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Abstract Images of visual scenes comprise essential features important for

visual cognition of the brain. The complexity of visual features lies at different

levels, from simple artificial patterns to natural images with different scenes. It

has been a focus of using stimulus images to predict neural responses. However,

it remains unclear how to extract features from neuronal responses. Here we ad-

dressed this question by leveraging two-photon calcium neural data recorded from

the visual cortex of awake macaque monkeys. With stimuli including various cat-

egories of artificial patterns and diverse scenes of natural images, we employed

a deep neural network decoder inspired by image segmentation technique. Con-

sistent with the notation of sparse coding for natural images, a few neurons with

stronger responses dominated the decoding performance, whereas decoding of ar-

tificial patterns needs a large number of neurons. When decoding natural images

using the model pre-trained on artificial patterns, salient features of natural scenes

can be extracted, as well as the conventional category information. Altogether,

our results give a new perspective on studying neural encoding principles using

reverse-engineering decoding strategies.

1 Introduction

In daily life, a substantial body of sensory information is transferred to the brain,

which is then processed by neurons to generate a series of coping behaviors.

Among these various types of sensory sources, vision is arguably the dominant

contributor to the interaction between the external environment and brain. Under-

standing how the brain detects, interprets, and responses to visual information rep-

resenting the external environment is a major question in neuroscience (DiCarlo

and Cox, 2007; DiCarlo et al., 2012). It is also a critical obstacle to the devel-

opment of artificial vision used by intelligent machines (Yu et al., 2020). Funda-

mentally, two types of computational approaches have been proposed. From the

encoding perspective, the goal is to predict the neural responses to arbitrary visual

stimuli. From the decoding view, instead, the purpose is to restore the original

stimuli from neural responses as similar as possible. Most of the researches treat

these two aspects separately. However, it is meaningful to leverage a decoding

approach to analyse some characteristics of the neural encoding, such as the no-

tation of neural sparse coding in primary visual cortex (V1) (Tang et al., 2018b;

Carlson et al., 2011; Vinje and Gallant, 2000), where sparse encoding of neural

scenes has been investigated in detail. Yet, it remains unclear what types of visual

features can be extracted from neural responses, beyond the simple decoding of

visual categories (Yamins and DiCarlo, 2016; Zeiler and Fergus, 2014; DiCarlo

et al., 2012).

For the neural decoding problem, there have been two subdivided targeted

questions: classification of a finite set of pre-defined stimuli, or reconstruction

of pixel-by-pixel images. Notably, the pixel-level reconstruction is more chal-
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lenging. Visual reconstruction from neural signals has been studied over many

years. The widely used neural signal data is functional magnetic resonance image

(fMRI) activity of the visual cortex (Naselaris et al., 2009; Nishimoto et al., 2011;

Qiao et al., 2018; Thirion et al., 2006; Wen et al., 2018), while most recently,

fine neural signals have been studied, including neural spikes (Botella-Soler et al.,

2018; Gollisch and Meister, 2008; Parthasarathy et al., 2017; Marre et al., 2015;

Zhang et al., 2020; Brackbill et al., 2020), and calcium imaging signals (Yoshida

and Ohki, 2020; Garasto et al., 2019, 2018).

Commonly assumed, the patterns of neural activity in V1 encode local orien-

tation components of high-order patterns (Jones and Palmer, 1987; Livingstone

and Hubel, 1984; Movshon et al., 1978; Hubel and Wiesel, 1959). In the standard

hierarchical model of visual object recognition, V1 neurons are often thought as

simple oriented feature detectors, whose elements are then taken conjunctions of

by the subsequent visual areas in the brain. The overall hierarchical architecture

theory for object recognition is the inspiration for convolutional neural networks

in recent deep learning technologies (LeCun et al., 2015; Riesenhuber and Poggio,

1999). However, many studies argued about the V1 neuronal coding mechanism.

It was suggested by some studies that V1 neurons may also encode complex fea-

tures (Slllito et al., 1995; Hegdé and Van Essen, 2007). The barriers of V1 neuron

coding research are partially because of the difficulty of modeling or interpret-

ing their responses under more complicated stimuli, e.g., natural scenes (Victor

et al., 2006; Vinje and Gallant, 2000). Moreover, possible biases and a limited

number of tested stimuli in neural sampling experiments impede a comprehensive

understanding of the V1 neuronal functions (Olshausen and Field, 2005; Caran-

dini et al., 2005). Benefiting from recent developments in larger-scale two-photon

calcium imaging techniques (Denk et al., 1990; Li et al., 2017), researchers are ca-

pable of characterizing the V1 neuronal coding more thoroughly (Li et al., 2017;

Olshausen and Field, 2005). This unique advantage of calcium imaging allows

people to investigate the selectivity and specificity of V1 neurons more compre-

hensively by testing an extensive set of visual shapes and features (Tang et al.,

2018a,b).

Decoding certain features from neural responses, such as faces, has been in-

vestigated intensively on monkeys (Chang and Tsao, 2017; Chang et al., 2021;

Koyano et al., 2021) and humans (Guntupalli and Gobbini, 2017; Wang et al.,

2021). However, it is also important to know how the visual neurons can de-

code more general features of artificial patterns and natural images. In this study,

leveraging neural responses of two-photon calcium imaging recorded in V1 from

awake macaque monkeys under a rich set of images, including various categories

of artificial pattern (AP) and complex natural scene (NS) images (Tang et al.,

2018a,b), we investigated neural coding from a perspective of decoding pixel-

level visual features from neural responses and compared the different encoding

mechanisms of these two stimulus categories respectively. We first proposed an

end-to-end model inspired by deep learning neural networks, especially the image

segmentation U-net, to restore the origin stimulus images from neural responses.

We then tested the performance of our model on decoding of AP and NS. For

more comprehensive inspection, we used six different metrics for image qual-
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ity estimation and found that our model can achieve state-of-the-art performance,

compared to other models. To find out the effect of sparse coding in V1 neurons,

we conducted a series of examinations over AP and NS, with different number of

neurons chosen by two different ways: randomly choosing and sorted according

to neural response. The reconstruction performance is increasing with more cells

for AP, but not for NS. Particularly, the decoding ability of NS is saturated with

a small set of cells. When separating both AP and reconstructed NS images into

different categories according to the feature of simple patterns, we found the de-

coding performance is in line with the category, such that the category with less

complexity of visual features has better reconstruction results for both AP and

NS images. Furthermore, with a subset of cells that have responses to both AP

and NS images, we intended to discover some connections between AP and NS

responses. We cross validated the decoding in three scenarios: testing decoding

of all images with models trained on AP, NS, and both. Remarkably, the model

pre-trained with AP can capture the salient feature of natural images manifesting

the category information. Additionally, we corroborated our results illustrating

the low-dimension distribution of both types of images. Taken together, our re-

sults provide new insights into decoding pixel-level visual features from neural

responses. Besides accurate reconstruction of images with individual pixels, our

model grants a new perspective of reverse-engineering approaching to visual cod-

ing, and serves as a novel way of quantifying visual accuracy for visual prostheses

of brain-machine interfaces and other neuromorphic vision systems.

2 Methods

2.1 Stimulus images

There are two sets of stimulus images used for neural calcium imaging recordings:

artificial pattern (AP) and natural scene (NS) images. In experiments, a total of

9500 artificial patterns were presented to awake monkeys. Patterns were generated

from 138 basic prototypes with different rotations and locations within receptive

fields of neurons.

2.2 Neural response

The calcium imaging data used in this work were collected from layer 2/3 of

awake macaque monkeys, with single-cell two-photon fluorescence microscope.

Experimental details of data collection can be found in the original studies (Tang

et al., 2018a,b). We denote rnt,i as the neural response of the n-th neuron for t-th
stimulus in the i-th trial (t = 1, ..., 5), rnt to denote the average response over

trials, and r⃗nto denote all the average neural responses for this neuron as a vector.

Specifically, we have n = 1,...,1142, t = 1,...,5000 for AP, and n = 1,...,1225, t
= 1,...,2250 for NS. Based on the previous work (Tang et al., 2018a), neurons

whose maximum trial-averaged responses were not above 0.5(max r⃗n ≤ 0.5 were

discarded as their responses were too weak and might be unreliable. When sorting

4



neural responses, we ranked neurons in terms of max r⃗n. As is shown in Fig 5A,

the distributions of max neural responses under AP and NS stimuli are different

and respectively sensitive to AP or NS stimuli.

Visual stimuli were presented to the appropriate retinotopic position in the vi-

sual field of the subject monkey. The subject monkey performed a fixation task

while stimuli were displayed. Every AP stimulus was repeated five to six times,

and NS stimulus was repeated three times. All V1 neurons’ responses were col-

lected during one stimulus presentation as follows: a blank screen for one second,

and another second for stimuli display. To quantify every activated cell’s response,

the ratio of fluorescence change (∆F/F0) was computed through the differential

image of two periods, where ∆F = F −F0. F0 is the neural activity during blank

screen, and ∆F is the fluorescence activity during stimulus display in the trial. Fi-

nally, 1142 activated cells for AP and 1225 activated cells for NS were identified

in the subject monkey. All these cells were used for training and testing models

within their stimulus images. Meanwhile, 599 cells were found both activated in

AP and NS experiment process, which were used for training and testing models

across AP and NS images.

2.3 Decoding models

We developed a deep neural network to decode the V1 neuron responses. To re-

construct AP and NS visual stimuli, the decoding process consists of two stages:

the signal converter part sampling neural signals to pixels, and the U-Net part usu-

ally called as auto-encoder. The input calcium signal is an array consisting of M
vectors, each length is N , where M is the number of stimuli and N is the number

of all activated neurons. We first used a multi-layer perceptron to convert the in-

put calcium signal into a vector of the same size as the reconstruction target visual

stimuli, so as to map every cell response to every pixel in reconstruction images.

In our experiments, the central region of images is taken as reconstruction object,

which is ensured to be covered within monkey’s receptive fields. Then, in the U-

Net part, the converted vector is used as input, and after an auto-encoder similar to

U-Net, the reconstructed visual stimulus is generated. Inspired from a typical full

convolutional network usually used for image segmentation, in the first half of the

autoencoder, the input vector is convolved and down-sampled to fully extract the

signal features. In the second half, the network starts upsampling and convolution,

and finally recovers a reconstructed image of the same size as the visual stimu-

lus. It should be noted that in the network structure of the autoencoder part, the

’skip connection’ structure similar to U-Net is added. Skip connections between

network layers of different depths can merge the low-level features (shallow net-

work) and high-level features (deep network) in the process of reconstruction (see

Fig 1), which can be both captured in visual stimuli. As a result, more details and

accurate positions can be decoded under the condition of small datasets. Accord-

ing to the characteristics of calcium signal and visual stimulus in our data, we used

three skip connections between different layers of the network structure. Besides,

In order to ensure smooth gradient propagation, we used the batch normalization

layer behind activation layer following convolution operation. Spatial dropout
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layer was also incorporated in U-net part for preventing overfitting. In order to

optimize our network, we used the back-propagation algorithm to perform end-

to-end training on the calcium signal responses and corresponding visual stimuli,

and the objective function is the mean square error (MSE). Benefiting from the

end to end feature, our decoder can decode visual stimuli directly from the neural

responses, without intermediate processing.

The presented image sizes in the experiments of AP and NS are different.

While AP stimuli are 160 * 160 pixels, NS stimuli are 236 * 236 pixels. To

ensure that reconstructed stimuli are covered by the receptive fields of subject

monkey’s V1 neurons, we cropped the input stimuli into the central region of

images, i.e., 40*40 for artificial patterns and 60*60 for natural stimuli. Then, our

decoding model structure was modified at layer level according to two datasets.

For cross-stimulus decoding, we cropped images into a size of 60 * 60. For the

signal converter part, the input shape was set as the neuron response array size

in respective dataset. Number of neurons in middle dense layer is 512, followed

by corresponding batch normalization, activation, and dropout operations. The

output shape of the signal converter was set as the target reconstructed image size,

i.e., 1600 for AP and 3600 for NS. For the U-Net autoencoder part, the whole

information processing procedure can be split into two stages. In the first stage, we

used convolution and down-sampling to process and decrease the size of the input

with the target-image size. The kernel sizes of four layers in the first stage are

(40,40,64), (20,20,64), (20,20,128), (10,10,256) for AP, (60,60,64), (30,30,64),

(30,30,128), (15,15,256) for NS. Another four layers in the second stage coincide

with the reversed order of structure in their respective first stage. The function of

the second stage is to recover the down-sampled images to the target reconstructed

size through up-sampling. From introduced structure change above, we can see

the stride operation size in our model is (2,2) for down and up sampling. The

down-sampling operation in the first stage is realized by MaxPooling2D function

while the up-sampling operation in the second stage is realized by Upsampling2D

function in tensorflow. ReLU is chosen as the activation function in our overall

model structure. All convolution layers in our model are followed by a batch

normalization layer. Besides, in the middle layers (the ones of smallest kernel

size), SpatialDropout2D layers were added behind the batch normalization layer

so as to ameliorate overfitting.

We trained both AP and NS model with Adam method and batch size of 80 to

update network parameters, while the learning rate of AP is 0.003, NS is 0.0001.

The training epochs of AP are controlled by early-stop mechanism, i.e., when the

validation error (MSE in test set) is not decreasing, the model parameter update

will be stopped. While the training epochs of NS is artificially controlled accord-

ing to the reconstruction result, for the reason that the convergence of NS model is

difficult to reach. The model was implemented with Keras deep learning library,

Tensorflow as backend, employed on Nvidia v100 super graphics card. Learn-

ing rate-customized Adam method was used to train the model (Kingma and Ba,

2017).

We compared our model with several state-of-the-art neural decoding models.

1) Spike-Image Decoder (SID) (Zhang et al., 2020): The SID implemented
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end-to-end training with reconstruction constraints. The experimental data used

in its original article is spike trains from retinal ganglion cells in the salamander.

2) Deep Generative Multi-view Model (DGMM) (Du et al., 2019): The DGMM

used two view-specific generators with a shared latent space. Its original paper

used this method to reconstruct visual stimuli from the human brain activities

measured by functional magnetic resonance imaging (fMRI).

3) Conditional Generative Adversarial Network (CGAN) (Shen et al., 2019):

The CGAN is a variant of generative adversarial networks (GAN) (Dosovitskiy

and Brox, 2016). The fMRI data vector was used as the condition to reconstruct

the corresponding stimulus image, which would be generated through the genera-

tor network in CGAN.

4) Bayesian canonical correlation analysis (BCCA) (Fujiwara et al., 2013):

BCCA is a multi-view linear generative model designed for neural encoding and

decoding, in which mappings between a set of pixels in a visual image and a set

of voxels in an fMRI acitivity pattern are estimated.

2.4 Image reconstruction metrics

In neural stimulus reconstruction, it is not always easy to perceive the differences

between reconstructed images and original stimuli. For this reason, we evalu-

ated the quality of reconstruction using different image assessment metrics. Six

full-reference metrics were applied to compare reconstructed images with original

images. Referring to development of image quality assessment field, this set of

metrics would evaluate the similarity from different aspects. Individual character-

istics of six metrics are briefly introduced as follows.

1) Mean Square Error (MSE): MSE equals the final expectation of the squared

error between desired and original values. Given an original image I and its re-

construction K, MSE is defined as:

MSE =
1

mn

m−1
∑

i=0

n−1
∑

j=0

[I(i, j)−K(i, j)]2 (1)

2) Peak Signal-to-Noise Ratio (PSNR): The PSNR (unit is decibel) is defined

as:

PSNR = 10 · log10

(

MAX
2

I

MSE

)

(2)

MAXI is the maximum possible pixel value of the original image, that is 255.

Besides, the larger PSNR, the better image quality, and the range of PSNR is not

limited.

3) Structural Similarity Index Metric (SSIM) (Zhou Wang et al., 2004): SSIM

is designed based on the assumption that human visual processing system is able

to extract structural information in scenes highly adaptively. SSIM index is calcu-

lated on various windows of an image. Luminance (l), contrast (c), and structure

(s) are included when measuring two windows x and y. SSIM value is in the

range [0, 1]. The larger SSIM value is, the more similar the reconstructed image
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is with the original ones.
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l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1

c(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2

s(x, y) =
σxy + c3
σxσy + c3

(3)

µx and σ are the mean and the variance for the corresponding window. c1 =
(k1L)

2 and c2 = (k2L)
2 are the constant, c3 = c2

2
. L is located in the range of

pixel value range, i.e., [0 255]. k1 = 0.01 and k2 = 0.03. We can get SSIM

equation as

SSIM(x,y) = [l(x,y)]α · [c(x,y)]β · [s(x,y)]γ (4)

where α, β and γ equal to 1.

4) Most Apparent Distortion (MAD) (Larson and Chandler, 2010): MAD at-

tempts to rate image quality from two strategies: detection-based perceived distor-

tion in high-quality images, appearance-based perceived distortion in low-quality

images. A combination of these two measures is thought effective in predicting

subjective ratings of image quality. MAD should be a nonnegative value. The

larger MAD value is, the worse the image quality is. The equation is given by:

MAD = (ddetect )
α (dappear )

1−α
(5)

ddetect and dappear are measures by specific processes for distortion in high-quality

and low-quality image levels, respectively. The weight α ∈ [0, 1] is chosen ac-

cording to overall level of distortion.

5) Feature Similarity Index (FSIM) (Zhang et al., 2011): FSIM is inspired

from the fact that human visual system (HVS) understands an image according to

its low-level features. Specifically, the phase congruency (PC), a dimensionless

measure of the significance of a local structure (Morrone et al., 1986), is used

as the primary feature in FSIM. Considering the contrast invariance property of

PC, the image gradient magnitude (GM) is employed as the secondary feature in

FSIM. The range of FSIM value is the same as SSIM. FSIM is defined as:

FSIM =

∑

x∈Ω
SL(x) · PCm(x)

∑

x∈Ω
PCm(x)

(6)

where SL(x) = [SPC(x)]
α
· [SG(x)]

β
, usually SL(x) = SPC(x) · SG(x) for sim-

plicity. SL(x) represents the similarity at each location x combining PC similarity

SPC(x) and GM similarity SG, whose computation process is omitted here for

briefness. PCm(x) = max (PC1(x), PC2(x)) is used as weight for the impor-

tance of SL(x) in overall similarity between two images.

6) Gradient Similarity (GSM) (Liu et al., 2012): Gradients convey important
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visual information and are crucial to scene understanding. Structural and contrast

changes can be captured through gradients. In addition, luminance changes affect

image quality a lot. GSM, whose value is lying in [0, 1], integrates changes in

luminance and contrast-structure via an adaptive method to obtain overall image

quality score. The larger GSM value is, the better reconstructed image quality is.

The proposed gradient similarity is defined as:

g(x, y) =
2gxgy + C

g2x + g2y + C
(7)

where gx and gy are the gradient values for the central pixel of image x and y. C
is the small constant to avoid the denominator being zero.

3 Results

3.1 Reconstruction stimulus images from two-photon calcium

neural signals

We first developed a deep neural network model to reconstruct stimulus images

from two-photon calcium imaging neural signals recorded from layer 2/3 V1 neu-

rons in awake macaque monkeys (Tang et al., 2018b). The traditional CNN uti-

lization is mostly inclined to decision-oriented tasks, of which the purpose is the

extraction of key knowledge. On the contrary, the reconstruction is a process

restoring the original information, where the extracted features need to be supple-

mented. The U-Net structure has been widely used in medical image segmentation

(Ronneberger et al., 2015), providing high-accuracy pixel-level segmentation. In-

spired by this, we added the skip connection in our decoding model, allowing the

latter layers to have access to the more complete information in the former layers.

As illustrated in Fig 1, our model can be mainly regarded as two parts: the sig-

nal converter and the U-Net autoencoder. For the signal converter part, the input

shape was set as the neuron response array size in the respective dataset. The out-

put shape of the signal converter was set as the target reconstructed image size.

For the U-Net autoencoder part, the whole information processing procedure can

be split into two stages. In the first stage, we used convolution and down-sampling

to process and decrease the size of the input with the target-image size. Another

four layers in the second stage coincide with the reversed order of structure in

their respective first stage. The function of the second stage is to recover the

down-sampled images to the target reconstructed size through up-sampling (see

Methods).

The experimental data were collected in a previous study (Tang et al., 2018b),

including two sets of visual stimulus images: simple artificial pattern (AP) and

complex natural scene (NS) images (see Methods). AP dataset has 5000 im-

ages and 1142 activated neurons, while NS dataset has 2250 natural images and

1225 activated neurons. We divided both datasets into 9:1, 90% for training

and 10% for test. We compared the capability of reconstruction with our model
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FCNN

Conv + BN Conv Reshape Pooling Up-sampling Skip connection Concatenate

Concatenate 3:

Concatenate 2:

Concatenate 1:

Concat 1

Concat 2

Concat 3

Feature fusion:

Convolution

Stimulus:

Up- sampling

Reconstructed:

Input: 

Ca data

Output: 

Stimulus image

Figure 1: Illustration of reconstruction network model. The input calcium re-

sponse vector is converted to one vector whose length is the product of length

and width of stimulus images, through a multi-layer fully connected neural net-

work (FCNN). The output is then transferred to U-Net like autoencoder. Cubes of

different colors indicate different feature maps through different operation layers

in the network for convolution (Conv), batch normalization (BN), spatial dropout

and concatenate layers. The output of autoencoder represents the stimulus image

reconstruction. Notably, three skip connections were employed during the autoen-

coder process. Respective features at symmetrical layers are merged through skip

connections (Concatenate 1,2, and 3 indicating three feature mergence). Using

a strip image for illustration, the low-level features (shallow network) and high-

level features (deep network) during reconstruction complement each other for a

better reconstruction effect.

over AP and NS datasets with several state-of-the-art neural decoding models:

Spike-Image Decoder (SID) (Zhang et al., 2020); Deep Generative Multi-view

Model (DGMM) (Du et al., 2019); Conditional Generative Adversarial Network

(CGAN) (Shen et al., 2019); and Bayesian canonical correlation analysis (BCCA) (Fu-

jiwara et al., 2013). Out of which, SID is a recent model developed to reconstruct

stimulus images from neural spiking signals, which also works well for fMRI sig-

nals (Zhang et al., 2020). Fig 2 shows the outcome decoding results of different

models. To quantify the performance of image reconstruction, we used six differ-

ent metrics (MSE, PSNR, SSIM, GSM, FSIM, and MAD, see Methods) for image

quality assessment as a reconstruction index. Besides common measures of MSE,

PSNR and SSIM, we selected another three more novel measures (GSM, FSIM,

and MAD), since that it is still debated that which metric gives a more reasonable

and accurate description of image quality (Dosselmann and Yang, 2011; Pedersen

and Hardeberg, 2012; Hore and Ziou, 2010; Wang et al., 2002). With the normal-

ized values of these metrics (Fig 2B, see the raw values in Table S1 and Table S2),
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Figure 2: Reconstructed stimuli and indices of reconstructions from differ-

ent neural decoders. (A) Illustration of reconstructed artificial pattern (left) and

natural scene(right) images through different neural decoding models. (B) Radar

plots of reconstruction indices for artificial pattern (left) and natural scene (right)

from different decoders. In each radar plot, each polar axis shows one metric with

the outer coordinate indicating better performance.

our current model produces better reconstructions than the compared methods for

both AP and NS images, whereas SID is the second best model. In addition, re-

construction in AP test set shows our model is more accurate in artificial shapes.

Because of the complexity of natural images and relatively small samples of NS

dataset, reconstructions of our model in NS test set are not so clear. Nevertheless,

our model still outperforms other methods. Meanwhile, some natural textures,

e.g., the zebra stripes shown in Fig 2A, are relatively better reconstructed. These

results imply that our current model has a capability for reconstructing pixel-level

images using calcium imaging neural signals. Furthermore, we conducted abla-

tion experiments showing that better performance was achieved by skip connec-

tions compared to the networks without them (Table S3).

Recent studies suggested low-pass spatial features of stimulus images could be

efficiently decoded through a neural decoder of retinal spikes (Kim et al., 2020),

where the neural decoder resembled a low-pass image filter. Here we also exam-

ined this relationship between our decoded images and low-pass filtered ones. We

processed the original natural images in the AP and NS dataset through low-pass

filters at different frequencies, in which the low frequency, such as 1 Hz, filter

would blur the details of images while keeping the global feature (Fig 3A). Us-

ing reconstructed images as the reference images, we quantified the similarity and

computed the image quality metrics between them and low-pass filtered images.
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Figure 3: Frequency low-pass filter and V1 neural decoding. (A) Illustration

of artificial patterns and natural images after frequency low-pass filtering. The

corresponding frequency values were labeled on the left. Original images were

put in the first row, and reconstructed images through our neural decoder were put

on the right side. (B) Image reconstruction metric change through low-pass fre-

quency reference images. Different neural decoders were indicated with different

colors. Values on the x-axis are the corresponding low-pass frequencies.

The change course of six metrics over a range of filter frequencies revealed that the

reconstructed images indeed match to filtered images with a low frequency of 1-3

Hzs, depending on the decoding models. Notably, these tendencies also separate

different decoding models: our current model and SID model have the highest per-

formance and behave closely in both AP and NS images. DGMM is close to ours

and SID in NS images only, while CGAN and BCCA are significantly different.

These analyses suggest that different decoding models may capture different sets

of features, similar to the way different details of image textures or contexts are

captured by different image assessment metrics. We will leave out other models,

and focus on the behaviours of our current model in detail below.

3.2 The effect of sparse encoding on reconstruction

It is generally believed that the number of input samples influences decoding mod-

els. Particularly for the model based on deep learning is highly demanding on

input data. For decoding of stimulus in neuroscience, the number of cells has also
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Figure 4: Image reconstruction using different numbers of cells. (A) Recon-

structed artificial patterns with different numbers of cells selected randomly (left)

and sorted according to their maximum response to all stimuli (right). (B) Change

of the reconstruction metrics over different cell numbers used for decoding. The

solid lines are the average metric values over all 10 runs, and the spread areas are

the standard error. (C) (D) Similar to (A) (B) but for natural scene images. For

comparison, the same scale was used for visualizing metric values of both types

of stimulus images.

been playing a role in the decoding performance (Zhang et al., 2020; Yoshida and

Ohki, 2020) and more cells are better for improving the decoding outcome. Here,

we tested the reconstructions using different number of cells. Our model used

the input calcium signal as an array comprising M vectors whose length is N ,

where M is the number of stimuli and N is the number of all activated neurons,

where N is 1142 in AP and 1225 in NS. In the all-cell decoding described above,

N remained unchanged. We now changed N on different scenarios and examine

the effect of decoding. The simplest scenario is to use a different number of cells

chose randomly from all cells. Another scenario is that we first sorted all activated

cells according to their responses over all stimulus images from high to low. The

resulting reconstructions and metrics of AP and NS images in both scenarios are

shown in Fig 4. For AP images, the reconstructed image quality grew better as

the number of cells increased, over both random and sorted cell scenarios. The

change course of all six metrics in Fig 4B shows that metrics are increasing as

the cell number increased and saturate when there are around 500 cells used. In

contrast, for NS images, the performance metrics are not changing significantly

over a large range of cell numbers considering the vertical scale in Fig 4. Specifi-

cally, metrics of the overall random case were not good as the sorted case. But in

SSIM/PSNR, the reconstructed image quality grew better as the number of cells

increased while fluctuated for the sorted case.

Compared to the random case, metrics have shown that the sorted cell case

attained a better reconstruction than the random ones. To further examine this in
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Figure 5: Reconstruction metrics decoded by 200 cells with different settings.

(A) The distribution of maximum responses over all stimulus images: artificial

pattern (orange) and natural scene (blue). Bottom 200 cells are indicated by light

colored vertical lines; Top 200 cells by dark. (B) Reconstruction metrics for ar-

tificial pattern images over 200 cells in three conditions: randomly selected, top

200, and bottom 200. The solid lines show the average metric values over all 10

runs, and the shadow area are the standard error. (C) Similar to (B) but for natural

scene images.

detail, we refine three more scenarios in a more detailed input range: random 200

cells, sorted all cells to utilize top 200 cells with stronger responses and bottom

200 cells with weaker responses. The distribution of neural maximal responses

to any of AP and NS stimulus images shows that AP generates weaker responses

while NS triggers stronger responses, shown in Fig 5A, consisting with the view

that V1 neurons are more selective to respond to natural scenes (Yoshida and

Ohki, 2020; Tang et al., 2018b; Yoshida and Ohki, 2018). The change course of

all six metrics in this refined scenarios revealed a slightly different between neural

encoding of AP and NS. For AP images, metrics are rather interpolated between

three cases: Top 200 is the best and Bottom 200 is the worst, while Random 200

is ranked between these two. This shows that V1 neural responses to AP are

distributed over all cells, e.g., a population code. In contrast, for NS images, Top

200 is the best, while the other two cases are intervened. Thus, cells with stronger

responses contain more information for decoding. This is a sign that V1 neurons

are more selective to decoding natural scenes, consisting with the notation that V1

neurons are sparse coding for natural images (Tang et al., 2018b). These results

suggest that our decoding model can capture the characteristic of neural sparse
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Figure 6: Image reconstruction with cells responded to both artificial pattern

and natural scene. (A) Three example cells show diverse responses to stimuli of

100 AP and 100 NS images. (Right) The distribution of 599 cell responses with

AP and NS image stimuli. (B) Reconstructed AP images using the models trained

by AP images (top), NS images (middle), and mixed images. (C) Similar to (B)

but for NS images.

encoding and provide a way to differentiate population coding from sparse coding

with a given set of stimulus images.

3.3 Salient features of natural scenes revealed by AP-trained

models

With the notation of distinguished profiles of neural encoding of AP and NS, we

further investigated the detailed visual features encoded by neurons using our de-

coding model. The benefit of our dataset is that there are a subset of neurons

recorded under both AP and NS images. It enables us to have access to the re-

sponses of the same V1 cells over different types of stimuli. We identified 599

cells both activated to AP and NS images and exploited how these cells encode

different visual features combining with different decoding scenarios. The num-
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ber of stimuli in the AP and NS dataset used here is the same as above, while we

only focus on these selected cells for decoding. Fig 6A shows the overview of

neural responses to AP and NS images with three typical cells showing no prefer-

ence between AP and NS (Cell 1) and more activated for AP (Cell 2) or NS (Cell

3). The population plot with mean responses to either AP or NS shows that cells

have slightly more response to AP images.

We then considered three cases of either training the decoding model using

AP or NS, or both mixed, while tests were done by using all the mixed images.

Not surprisingly, the model trained by mixed AP and NS generates generated

both AP and NS images similar to those trained by each type of images (Fig S1).

Interestingly, reconstructions of NS with the model trained by AP reveals a set

of features resembling to salient features of that particular natural scene (shown

in Fig 6B and C). For instance, the natural image whose content is zebra stripes

are in line with similar artificial patterns. However, reconstructions of AP with

the NS-trained model yield over-representation of image textures and far from the

targeted APs.

To further characterize these effects, we categorized all AP images into six

classes: composition (CO), cross (CX), orientation (OT), curvature (CV), and cor-

ner (CN), according to their specific textures. Then using the salient features of NS

images obtained by the decoding model trained by AP, we then classified all re-

constructed NS images into the same five categories through dimension-reduction

t-SNE (t-distributed stochastic neighbor embedding) technique (Van der Maaten

and Hinton, 2008) (Fig 7), which has been utilized in neuroscience studies (Wang

et al., 2021; Xu et al., 2021). In the end, both types of images were separated into

these five categories. In this way, the natural image whose content contains, for ex-

ample, a sharp shape has generated a CN (corner) type artificial pattern. This is in

line with the encoding of local low- and high-order features by V1 neurons (Tang

et al., 2018a). When measuring the reconstructed AP images using different met-

rics, different AP categories have different levels of metrics (Fig 7B, see more

metrics in Fig S2). Particularly, as the level of scene complexity decreases, from

the highest CO, to lower ones: CX, OT, CV, and CN, reconstruction metrics show

the same trends as scene complexity, e.g., CO has the worse image quality than

OT. Similarly, different categories of NS images also have distinguished recon-

structed metrics (Fig 7C and Fig S2). Altogether, our model reveals the properties

of neural encoding from the perspective of neural decoding. These results show

that our decoding model provides a way to characterize visual features embedded

in images pixels through reading out the code using neural responses.

3.4 Low-dimensional image distribution

Due to the difficulty of direct distinction of reconstructed NS images, we com-

pared the low-dimensional embedding representations of NS and reconstructed

NS images using the t-SNE technique. For the illustration clarity, 225 images (10

percent of all images) were randomly chosen from the NS dataset. Then these 225

NS images and the corresponding reconstructions were pooled and visualized by

t-SNE. We found that their low-dimensional embedding distributions were close
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to each other (Fig 8A), and the main visual patterns of some reconstructed NS im-

ages are similar to their respective original NS ones, in different regions of both

distributions. This observation corroborates the effectiveness of our NS recon-

struction.

We then studied the embedding result when AP and NS images are all pooled

into the t-SNE dimension reduction process. Specifically, to ensure the NS im-

ages can be sufficiently surrounded by the AP images as many as possible, 225

randomly chosen NS images and all 5000 AP images were pooled. As seen in

Fig 8B. The large number of AP and NS images are respectively clustered with

their own categories. Although the AP images are very different with the NS

ones over the image complexity, there are still two close clusters formed with AP

and NS images shown by some examples of the AP and NS images from these

two clusters (Fig 8B). Among the images in each cluster, the AP and NS images

stay close, whose salient features are similar, similar to the illustration in Fig 7A.

Taken together, the t-SNE dimension reduction corroborated our analysis of de-

coding AP and NS connections.
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Figure 7: Salient features of natural scenes revealed by AP-trained models.

(A) (Left) Examples of reconstruction of NS images with a model trained with AP

images for five categories (CO, CX, OT, CV, and CN). (Right) Reconstructed NS

images are clustered into the same categories visualized by t-SNE. (B) Change

of metrics of reconstructed AP images on five categories over cells. The solid

lines are the average metric values over all 10 runs, and the shadow areas are the

standard errors. (C) Similar to (B), but for reconstructed NS images.
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Figure 8: Distribution of image structures using t-SNE. (A) The persevered

low-dimensional distribution of NS images and reconstructed NS images. (Left)

The NS images visualized by t-SNE technique. (Middle) Example images of

both types. (Right) The reconstructed NS images visualized by t-SNE. (B) The

persevered low-dimensional distribution of the original NS and AP images shown

by t-SNE (red for AP, blue for NS). Example images on left and right chosen from

the corresponding clusters formed by both AP and NS images.
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4 Discussion

In this work, leveraging a decoding model with a set of image reconstruction met-

rics, we analysed neural coding of visual features using a large scale two-photon

calcium signal data collected in awake macaque monkeys. We found that a sparse

set of V1 neurons with high responses contributed more valuable information than

randomly selected neurons. We also decoded a latent relationship between arti-

ficial patterns and natural scenes that is not easily perceptible. The responses of

natural images in V1 neurons contain salient features of complex scenes, which

can be revealed by the reconstructed NS images through a AP-trained decoding

model. These results suggest a valuable approach for studying of neural encoding

from a perspective of neural decoding.

4.1 Decoding models

In the last decades, varied methods of neural decoding of stimulus images have

been developed. Traditionally, a neural decoder can be optimized with linear and

nonlinear statistical methods (Stanley et al., 1999; Marre et al., 2015; Yoshida and

Ohki, 2020; Botella-Soler et al., 2018). Due to the limited representation power of

these structures, the decoding tasks were usually simple or performances were not

so satisfied to reveal pixel-level information from fMRI neural signals (Naselaris

et al., 2009; Fujiwara et al., 2013; Nishimoto et al., 2011).

In recent years, deep learning techniques, especially deep neural networks

(DNNs), are implemented for neural decoding. It was suggested that the DNN

computing has correspondence with biological visual systems (Horikawa and Kami-

tani, 2017; Güçlü and van Gerven, 2015; Wen et al., 2018; Cichy et al., 2016;

Du et al., 2019; Baek et al., 2019,?; Yan et al., 2020; Wang et al., 2021; Zheng

et al., 2021). For neural signals with single-cell resolution, DNNs were used to

reconstruct natural images directly (Parthasarathy et al., 2017; Zhang et al., 2020;

Brackbill et al., 2020). The concept of simple and complex cell in V1 has given

an indication to computation model development from a micro view (Fukushima

and Miyake, 1982; Riesenhuber and Poggio, 2000), e.g., the widely used CNN

sub-module in deep learning. Our results here could bring some inspiration for

neural decoding, brain-computer interface and neural prosthesis from a different

perspective. Some recent studies use a combined approach of synchronized en-

coding and decoding process through dual deep generative model optimizing both

encoding and decoding performance (Zhou et al., 2020), which could be an in-

teresting topic for future work. Given the recent advances of neural recording

techniques for brain-machine interface, it is highly demanding to develop decod-

ing methods that are able to reconstruct pixel-level images with high precision,

particularly for visual neuroprothesis devices (Shah and Chichilnisky, 2020; Yu

et al., 2020).
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4.2 Visual decoding from calcium imaging data

Visual decoding from calcium imaging data has a relatively sparse history than

other neural signals. Recently the calcium activity collected from small numbers

of high-responding neurons has been used to decode movie scenes with nearest

mean classification (Kampa et al., 2011). At the population level, with the cal-

cium imaging data from a larger (˜500) population of V1 neurons under natural

and phase-scrambled movie stimuli, simple linear classification has been imple-

mented for a classification decoding task to reveal those holistic activities of pri-

mary visual cortical neurons in anesthetic and awake mouse (Froudarakis et al.,

2014). When exploiting different machine learning architectures on calcium data

under 118 unique natural scenes, one can improve the classification accuracy (El-

lis and Michaelides, 2018).

Besides classification, the full-stimulus reconstruction has also been explored

recently. Calcium imaging of 103 neurons in mouse primary visual cortex were

used to reconstruct the complex natural stimuli with an optimal linear estimator

and revealed that V1 neurons display linear readout properties with low informa-

tion in the joint distribution of neural activity (Garasto et al., 2018). Further, with

the help of receptive field data and simulations from a linear-nonlinear Poisson

model, reconstruction performance could be ameliorated if the receptive field are

more uniformly sampled in the subject’s visual field (Garasto et al., 2019). Be-

sides, with single neurons’ activity recorded from anesthetized mouse V1, a linear

regression method was used to extract visual feature values contributed by each

cell’s calcium imaging responses and reconstruct original natural stimuli (Yoshida

and Ohki, 2020). In line with our results, it was demonstrated that natural images

can be reliably represented by a few highly responsive neurons (Yoshida and Ohki,

2020; Tang et al., 2018b).

4.3 Salient features of natural scenes related to artificial pat-

terns

With both artificial and natural images responded by the same neurons in the

macaque visual cortex, these responses must contain a certain quantity of infor-

mation that could be helpful for primates to distinguish from different visual fea-

ture patterns. The results in our experiment opportunely explored these points

from the perspective of neural decoding. Despite those relatively clear recon-

structions with NS responses on model trained with AP dataset, reconstructions

with AP responses on model trained with NS dataset is difficult to be identified

(Fig 6). Presumably the poor capability of reconstructing complex natural images

is resulted from the limited biological dataset contributed to an unsatisfied result

in the decoding model. Ideally, if the biological dataset is large enough which

results in a dramatically increasing reconstruction ability, the distinguishable ar-

tificial patterns could be generated with corresponding AP responses, benefiting

from the reconstruction ability strong to generate stimuli of natural image com-

plexity. This can be seen that reconstructions with AP or NS response with a

model trained on both were almost same as those trained separately. Thus, the
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mixture training enriched the reconstruction feature space.

When a natural image whose main context is some artificial pattern, then the

V1 neural responses would strive to embody the sensitivity corresponding to this

artificial pattern. The reconstruction whose information source is these responses

would generate an image that reflects the perceptual pattern to the greatest extent.

Thus, with a model trained by rich sets of APs, it enables us to extract salient

features of natural scenes per se. A more refined picture comes from the different

categories of AP images are in line with those salient features of NS images.

A related line of research is focusing on face recognition (Baek et al., 2019;

Wang et al., 2021) establishing the relationship between artificial DNN face recog-

nition system and real human face recognition. The DNN with face-selective neu-

rons can perform well when the original celebrity faces are transformed to various

cartoon styles and the response profile was similar to that with the original stim-

uli (Wang et al., 2021). It was found that face-selective neurons can be emerged in

networks trained for non-facial natural images (Baek et al., 2019) so that in face-

selective neurons, face-like shapes including components such as eyes, nose, and

mouth were observed in preferred feature images. Our results along with these

findings have revealed that, there is a strong correlation between complex natural

image perception and artificial pattern recognition in primates visual system.

4.4 Neural responses to artificial patterns and natural scenes

In the research on biologic visual mechanism, it is common to see that natural

scenes or artificial stimuli have been used as the visual input (Liu et al., 2017; Liu

and Gollisch, 2021). However, in most of these works, researchers always investi-

gated visual mechanism through these two types of stimuli separately. As a result,

the observation of biological neural response may be not comprehensive enough

due to the limitation in the capability of neural representation for the visual in-

puts. Researchers have tried to build the relations between natural images and

simple stimuli in primary visual cortex through experiments. It was observed that

in awake mice, the early visual experience under different exposure conditions

of natural scene or grating stimulus would induce behaviorally divergent discrim-

inability in favor of natural scene or grating stimulus (Kowalewski et al., 2021).

However, population responses to gratings and natural scenes were suggested to

be similar (Miller et al., 2014).

More fine relations between artificial and natural stimuli have been revealed

through modeling neural encoding process. It is known that the deep learning

technique is inspired by the hierarchical visual feature extraction from brain (Di-

Carlo et al., 2012). When using neural signal data collected from subjects, i.e.,

human or animals, more distinct and convincing clues for hierarchical visual fea-

ture mechanism have been shown, from low-level feature (simple stimulus) to

high-level feature (natural image) in various stages of visual systems in primates

(Cadena et al., 2019; Zhang et al., 2019; Ikezoe et al., 2018). In line with these

studies, our results revealed different coding strategies of artificial and natural im-

ages embedded in V1 neurons, particularly sparse coding, while using a decoding

approach.
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The classification of AP and NS image representations in brain has a long

tradition of studying with neurons at different layers with visual cortex. Some

studies suggested that AP and NS images would cause different responses and

have mutual effect with each other using different experimental techniques (Jessen

et al., 2019; Habib et al., 2015; Rosset et al., 2010; Takacs and Bus, 2016). In

our work, the main focus was pixel-level reconstruction, and the classification

decoding was not involved. Also, it was found that neurons have distinguished

dynamics from different layers of visual cortex (Wang et al., 2020). Future work

is need to investigate neural coding of AP and NS images through a series of

experiments and analysis in detail.
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Kampa, B. M., Roth, M. M., Göbel, W., and Helmchen, F. (2011). Representation

of visual scenes by local neuronal populations in layer 2/3 of mouse visual

cortex. Frontiers in Neural Circuits, 5:18.

Kim, Y. J., Brackbill, N., Batty, E., Lee, J., Mitelut, C., Tong, W., Chichilnisky, E.,

and Paninski, L. (2020). Nonlinear decoding of natural images from large-scale

primate retinal ganglion recordings. Neural Computation, 33(7):1719–1750.

Kingma, D. P. and Ba, J. (2017). Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 [cs].

25



Kowalewski, N., Kauttonen, J., Stan, P., Jeon, B., Fuchs, T., Chase, S., Lee, T.,

and Kuhlman, S. (2021). Development of Natural Scene Representation in

Primary Visual Cortex Requires Early Postnatal Experience. Current Biology,

31(2):369–380.e5.

Koyano, K. W., Jones, A. P., McMahon, D. B. T., Waidmann, E. N., Russ, B. E.,

and Leopold, D. A. (2021). Dynamic Suppression of Average Facial Struc-

ture Shapes Neural Tuning in Three Macaque Face Patches. Current Biology,

31(1):1–12.e5.

Larson, E. C. and Chandler, D. M. (2010). Most apparent distortion: Full-

reference image quality assessment and the role of strategy. Journal of Elec-

tronic Imaging, 19(1):011006.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,

521(7553):436–444.

Li, M., Liu, F., Jiang, H., Lee, T. S., and Tang, S. (2017). Long-term two-photon

imaging in awake macaque monkey. Neuron, 93(5):1049–1057.

Liu, A., Lin, W., and Narwaria, M. (2012). Image Quality Assessment Based

on Gradient Similarity. IEEE Transactions on Image Processing, 21(4):1500–

1512.

Liu, J. K. and Gollisch, T. (2021). Simple model for encoding natural images by

retinal ganglion cells with nonlinear spatial integration. bioRxiv.

Liu, J. K., Schreyer, H. M., Onken, A., Rozenblit, F., Khani, M. H., Krishnamoor-

thy, V., Panzeri, S., and Gollisch, T. (2017). Inference of neuronal functional

circuitry with spike-triggered non-negative matrix factorization. Nature Com-

munications, 8(1):149.

Livingstone, M. S. and Hubel, D. H. (1984). Anatomy and physiology of a color

system in the primate visual cortex. Journal of Neuroscience, 4(1):309–356.

Marre, O., Botella-Soler, V., Simmons, K. D., Mora, T., Tkačik, G., and Berry II,
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Supplemental Materials:

Decoding pixel-level image features from two-photon

calcium signals of macaque visual cortex

Table S1: Reconstruction image index for artificial patterns. Raw values of image

quality assessment metrics of all models measured over artificial patter images,

corresponding to the radar plot in Fig 2C.

MSE PSNR SSIM GSM FSIM MAD

Ours 0.068 13.158 0.625 0.937 0.764 95.699

SID 0.059 13.167 0.519 0.931 0.718 107.972

DGMM 0.108 10.569 0.306 0.882 0.538 155.127

CGAN 0.147 8.936 0.213 0.855 0.527 161.857

BCCA 0.247 6.337 0.120 0.801 0.411 204.523

Table S2: Reconstruction image index for natural images. Raw values of image

quality assessment metrics of all models measured over natural scene images,

corresponding to the radar plot in Fig 2C.

MSE PSNR SSIM GSM FSIM MAD

Ours 0.063 10.487 0.137 0.916 0.592 221.628

SID 0.063 10.006 0.141 0.915 0.578 224.067

DGMM 0.058 9.812 0.128 0.914 0.569 229.328

CGAN 0.158 7.931 0.014 0.863 0.516 212.718

BCCA 0.181 7.552 0.072 0.876 0.514 227.103
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Table S3: Reconstruction image index of models of three cases: our model, our

model without skip connections, SID.

MSE PSNR SSIM GSM FSIM MAD

AP

Our model 0.0663 12.9775 0.5832 0.9307 0.7364 113.8812

w/o skip connections 0.0612 13.1267 0.5675 0.9279 0.7162 113.7167

SID 0.0578 13.2294 0.5081 0.9272 0.6997 114.2638

NS

Our model 0.0694 10.1314 0.1361 0.9134 0.5850 221.2789

w/o skip connections 0.0716 9.8401 0.1191 0.9154 0.5974 218.8611

SID 0.1353 9.6314 0.1450 0.9110 0.5567 226.2519

31



NS-trained AP-trained Hybrid training NS-trained AP-trained Hybrid training NS-trained AP-trained Hybrid training

NS-trained AP-trained Hybrid training NS-trained AP-trained Hybrid training NS-trained AP-trained Hybrid training

0

0.2

0.4

M
S

E

0

0.2

0.4

M
S

E

0

0.3

0.6

F
S

IM

0

0.06

0.12

S
S

IM

0

0.5

1

G
S

M

0

6

12

P
S

N
R

Metrics of reconstructions with AP test set

Metrics of reconstructions with NS test set

0

0.1

0.2

0.3

M
S

E

0

0.4

0.8

F
S

IM

0

0.5

1

G
S

M
0

150

300

M
A

D

0

0.3

0.6

S
S

IM

0

5

10

15

P
S

N
R

Model training

Model training

Figure S1: Metrics of different models with across training.

32



200 600 1000

100

140

180

M
A
D

200 600 1000 200 600 1000

0.2

0.4

0.6

0.8

S
S
IM

0.86

0.9

0.94

0.98

G
S
M

OT

CN

CV

CX

CO

Model performance on AP when trained with AP

Model performance on NS when trained with AP

400 800 1200

#Cells
400 800 1200

#Cells

400 800 1200

#Cells

212

222

232

M
A
D

0.09

0.12

0.16

S
S
IM

9.4

10

10.6

P
S
N
R

Figure S2: Additional metrics of the analysis on models trained with APs. The

performance of three additional metrics related to Fig 7B and C.

33


	Introduction
	Methods
	Stimulus images
	Neural response
	Decoding models
	Image reconstruction metrics

	Results
	Reconstruction stimulus images from two-photon calcium neural signals
	The effect of sparse encoding on reconstruction 
	Salient features of natural scenes revealed by AP-trained models 
	Low-dimensional image distribution

	Discussion
	Decoding models
	Visual decoding from calcium imaging data
	 Salient features of natural scenes related to artificial patterns
	Neural responses to artificial patterns and natural scenes


