64 elements with three levels of hierarchical refinement.

mesh layers in the overlap region (which, in three dimensions, therefore results
in an overlap of O(h?) elements, as opposed to O(h%), as h — 0). In [2] a
hierarchical finite element technique is introduced which defines the solution
space on each subdomain to consist of a global coarse grid plus a single layer of
overlap at each level of refinement in the mesh hierarchy (see Fig. 1 for a two-
dimensional illustration). It is then proved in [3] that for certain symmetric self-
adjoint operators the resulting additive Schwarz preconditioner is still optimal,
despite only having O(h?) elements in the overlap (O(h) in 2-d).

To illustrate the technique algebraically consider solving a self-adjoint prob-
lem with just two subdomains (one on each of two processors say), as illustrated
in 2-d in Fig. 1 (where the subdomains lie above and below diagonal from the
bottom left to the top right of the domain). Following the usual parallel finite
element approach (e.g. [8]), a distributed global stiffness matrix may be assem-
bled in parallel on the two processors by permitting processor ¢ to assemble
contributions from those fine mesh elements inside subdomain ¢ only. The cor-
responding linear system of finite element equations may then be represented in
the following block matrix form:

A1 0 Bl gl il
0 As By Uy | = iz . (1)
B By As] |u, f

s
Here u; is the vector of unknown nodal values for nodes strictly inside subdomain
i (i = 1,2) and u, is the vector of unknown nodal values for nodes on the interface

between subdomains. Moreover, each block A;, B; and L may be computed (and
stored) independently on processor ¢ (i = 1,2). Finally, we may express

A=Ay +Asp and fo=f g+ @)
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where A,(; and f o(i) AT€ the components of 4, and [, respectively that may be

calculated (and stored) independently on processor i. It is now quite straight-
forward to implement an iterative solver such as the conjugate gradient (CQG)
method ([1]) in parallel since distributed matrix-vector products may be com-
puted with very little parallel overhead and distributed inner products may be
computed with just a single global reduction operation (see, for example, [7]).

Parallel application of the weakly overlapping AS preconditioner, A say, may
now be described by considering the action of z = A~!p in the block matrix
notation of (1) as follows. On processor 1 solve the system

A 0 By [z, b,
0 42 B2 §2,1 = M2B2 (3)
BT Bg AS gs,l 1_)

S

and on processor 2 solve the system

Al 0 Bl_ §1’2 Mlgl
~0 Az By 222 | = b, ) 4)
BT BT A, | | 242 P,
then set
21 _§1,1 + M1T§1,2
22 | = M2T§2,1 +29 | - (5)
25 | gs,l + gs,2

In the above notation, the blocks /12 and ﬁz (resp. fil and Bl) are the assem-
bled components of the stiffness matrix for the part of the mesh on processor 1
(resp. 2) that covers subdomain 2 (resp. 1). These may be computed and stored
without communication. Moreover, because of the single layer of overlap in the
refined regions of the meshes, A; may be computed and stored on each processor
without communication. Finally, the rectangular matrix M; (resp. M) repre-
sents the restriction operator from the fine mesh covering subdomain 1 (resp.
2) on processor 1 (resp. 2) to the coarser mesh covering subdomain 1 (resp. 2)
on processor 2 (resp. 1). This is the usual hierarchical restriction operator that
is used in most multigrid algorithms (see, for example, [11]) and requires the
communication of data between the processors.

It is easy to verify that the above preconditioner is symmetric and may be
generalized from 2 to p subdomains (see [2] or [3] for details). It should also
be noted that each of the local problems ((3) and (4) in the two-subdomain
example above) combines its own subspace solve with the coarse grid solve and
so we are effectively repeating this coarse grid correction on each processor at
each iteration. This is not a significant overhead however since the coarse grid
is generally very much smaller than the refined grid so most parallel codes (e.g.
[8]) solve this problem sequentially on a single processor anyway. Furthermore,
as h — 0, each of these local problems tends to exactly % times the size of the
full problem, even with the coarse grid included.
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2 Solution of Convection-Diffusion Problems

Whilst the theoretical results of [3] demonstrate that the preconditioner given by
(3) to (5) (when p = 2) is optimal for a class of linear self-adjoint PDEs (leading
to SPD linear systems), it is clear that many important practical problems can-
not be realistically modelled by such equations. One of the most important class
of problem that comes into this category involves convection-diffusion equations
of the form

—eVu+b-Yu=f(z). (6)

Provided € > 0 this is an elliptic problem but, when b # 0, it is not self-
adjoint. When ¢ is small (relative to ||b||) the equation is said to be convection-
dominated. Such problems arise frequently in fluid mechanics, heat and mass
transfer, environmental modelling, etc. and, when discretized by the standard
Galerkin FEM (see, for example, [9]), lead to a non-symmetric linear system.

When considering how to generalize the preconditioner introduced in the
previous section to non-symmetric systems an important clue may be obtained
from observations made in [2] and [4]. Both of these papers make the empirical
observation that setting the M terms in (5) to zero (and scaling the interface
terms accordingly) not only has the effect of reducing the communication cost
of each iteration but, provided an appropriate solver is used, also leads to a
reduction in the number of iterations required to converge?. In the case where
p = 2 equation (5) therefore becomes

21 21,1
2| = ) 22,2 ) (7)
Zs 5(13,1 +§s,2)

which means that the preconditioner is no longer SPD. Hence, even for a self-
adjoint differential operator, the CG algorithm can no longer be used and must
be replaced by a more general alternative such as GMRES (again see [1], or [12]
for details of a public domain implementation). Although the cost per iteration is
greater for GMRES than CG, the reduced inter-processor communication at each
iteration and the decrease in the number of iterations required always appear to
more than make up for this (see [2] for specific comparisons in 2-d and [4] for
corresponding remarks concerning conventional AS preconditioning).

With a parallel preconditioner for GMRES given by (3), (4) and (7) (we
again focus on the special case p = 2 for simplicity) it is clear that our algorithm
may easily generalize to non-symmetric problems such as that obtained from a
finite element discretization of (6).

2.1 Parallel Implementation

Generalizing the above discussion to the solution of a non-symmetric linear sys-

tem on p processors we may write the action (z = A lg) of the preconditioner in

% In [4] the observation is of course described for conventional AS preconditioning
rather than the weakly overlapping modification being considered here.
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terms of the computations required on each processor i (from 1 to p) as follows.
(i) Solve

40 Bl [z P;
0 A; B; z; | =|Mp,| . ®
Ci Ci Ai,s gi,s Bz’,s

(ii) Average each entry of of 2; s over all corresponding entries on neighbouring
processors.

In (8) A;, B; and C; are assembled components of the stiffness matrix for
the elements of the mesh in subdomain i, A;, B; and C; are components for
the elements of this mesh outside subdomain ¢ and A; s stores the components
of the stiffness matrix where both the row and column correspond to nodes on
the interface of subdomain ¢. A similar partition of the vector p is provided

into components D inside subdomain ¢, D, outside subdomain ¢ and p,, on its
_ " -0

interface. M; represents the hierarchical restriction operator from the fine mesh
on each processor other than i to the coarser mesh outside of subdomain ¢
on processor ¢ (therefore requiring an all-to-one communication to compute its
action for each 7).

The main implementation issue that needs to be addressed is that of com-
puting the action of each of the restriction operations Miéi efficiently at each
iteration. Note that because the preconditioner is not symmetric we do not need
to also evaluate the corresponding prolongation at the end of each precondi-
tioning step. The evaluation of ]\Zf@i is completed in two phases: a set-up phase
which occurs before the first iteration, and a communication phase which occurs
at each iteration. All of our implementations have been in ANSI C using the
MPI communication library, [10].

In the set-up phase each processor, i say, sends to each other processor, j
say, a list of the nodes of mesh i which lie in, or on the boundary of, subdomain
j. Processor i then receives from each other processor, j say, a list of all nodes of
mesh j which lie in, or on the boundary of, subdomain ¢. For each of these lists
processor ¢ then matches each of the nodes in this list with the corresponding
node on mesh ¢. This is achieved very efficiently by using the mesh hierarchy that
is present on processor ¢ (see [14] for a description of the hierarchical refinement
of tetrahedral grids that is used on each processor).

At each iteration processor i then contributes to the restriction operation

M J'Ej for each j # i. The part of the vector p which is stored on processor i

(p,) corresponds to all nodes of mesh i in subdomain ¢ or on its boundary. For
each j this sub-vector, p., may be restricted to the nodes of mesh j which lie
in subdomain i or on its boundary (which are known from the set-up phase).
This restriction uses the mesh hierarchy in the standard multilevel manner (as
described in [11] for example). These restricted vectors may then each be sent to
the corresponding processor, j. Following this, processor i should receive a list of
its own restricted vectors from each of the other processors. These are then put
together on processor i to produce the required vector Miz_ﬁi before the solution
to (8) is found locally. Note that in MPI ([10]) all of the above message passing
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may be implemented as a single all-to-all communication. Given the high cost
of such a communication we again see the value of only requiring one of these
per iteration (as opposed to two for the original symmetric preconditioner).

The final stage in computing the action of z = A~'p requires only neighbour-
to-neighbour communication between processors sharing a subdomain boundary.
This allows the z; ; vectors to be updated on each processor i, as required for
step (ii) above.

2.2 Numerical Results

In order to assess the performance of the proposed parallel preconditioner on
typical convection-diffusion problems we consider here a specific test problem of
the form (6). This equation is solved on the domain 2 = (0,2) x (0,1) x (0,1)
with the parameters b = (1,0,0)7 and

_ pz/e
f@) =2 (- 252 ) 0 =9+ 21 ) 4y = )s- 2),

subject to the Dirichlet boundary condition u|gn = u*|sn, where
. 2(1 — /)
u = (37 - m) y(1-y)z(1-2) 9)

is the exact solution to this problem. It exhibits a steep layer of size O(g) near
to the boundary z = 2 when 0 < e << [|b|| = 1.

Table 1 shows the number of iterations required to solve the discrete finite
element system to a moderately high level of accuracy using GMRES with our
parallel implementation of the weakly overlapping DD preconditioner. Results
are presented for a sequence of meshes which represent between one and four
levels of refinement of a coarse tetrahedral mesh containing 768 elements. At
each level of refinement each tetrahedron is subdivided into eight children, as
described in [14]. It may be observed that, as the mesh is refined or the number
of processors (subdomains) is increased, the total number of GMRES iterations
increases only very slowly. It is not clear however whether this increase will be
bounded as the mesh size tends to zero (as is proved in [3] for the symmetric
version).

It is also evident from Table 1 that fewer iterations are required to solve the
test problem when & = 10~2 than when £ = 10~!. A similar observation is made
when solving the problem sequentially using the package described in [12]. (This
package is also used in the parallel preconditioner to solve the system (8) sequen-
tially on each processor.) In this case a preconditioner based upon an incomplete
LU (ILU) factorization of the finite element matrix is used, and this is able to ex-
ploit the weak coupling between neighbouring nodes with a common edge that is
perpendicular to b when the problem is convection-dominated. Hence, although
the discrete problem is more non-symmetric in this case, it turns out to be less
complex to solve in practice. A discussion of the timings for these calculations
follows in the next section.
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Table 1. The performance of the proposed algorithm on the convection-diffusion test
problem for two choices of ¢: figures quoted represent the number of iterations required
to reduce the initial residual by a factor of 10°.

e=10"" e=10""
Elements/Procs.|| 2 4 8 | 16 2 4 8 | 16
6144 3 3 4 5 3 3 4 4
49152 3 4 6 7 3 3 4 4
393216 4 6 7 8 3 4 4 5
3145728 4 7 9 10 4 5 6 6

3 Stabilized Finite Elements for Convection-Dominated
Problems

The example of the previous section suggests that the proposed weakly over-
lapping parallel DD preconditioner works well in practice for three-dimensional
convection-diffusion problems. When these become convection-dominated how-
ever (i.e. 0 < € << ||b]]) it is well-known that the standard Galerkin FEM
becomes oscillatory unless the size of the elements is sufficiently small. In this
section we therefore extend our consideration to the solution of convection-
dominated problems using a more stable finite element technique based upon
streamline-diffusion (see [9], for example, for a full discussion of oscillations and
stabilization using streamline-diffusion).

3.1 The Streamline-Diffusion Method

The standard FEM discretization of (6) on a domain (2 seeks an approximation
up, to u from a finite element space Sy, such that

6/ Yup - Yv d§+/(b-2uh)v dzz/ f(@)v dz (10)
o) o) Q
for all v € Sy, (disregarding boundary conditions for simplicity). This in turn

yields a non-symmetric linear algebraic system, Au = f, for which a typical
entry in A is

s/gm-m dg+/n¢z-<b-z¢j) dz , (11)

where {¢;} is the set of finite element basis functions for Sp,.
The streamline-diffusion approach replaces v in (10) by v + ab - Vv to yield

5/ Yup - V(v + ab-Yv) d£+/(b'2uh)(v+ab'21)) dr =
Q Q

/ f@)(v+ab-Tv)de (12)
(7]

for all v € Sp,.
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Table 2. The infinity norm of the exact error in the two finite element approximations
to (9), the solution of (6), when ¢ = 107>,

Elements||Error 1 (Galerkin FEM)|Error 2 (stabilized FEM) %
6144 1.02 x 1071 2.41 x 1072 0.236
49152 1.01 x 107¢ 2.18 x 1072 0.216

393216 5.22 x 1072 1.74 x 1072 0.333

3145728 1.88 x 1072 8.10 x 1073 0.431

When a = 0 the resulting linear system has a matrix with entries still given
by (11) however a is usually chosen to be greater than zero and proportional
to the mesh size h. This means that the linear system now being solved is even
further from the SPD system analyzed in [3]. Nevertheless, it is possible to apply
the same weakly overlapping domain decomposition preconditioning strategy to
this stabilized problem. This requires only minor modifications to the code used
to produce the results of the previous section (corresponding to the differences
between (10) and (12)). The following results demonstrate that this extension
also works well in practice.

3.2 Numerical Results

In Table 2 we illustrate the improved accuracy of the streamline-diffusion method
when problem (6) is convection-dominated by considering the infinity norm of
the exact error when solving the test problem considered in the previous section.
As expected, we see that the stabilized FEM provides a less oscillatory solution
with a smaller error, and that the relative improvement over the Galerkin FEM
is greatest when the mesh is coarse.

Given that the stabilized method works best for small values of ¢, in Table
3 we show iteration counts for the parallel preconditioned GMRES algorithm
for the cases ¢ = 1072 and ¢ = 10~3. The former permits comparison with the
solution of the discrete Galerkin equations of Table 1 (there is little change in the
iteration counts), whilst the latter demonstrates the effectiveness of the solver
for even smaller ¢. In each case the effectiveness of the preconditioner is again
demonstrated in terms of the small numbers of iterations required (although
exact iteration counts do depend upon the precise domain decomposition used).

3.3 Parallel Performance

The calculations described in Tables 1 to 3 were performed on a SG Origin
2000 computer which has a non-uniform memory access (NUMA) architecture.
The non-uniform nature of the memory access means that timings of a given
calculation may vary significantly between runs depending upon how memory
has been allocated. For this reason the timings quoted in Table 4 (for solving the
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Table 3. The performance of the proposed algorithm on the stabilized convection-
diffusion test problem for two choices of &: figures quoted represent the number of
iterations required to reduce the initial residual by a factor of 10°.

e=10"" e=10"°
Elements/Procs.|| 2 4 8 | 16 2 4 8 | 16
6144 2 3 3 3 2 3 3 3
49152 3 3 4 4 3 4 4 4
393216 3 4 4 5 3 4 4 4
3145728 4 5 6 6 3 4 4 4

Table 4. The performance of the parallel solver for both the Galerkin and stabilized
FEM systems when solving the test problem with ¢ = 1072. The solution times are
quoted in seconds and the speed-ups are relative to the best sequential solution time.

Galerkin FEM Streamline-Diffusion FEM
Processors 1 2 4 8 16 1 2 4 8 16
Solution Time||735.5|507.9|359.9|237.5|142.9||731.6|505.7|348.7|235.6|144.7
Speed-Up — |1.45(2.04|3.10 |5.15| — |1.46|2.10 | 3.11 | 5.06

test problem in the case € = 102 using the finest mesh of 3145728 tetrahedral
elements) represent the best time that was achieved over numerous repetitions of
the same computation. Furthermore, there are numerous parameters within the
algorithm that affect the overall performance, such as the accuracy to which the
systems (8) are solved on each processor at each iteration, or the drop tolerance
that is used in the sequential ILU preconditioner ([12]) that is used for these
systems. Our choices for these parameters, determined empirically, may well
also contribute to some of the variation between the two sets of results.

Furthermore, there are additional reasons why it is not feasible to obtain
efficiencies close to 100% for these calculations. Note that the preconditioner is
algebraically different for each choice of p and that, when p > 1, the sequential
solution time is not generally as good as that for the best available sequential
algorithm (for which we use [12]). Also, the algorithm itself depends upon the
domain decomposition that has been used and so far we have only applied simple
variants of recursive coordinate bisection. This could well be improved signifi-
cantly with further research, although it is unlikely that the efficiency will be
such that the use of extremely large numbers of processors will be viable.

4 Conclusions

We have described the parallel implementation of a weakly overlapping domain
decomposition preconditioner and successfully applied it to the finite element
solution of convection-dominated PDEs in three dimensions. Provisional results
show that the algorithm is fast and that the parallel implementation provides
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moderate speed-ups on up to sixteen processors. Extensions to a wider variety
of convection directions to that considered here yield similar results and further
improvements to the the mesh partitioning are likely to enhance the parallel per-
formance. The work should also be extended to convection-dominated systems,
which also arise frequently in scientific modeling.
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