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A B S T R A C T   

The regionalised characteristics of a sub-basin’s long-term hydrological behaviour are used as multiple constraint 
filters for constraining hydrological model simulations in the Congo Basin using the monthly time step Pitman 
model. The results suggest that the constraints are appropriate in many sub-basins (≥ 20 gauging stations), but 
not all. Detailed examination of these results suggested that the effects of high slopes (> 7%) could increase the 
runoff ratio and Q90/MMQ (low flow index) constraint values and that implementing an adjustment factor based 
on slope did improve some of the very poor results. The percentage points on the FDC falling within the 
simulated uncertainty band has increased from 0% to 59.6% and 2.4% to 39.9% for the Rift valley and Batéké 
plateaux regions, respectively. Future studies ideally need a range of different rainfall products to quantify the 
uncertainties related to the inappropriateness of the CRU rainfall data in some parts of the Congo Basin.   

1. Introduction 

Adequate quantification of hydrological information across different 
spatial and temporal scales is essential to ensure sustainable manage
ment of water resources (Quesada-Montano et al., 2018). Hydrological 
models are used to generate such information (Fleischmann et al., 
2018). However, the limitations of the available observed streamflow 
records (short records, missing data and lack of spatial representative
ness), typical of data-scarce regions, limit the use of traditional model 
calibration and validation approaches and contribute to increased un
certainty in the estimation of water resources. In many large river basins 
(including the Congo River Basin), many of the available streamflow 
gauging stations are located in the downstream parts of the basin and 
represent cumulative streamflow characteristics from relatively large 
catchment areas. The data are therefore not very useful for quantifying 
regional patterns of response in headwater areas (Kabuya et al., 2020b). 
This presents a serious limitation to hydrological modelling and makes it 
difficult to quantify model behavioural parameters (those generating 
hydrological responses that match observed conditions) for the indi
vidual upstream sub-basins (Hughes, 2016). It is, therefore, necessary to 

resort to hydrological modelling approaches that can realistically 
quantify the uncertainty associated with water resources estimations 
(Ndzabandzaba and Hughes, 2017; Quesada-Montano et al., 2018). 
However, this also means that water resources decision-making pro
cesses have to allow for this uncertainty (McMillan et al., 2017; Hughes, 
2019). 

Although the Congo River Basin appears to be less studied than other 
large river basins of the world such as the Amazon (Alsdorf et al., 2016; 
Laraque et al., 2020), some published studies have tackled different 
aspects of hydrological research. Amongst the available studies, rela
tively few have focused on the use of rainfall-runoff models (Chishugi 
and Alemaw, 2009; Beighley et al., 2011; Tshimanga et al., 2011; 
Tshimanga and Hughes, 2014; Aloysius and Saiers, 2017; Munzimi et al., 
2019) of different complexities, for either process understanding, 
present-day water resource availability, or future climate change impact 
assessment. A common issue arising from the application of these 
models in the Congo Basin is the multiple uncertainty sources associated 
with the simulated hydrological response. For example, studies by 
Beighley et al. (2011) and Aloysius and Saiers (2017) reveal that the lack 
of a large and spatially extensive dataset at the appropriate scales can 
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result in very high uncertainty. They used a basin physiographic dataset 
in an a priori parameter estimation approach. However, the coarse res
olution of the physiographic datasets that were not initially produced for 
hydrological applications are considered to remain as a main source of 
uncertainty in hydrological modelling. O’Loughlin et al. (2019) reported 
that the simulated daily discharges from Beighley et al. (2011) required 
bias-correction before being used as input to a hydrodynamic model. 
Tshimanga and Hughes (2014) identified the primary sources of un
certainty in the application of a monthly time-step hydrological model in 
the Congo River Basin and recommended the use of regionalised hy
drological indices (or the characteristics of a sub-basin’s long-term hy
drological behaviour) to overcome some of the problems of data 
scarcity. These few examples show that uncertainty will always be 
present in hydrological simulations (Beven, 2006; Hughes, 2016). Un
certainties in water resources estimation can be caused by climate inputs 
(McMillan et al., 2012; Westerberg and Mcmillan, 2015; Ehlers et al., 
2019), streamflow discharge data (Westerberg et al., 2011b; McMahon 
and Peel, 2019), model structure (Gupta and Govindaraju, 2019), and 
model parameters (Mehdi et al., 2018). Other uncertainty sources 
include the shortness of available streamflow series and a poor repre
sentation of the long-term flow regime (Westerberg et al., 2014), lack of 
spatial representation, making it difficult to interpolate to ungauged 
sub-basins, undocumented upstream water development infrastructure 
and the effects of large wetland areas (Tshimanga and Hughes, 2014; 
Tumbo and Hughes, 2015; Ndzabandzaba and Hughes, 2017). 

Methods that quantify the uncertainty directly from the streamflow 
data are based on either discharge gaugings themselves (Coxon et al., 
2015), stage gaugings (McMillan et al., 2012; Horner et al., 2018) or 
rating-curve uncertainty (Westerberg and McMillan, 2015). Kiang et al. 
(2018) and McMahon and Peel (2019) reviewed some of these methods. 
However, their application in the context of the Congo Basin is difficult, 
due to the small amount of streamflow data. In the Congo Basin, tech
nical information on rating curves and associated uncertainty are not 
often available (Tshimanga and Hughes, 2014). This makes it imprac
tical to quantify uncertainty from individual data sources, and alterna
tive methods are required to realistically quantify the total uncertainty 
associated with hydrological estimates. These alternatives include the 
use of regionalised hydrological indices to constrain hydrological model 
simulation uncertainties. Previously, such approaches were focused on 
the limits of acceptability based on flow duration curves (FDCs) (Beven, 
2006; Blazkova and Beven, 2009; Westerberg et al., 2011a; Beven, 2012; 
Beven and Binley, 2014; Teweldebrhan et al., 2018) and later evolved to 
include additional signatures to reflect different water balance compo
nents (Yadav et al., 2007; Zhang et al., 2008; Westerberg and Mcmillan, 
2015; Shafii and Tolson, 2015; Almeida et al., 2016; Ndzabandzaba and 
Hughes, 2017; Nijzink et al., 2018). Such methods have the advantage of 
assessing the limits of model acceptability (uncertainty), rather than 
normal methods of measuring reliability (such as objective functions 
based on comparisons with the measured data) (Westerberg et al., 
2011a; Beven, 2012). The limits (or constraints) on model acceptability 
are also model independent. 

Two studies (Tumbo and Hughes, 2015; Ndzabandzaba and Hughes, 
2017) conducted in the southern Africa region used six hydrological 
indices representing the main water balance components. These six 
indices were used to constrain the Pitman model outputs and establish 
appropriate (behavioural) parameter sets. The parameter sets that 
generated simulations that met all of the constraint ranges were referred 
to as behavioural. Quesada-Montano et al. (2018) used four different 
constraints based on climate and runoff process characteristics at 
different time-scales to reject HBV-light model parameters that failed to 
represent hydrological process characteristics of a Costa Rican catch
ment. Nijzink et al. (2018) constrained the feasible parameter space of 
conceptual hydrological models using different remote sensing products 
of soil moisture, evaporation, and total water storage and snow accu
mulation for 27 catchments across Europe. 

Yadav et al. (2007) developed prediction limits of hydrological 

constraint indices with associated confidence intervals for 30 UK 
catchments. Such limits were used by both Yadav et al. (2007) and 
Kapangaziwiri et al. (2012) to define regional constraint uncertainty. 
Similarly, Ndzabandzaba and Hughes (2017) applied uncertainty 
bounds around previous simulations to define the constraint ranges and 
developed regional relationships between the aridity index (ratio of the 
mean annual potential evapotranspiration and the mean annual rainfall) 
and hydrological indices for Eswatini (formerly Swaziland). In contrast, 
Quesada-Montano et al. (2018) applied a subjective ±20% uncertainty 
to the runoff ratio inspired by uncertainty studies conducted elsewhere 
(Westerberg and Mcmillan, 2015). In another study by Tumbo and 
Hughes (2015) where it was difficult to find regional patterns in the 
relationships between sub-basin physical attributes and the hydrological 
indices, the constraint ranges were based on simple index ranges for 
each identified region in the Great Ruaha River basin of Tanzania. These 
few examples highlight the need for extracting the most possible infor
mation from the available data to define realistic constraint ranges in the 
context of ungauged basins (Hrachowitz et al., 2013). 

In the Congo Basin, the initial study by Tshimanga and Hughes 
(2014) used an a priori estimation approach to estimate uncertainty 
ranges for the Pitman model parameters. While the simulations were 
generally acceptable, there remained some unresolved uncertainty is
sues, partly due to the coarse resolution of the physical basin properties 
used to set the parameter ranges. Kabuya et al. (2020b) developed un
certainty ranges of some hydrological indices across different climate 
and physiographic regions of the Congo River Basin using confidence 
intervals of the predictive equations based on the aridity index. The 
present study builds on the latter (Kabuya et al., 2020b) and mainly aims 
at testing the applicability of these index ranges in constraining the 
simulation uncertainties of a hydrological model of the Congo River 
Basin. Specifically, the paper is focussed on applying the constraints for 
simulations using the Pitman model and evaluating the results using the 
same set of sub-basins (mainly headwater areas) used to develop the 
regional relationships, as well as additional gauged data located 
downstream of groups of sub-basins (the validation data). The overall 
objective is to assess the potential value of the approach for constraining 
hydrological model simulations in all the defined sub-basins of the 
Congo River Basin, and to identify where the likely methodological gaps 
are and how they might be filled. 

2. Study area and available data 

The climate of the Congo River Basin is warm and humid with two 
distinct wet and dry seasons that vary with distance from the equator 
(Bultot, 1974; Samba et al., 2008). Land cover varies from tropical 
evergreen forest, with little seasonal variation, in the central parts, to 
savannah in the north and south (Mayaux et al., 2000; Hansen et al., 
2008). Forest constitutes the primary land cover with an area of ~2.3 ×
106 km2, representing about 18% of the world’s tropical forests (Hansen 
et al., 2008; Somorin et al., 2012), and placing the Congo Basin second 
in the world after only the Amazon. 

A total of 403 sub-basins have been delineated in the Congo River 
Basin (Tshimanga et al., 2020) and there are a total of 58 streamflow 
gauging stations (Kabuya et al., 2020b). The monthly streamflow time 
series (Fig. 1b and Table 1), were obtained from several sources 
including: the Global Runoff Data Centre (Fekete et al., 1999), the Office 
National de Recherche et du Developpement (Lempicka, 1971), 
Hydrosciences Montpellier—Système d’Informations Environ
nementales (SIEREM, http://hydrosciences.fr/sierem) and the Annuaire 
hydrologique du Congo Belge (Devroey, 1951). Some of the gauges are 
on the main river or its main tributaries and represent a large number of 
upstream sub-basins, while others are affected by upstream large 
wetland systems. These are not used in this study as it would be difficult 
to resolve either the upstream heterogeneity or the wetland impacts. Of 
the remaining 31 gauges, 9 represent headwater sub-basins, or groups of 
no more than 6 upstream sub-basins (7) and were used to develop initial 
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regional hydrological index constraint ranges (indicated by blue sym
bols in Fig. 1b), based on relationships with the aridity index (Kabuya 
et al., 2020b). These indices consisted of mean monthly flow volume 
(MMQ) and three non-dimensional flow duration curve indices 
(FDC10/MMQ, FDC50/MMQ and FDC90/MMQ). The remaining 15 
gauges represent some headwater sub-basins (5) or groups of sub-basins 
and these are used as the validation set in this study (indicated by red 
symbols in Fig. 1). Table 1 lists the stations used in this study, while 
Table 2 lists only the non-headwater gauges and the number of upstream 
sub-basins. 

The monthly rainfall forcing data used for the model are the Climate 
Research Unit (CRU TS 3.10) data for the period of 1901 to 2014 (Harris 
et al., 2014), at a spatial resolution of 0.5◦. The UNIDEL (University of 
Delaware) rainfall dataset (covering the same period and spatial reso
lution) was used to check the appropriateness of the CRU rainfall data in 
specific areas (Sun et al., 2018). The CRU rainfall data have previously 
been successfully used for hydrological modelling in the Congo Basin 
(Tshimanga and Hughes, 2014). However, while gridded rainfall data 
might represent the general characteristics of the real rainfall (i.e. sea
sonality and frequency characteristics), they may not represent indi
vidual months very well. The monthly distributions of potential 
evapotranspiration (PET) required by the model are derived from the 
International Water Management Institute website (http://www.iwmi. 
org) and have been computed using climate information derived from 
New et al. (2002) for the period between 1961 and 1990. These climate 
data are used to calculate the aridity index using annual means of 

PET/Rainfall. Also, the daily (MOD16A2.006) MODIS actual evapo
transpiration (AET) estimates (Running et al., 2017) with a spatial res
olution of 500 m x 500 m, aggregated by year, were used to detect 
potential uncertainties in some of the long-term water balance compo
nents (stream flow = rainfall - evaporative losses). These global climate 
datasets are used given the lack of adequate ground-based information 
available for long periods and with good spatial coverage. However, the 
paucity of rainfall gauges over the Congo River Basin means that only 
limited observed records are used to construct and validate the global 
datasets, contributing a source of input uncertainty that cannot be 
readily quantified (Tshimanga, 2012; Maidment et al., 2015; Sun et al., 
2018). Mean monthly recharge (MMR mm) index values are available 
from the global database of annual long-term average groundwater 
recharge (Döll and Fiedler, 2008) at a spatial resolution of 0.5◦ by 0.5◦

(Fig. 2), but are expected to be very uncertain in the absence of any 
observed measurements across the basin. 

3. Materials and methods 

3.1. Hydrological model 

Arguably any single model, or group of models, could be used to 
achieve the stated objective of evaluating the usefulness of the regional 
hydrological indices for constraining the model(s) outputs, largely 
because the general approach is model independent. In this study, the 
monthly time step Pitman model (Pitman, 1973; Hughes, 2013) has been 

Fig. 1. The Congo River Basin and its major drainage systems showing the 16 gauges (blue dots) used in the previous study of Kabuya et al. (2020b) and the 
additional 15 gauges (red dots) used for validation (the inset shows the headwater gauges in the upper Lualaba system). Refer to Table 1 for the gauge names. 
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used for two main reasons. The first main reason is that it has been 
previously applied successfully in many parts of the southern Africa 
region, including the Congo River Basin itself (Kapangaziwiri et al., 
2012; Hughes, 2013; Tshimanga and Hughes, 2014; Tumbo and 
Hughes, 2015; Ndzabandzaba and Hughes, 2017; Oosthuizen et al., 
2018; Kabuya, 2020). Further applications therefore build on the 
existing experience base of the model, while that same experience base 
is helpful for establishing likely model parameter values. The second 
main reason is that the model is packaged with a freely available model 

application interface (SPATSIM: https://www.ru.ac.za/iwr/researc 
h/software/spatsim/) that allows the model to be run in different 
ways that are appropriate to this study (see below for more details). 
SPATSIM consists of a variety of tools to store and manage the required 
data, as well as set up and run the model and analyse the outputs. This is 
not only valuable for this study, but also benefits other potential users in 
the region who may wish to replicate and expand on this study, or apply 
similar methods in other areas, but who may not have access to the 
necessary software development tools or skills to adapt a different 
model. 

The model consists of storages (interception, soil moisture and 
groundwater) linked by functions to explicity represent the main runoff 
generation processes (infiltration excess, saturation excess and direct 
overland flow, interflow and groundwater flow) considered to occur at 
the sub-basin scale. Fig. 3 illustrates the model structure, while a brief 
description of the model parameters is given in Table 3. The model 
components and associated parameters are explained in more detail in 
previous publications (Hughes et al., 2006; Hughes, 2013; Tumbo and 
Hughes, 2015; Hughes and Mazibuko, 2018), while a quite compre
hensive guide is available on the website (https://www.ru.ac.za/iwr/r 
esearch/software/). There is little doubt that the model has a rela
tively high number of parameters, and a high level of equifinality, 
compared to many more parsimonious models (Beven, 2006; Hughes, 
2016; Quesada-Montano et al., 2018; Her and Seong, 2018). However, 
in the context of this study, this is not considered to be a limiting issue, 
because the model outputs are constrained by the regionalised indices of 
hydrological behaviour and strictly speaking not based on any specific 
method of parameter calibration. 

There are four main versions of the model as illustrated in Fig. 4. The 
first (V1) is a simple single-run version that uses a single climate input 
and parameter set to generate a single simulation for each sub-basin. 
This is largely used for manual calibration of the model and was not 
used in this study. The second (V2) represents stage 1 of a two stage 
uncertainty approach (Tumbo and Hughes, 2015; Ndzabandzaba and 

Table 1 
Streamflow gauging stations with different periods of records across different drainage systems of the Congo Basin (the stations included in the original regionalisation 
of hydrological indices are highlighted in bold).  

SN Sub-basin code Long. Lat. Drainage area (km2) Station Name Period of record % missing Months 

1 C_CB138 15.07 − 5.13 12 824 Inkisi 1950–1959 22.5 
2 C_CB169 15.65 − 2.90 12 295 Bwambe 1951–1994 19.3 
3 C_CB185 23.78 2.75 35 056 Itimbiri/Aketi 1950–1959 0.0 
4 C_CB188 24.35 − 0.60 91 396 Opala 1950–1959 0.0 
5 C_CB218 18.94 − 0.27 167 229 Ingende 1951–1959 10.1 
6 K_CB259 22.31 − 5.90 46 336 Kananga-L. 1952–1970 0.9 
7 L_CB18 31.07 − 10.95 34 745 Old Pontoon 1972–2004 20.7 
8 L_CB27 25.41 − 10.43 17 927 Nzilo 1921–1938 0.0 
9 L_CB191 26.23 − 1.24 42 322 Yumbi 1952–1959 1.1 
10 L_CB196 30.57 − 4.04 8 395 Taragi 1971–1979 5.6 
11 L_CB200 31.7 − 9.78 4 666 Chandawayaya 1978–1981 2.7 
12 L_CB201 32.16 − 10.00 16 572 Mbesuma P. 1974–2004 29.5 
13 L_CB202 31.60 − 11.20 1 008 Shiwa Ngandu 1964–1992 10.4 
14 L_CB203 31.28 − 11.49 1 147 Chikakala 1970–2004 17.9 
15 L_CB205 26.95 − 11.04 8 586 Kapolowe 1933–1959 7.4 
16 L_CB207 25.86 − 9.19 61 385 Bukama 1933–1959 11.1 
17 L_CB230 30.96 − 10.18 6 366 Kasama 1969–2006 2.4 
18 L_CB261 29.09 − 10.71 1 321 Chipili 1971–1981 0.8 
19 O_CB76 21.92 4.61 77 924 Kembe 1954–1978 9.7 
20 O_CB95 22.00 6.56 60 685 Bria 1954–1978 9.7 
21 O_CB176 18.03 4.91 4 793 Boali 1949–1988 48.9 
22 O_CB179 19.08 5.73 2 538 Sibut 1951–1991 45.1 
23 O_CB181 23.94 5.01 52 527 Rafai 1952–1973 16.1 
24 O_CB355 20.67 5.78 29 851 Bambari 1952–1975 21.3 
25 S_CB55 16.07 1.62 158 284 Ouesso 1959–1983 0.0 
26 S_CB61 16.12 3.20 71 424 Salo 1953–1994 35.0 
27 S_CB134 15.85 -1.28 1 866 Komo Olombo 1963–1975 0.1 
28 S_CB158 15.45 0.36 11 686 Yengo 1961–1980 0.3 
29 S_CB236 14.92 0.05 10 492 Etoumbi 1951–1971 0.3 
30 S_CB243 15.96 -0.5 1 159 Kouyou a linnegue 1953–1970 0.3 
31 S_CB395 15.86 4.94 18 559 Carnot 1954–1971 19.9  

Table 2 
Sub-basins representing the non-headwater gauges with the number of upstream 
sub-basins (the stations included in the original regionalisation of hydrological 
indices are highlighted in bold).  

SN Sub-basin 
code 

Total no. of upstream sub- 
basins 

Upstream gauges 

1 C_CB138 3  
2 C_CB169 4  
3 C_CB185 5  
4 C_CB188 5  
5 C_CB218 10  
6 K_CB259 4  
7 L_CB18 4 L_CB200, L_CB201, 

L_CB202 
8 L_CB27 3  
9 L_CB191 12  
10 L_CB201 2 L_CB200 
11 L_CB207 10 L_CB27 
12 O_CB76 8 O_CB95 
13 O_CB95 6  
14 O_CB176 3  
15 O_CB181 5  
16 S_CB55 24 S_CB61, S_CB395 
17 S_CB61 12 S_CB395 
18 S_CB236 2  
19 S_CB395 6   
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Hughes, 2017). The first stage simulates incremental flow contributions 
from one or more sub-basins independently (i.e. no cumulative flow 
routing). The parameter inputs consist of ranges of values for any pa
rameters that are considered uncertain, while the uncertainty ranges of a 
set of hydrological indices also form part of the input. The model is run 
many times (with a user selectable option of 10 000, 50 000 or 100 000), 
with all the parameter values being randomly sampled from their ranges 
(i.e. assuming a uniform distribution). If any single model run generates 
a simulation that has characteristics falling within all of the ranges of a 
set of hydrological indices (‘multiple constraint filters’ in Fig. 4, namely 
the mean monthly runoff volume (MMQ in m3 *106), mean monthly 
groundwater recharge depth (MMR in mm), the 10th, 50th and 90th 
percentiles of the flow duration curve expressed as a fraction of MMQ 
(Q10/MMQ, Q50/MMQ, Q90/MMQ) and the percentage of time that 
zero flows are expected), then it is accepted as behavioural and the 
parameter set is saved for later use in stage 2 (V3B). The model run stops 
when the user-defined number of behavioural parameter sets has been 
generated. The key issue is that not only must the constraint indices be 
compatible with each other (e.g. flow duration curve 90th percentile 
must be compatible with the groundwater recharge constraint), but the 
input parameter ranges must also be compatible with the constraint 
index ranges (e.g. the groundwater parameters should be compatible 
with the groundwater recharge constraint index range). There are built 
in facilities to guide users in the ‘calibration’ of the input parameter 
ranges to ensure that they are appropriately compatible and to ensure 

the efficient achievement of the required number of behavioural 
ensemble outputs, given the specified total number of possible model 
runs. 

The third version of the model runs the model many times (typically 
10 000) for the whole basin to generate cumulative flows at each sub- 
basin outlet. This can be based on independent random sampling of 
the input parameter ranges (V3A; unconstrained uncertainty assess
ment), or it can be based on re-sampling the complete parameter sets 
that were saved during the stage 1 model runs referred to above (V3B; 
constrained uncertainty assessment). In both cases, if there are observed 
data available, the outputs include a range of objective functions that 
can be used to evaluate individual ensemble members against the 
available observed data. The former can be useful to explore parameter 
equifinality and sensitivity (Hughes and Farinosi, 2021), while the latter 
represents the second stage of the 2 stage uncertainty approach based on 
hydrological index constraints. Both of these options have been used in 
this study. 

The final version is similar to the third, except that the input rainfall 
data consists of ensembles rather than a single time series. Each rainfall 
input (typically 500) is used in combination with either unconstrained 
(V4A) or constrained (V4B) parameter sampling, to generate simulated 
flow ensembles that represent a combination of climate and parameter 
uncertainty. This version has been used in climate change assessments 
(Hughes and Farinosi, 2020), but is not used in this study. 

These model versions are well suited for the Congo Basin because it is 

Fig. 2. Estimates of the uncertainty range of groundwater recharge across the Congo Basin. The inset shows the relationship between the mean recharge and the 
aridity index. 
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known as one of the most ungauged tropical basins where the majority 
of the available gauging stations reflect cumulative flow characteristics, 
making it difficult to distinguish the incremental flow contributions 
from different upstream sub-drainage systems. Through the regionalised 
hydrological indices, it is possible to identify behavioural parameters 
that reflect the sub-basin’s incremental flow contributions. The model 
also provides the possibility of accounting for a sub-basin’s development 
conditions such as water abstraction (e.g. reservoirs) and different types 
of regulations (e.g. hydropower dams), in the stage 2 (V3B) of the 
modelling approach. In addition, the general model structure (Fig. 3) 
provides a function that deals with wetlands where they are expected to 
exert considerable impacts on downstream flow regime. 

3.2. Steps in the analysis 

In an iterative process, Kabuya et al. (2020b) identified the aridity 
index as the main predictor of the hydrological response across the 
basin. The authors used climate and physiographic attributes (topo
graphic wetness index, slope, fractions of silt, sand, clay and curve 
number) that are known to have potential relationships with sub-basin 
hydrological response characteristics (Buchanan et al., 2014; Beck 
et al., 2015; Zeng et al., 2017). They indicated that due to the scarcity of 
available headwater gauging stations, it was impractical to develop 
predictive equations of the hydrological response for each identified 
physiographic region of the Congo Basin. Therefore, the alternative 
approach of developing generic predictive equations for the whole basin 
was adopted with the aridity index producing the best results for all of 
the hydrological indices used. However, the authors did expect that this 
would pose some problems in areas where there may be additional 
factors apart from the aridity index that determine differences in 

Fig. 3. Structure of the Pitman model with its main components.  

Table 3 
Description of the Pitman model main parameters (note that the model outputs 
are not very sensitive to some parameter value changes and these are frequently 
used with fixed values).  

Model 
Parameter 

Description Units 

RDF Rain Distribution factor [-] 
PI1 and PI2 Interception storage for two types of vegetation mm 
AFOR The proportion of the basin area covered by the 

second vegetation type 
% 

FF The ratio of forest/grassland potential 
evapotranspiration 

[-] 

SER Fraction of ST at which saturation excess runoff is 
initiated 

[-] 

PEVAP Annual sub-basin Evaporation mm 
ZMIN, ZAVE, 

ZMAX 
Minimum, average and maximum soil absorption 
rate for each sub-basin 

mm 
month− 1 

ST Maximum moisture storage capacity mm 
FT Runoff from moisture storage-runoff equation mm 

month− 1 

POW Power of the moisture storage-runoff equation [-] 
GW Maximum groundwater recharge at moisture 

storage full capacity 
mm 
month− 1 

GPOW Power of moisture storage - groundwater recharge 
equation 

[-] 

R Evaporation-moisture storage relationship [-] 
CL Channel routing coefficient Months 
TL Lag of surface and soil moisture runoff Months 
DDENS Drainage density km/km− 2 

T Groundwater transmissivity m2 day− 1 

S Groundwater storativity [-] 
RGWS Initial groundwater drainage slope % 
GWL Rest water level (m below surface) m 
RSF Riparian Strip Factor %  
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hydrological response (Kabuya et al., 2020b). This challenge and others 
related to the temporal scaling of the constraints and identified 
convergence of the uncertainty bounds at low aridity index values are 
addressed in this analysis. 

3.2.1. Step 1: temporal scaling of the constraints 
It is possible that the streamflow constraint indices are not inde

pendent of the time period being simulated. Kabuya et al. (2020b) 
indicated that while every attempt was made to adopt a similar period 
for all the gauges used in the regional analysis of hydrological indices, 
the large differences between the gauges used and the lack of suitable 
adjacent stations available to extend the series, means that quite 
different periods were used in some cases. Therefore, the initial step in 
the assessment analysis is to re-calculate the hydrological index range 
for the common simulation period used in this study (1901 to 2014). 
This involved using the unconstrained uncertainty model version (V3A; 
Fig. 4) and finding the ensemble that most closely matches the observed 
streamflow data for the common overlap period. The hydrological 
indices (MMQ, Q10/MMQ, Q50/MMQ and Q90/MMQ) were then 
calculated for the selected ensemble for the overlap period and for the 
total period and checked to identify if there were any significant 
differences. 

3.2.2. Step 2: critical analysis of the constraint predictive equations 
The uncertainty bounds that were reported in Kabuya et al. (2020b; 

Fig. 11) were based on fitting power relationships to the 5% and 95% 
confidence intervals around the regression relationships. However, it 
was subsequently noted that for both MMQ and Q90/MMQ the lower 
and upper bounds started to converge at low aridity (AI) values. Given 
that a later step in the analysis (see the results section) uses downward 
adjustments to the AI values (Step 5), it was necessary to remove this 
convergence and new uncertainty bounds were established that were 
also extended to much lower AI values. The results of this analysis, as 
well as the equations for the uncertainty bounds, are presented in 
Appendix 1. 

3.2.3. Step 3: constraints compatibility check and establishing behavioural 
sub-basin parameters 

There is no guarantee that the groundwater recharge values of Döll 
and Fiedler (2008) are compatible with the low flow responses of the 
observed streamflow. It was therefore necessary to check these as a first 
step in the application of model version 2. If they are not compatible 
then the approach will never find any behavioural simulations, 
regardless of the parameter sets used. Fortunately, the software utilities 
available (see Ndzabandzaba and Hughes, 2017 for further details and 
examples) with the model allow these types of incompatibility to be 
determined quite efficiently. This part of the initial processing therefore 
established new groundwater recharge constraints where necessary. 

The initial model parameter ranges (Table 1A ) were established 
based on previous modelling experience in the Congo River Basin 
(Tshimanga and Hughes, 2014; Kabuya, 2020). In this study, only model 
parameters responsible for a sub-basin’s natural hydrology (19) are used 
to simulate behavioural sub-basin responses and five were considered as 
fixed values, leaving fourteen being considered as uncertain and 
sampled using a uniform probability distribution. 

3.2.4. Step 4: generating total cumulative flows 
Model version 3B (Fig. 4) is then run to generate ensembles of total 

cumulative flow at all of the gauging sites. During this process some of 
the downstream routing parameters can also be considered fixed or 
uncertain. No water use parameters were used in this study as all the 
gauges are considered to represent largely un-developed conditions 
(Nilsson et al., 2005; Santini and Caporaso, 2018). A further option in 
versions 3 and 4 (A and B) of the model allows for the parameter sam
pling across all sub-basins to be totally independent, or grouped ac
cording to some (user defined) criteria of sub-basin similarity. In the 
former, the uncertainty band downstream of a group of sub-basins will 
be generally lower given that all of the upstream sub-basins will 
contribute relatively wet or dry incremental simulations in a random 
manner. In the latter, the sampling scheme is such that generally wetter 
(or drier) simulations will be linked for all sub-basins in the same group, 
suggesting a higher band of uncertainty downstream. 

Fig. 4. Flow diagram illustrating the structure of the different methods (model versions) of using the Pitman model available with the SPATSIM framework.  
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3.3. Evaluation of model performance 

An additional utility program can be used to post-process the time 
series ensembles to generate five time series representing the minimum, 
the 5th, 50th and 95th percentiles and the maximum simulated flows for 
each month of the total time series. The 5th and 95th percentiles provide 
useful upper and lower uncertainty bounds covering 90% of all the 
simulated ensembles and excluding any outliers. It should be noted that 
the simulation uncertainty bounds are a result of the uncertainty bounds 
derived from the regional analysis of the hydrological indices that are 
used to constrain the model in both gauged and ungauged basins 
(Ndzabandzaba and Hughes, 2017; Kabuya et al., 2020). They are 
therefore not arbitrary, but represent the uncertainty in our under
standing of regional differences in hydrological response. Whether or 
not the final simulation bounds are appropriate for any specific practical 
use (e.g. the design of reservoir storage, or abstraction operating rules) is 
important, but out of the scope of this paper. The simulated uncertainty 
bounds can be compared with the observed flows at both headwater and 
downstream gauging stations, using either hydrographs or flow duration 
curves (FDCs), but other performance measures (Nash and Sutcliffe, 
1970; Krause et al., 2005; Moriasi et al., 2007; Wöhling et al., 2013; 
Waseem et al., 2016) such as Nash-Sutcliffe coefficient of efficiency and 
mean monthly runoff bias (for both untransformed; NE and%Bias, and 
transformed values; NE{ln} and%Bias{ln}) can also be used to assess 
individual ensembles. 

In this study, the key performance measures used are based on the 
extent to which the observed time series, or percentage points on the 
FDC, fall within the four quartiles representing the uncertainty band of 
the simulations for the same month or percentage point. Values of 0 and 
3 for this containment index represent conditions where the observed 
data lie at the low or high end of the simulated range, while 1 and 2 
indicate that the observed data lie in the middle of the range. Similarly, 
values of ≤1, or ≥4 indicate that the observed data fall outside the 
uncertainty range. The purpose of the results evaluation is therefore to 
determine how many of the calibration and validation gauges have a 
high proportion of observed data that fall outside the simulated uncer
tainty bounds, and to look for any patterns that might point to how the 
regionalisation can be improved using additional information about the 
sub-basin characteristics. The key issue is that the observed data are not 
used directly to calibrate the model, although some of these data are 
used to develop the hydrological index constraint bounds. The observed 
data are therefore mainly used to assess the extent to which the 
constraint bounds can be used to generate appropriate simulations in 
ungauged sub-basins. 

4. Results 

4.1. Assessment of the initial groundwater recharge estimates 

As mentioned before, it is important to ensure that the ranges of the 
groundwater recharge estimates (MMR) are compatible with the Q90/ 
MMQ constraint. In many cases, the results have shown that the 
groundwater recharge values of Döll and Fiedler (2008) were incom
patible with the Q90/MMQ constraint and therefore were revised for 
consistency in the simulation of low flows (Fig. 5) in stage 1 of the 
modelling framework. Since the original MMR values are model 
dependant, it was expected that their use in this modelling exercise 
would constitute one of the major sources of uncertainty associated with 
low flows. Conversely, there are also some sub-basins in the upper 
Lualaba, Kasai, Rift valley, and Batéké plateaux where the revised MMR 
values fall within the original range, suggesting that this global data do 
have some value for constraining the groundwater components of a 
hydrological model. 

4.2. Initial assessment of the results 

As noted above, the first step prior to running the model was to check 
whether adjusments to the constraint values were required given the 
longer period of modelling compared to the observed data periods used 
for developing the regionalisation. The large majority of the adjustments 
required were less than ±5% and most are not considered likely to have 
any real impact on the results. Table 4 presents the results of the analysis 
(using the output from the constrained version of the model) based on 
identifying the number of months in either the time series or the FDCs 
where the observed data are bracketed by the simulated uncertainty 
bounds (using the 95% and 5% exceeded values). Columns 3 to 5 list the 
% number of months in the time series where the observed data are 
below, within or above the simulated bounds, while columns 6 to 8 
repeat this information but using the FDCs. The final three columns list 
the quartiles of the simulated bounds in which the observed data lie for 
the three key percentage points. Values between 0 and 3 indicate that 
the observed data are within the simulated bounds, negative values 
indicate situations where the observed data are below (i.e. over- 
simulation), while positive values indicate where the observed data 
are above (i.e. under-simulation). 

The first observation is that even where the FDC results are accept
able (where the last 3 columns of Table 4 are all ≥0 or ≤3, and a high 
value for column 7), the% of observed data falling within the simulation 
bounds for the time series (column 4) is typically quite low (maximum 
value of ~47% for L_CB261, Fig. 6). This is quite a common issue in data 
scarce regions where, even if the input gridded climate data are 
acceptably representative of the overall seasonality and intra-annual 
variability, individual monthly rainfall values might be poorly repre
sentative of reality. This means that the FDCs of the resulting simulated 
flows may be acceptable, but there may be parts of the time series that 
are not very well simulated. The second observation is that while there 
are some sites in both the calibration and validation data sets that show 
good results (or at least adequate for parts of the FDC, Fig. 7a and 7b), 
there are also many that are totally inadequate with extremely high 
positive quartile index values (extreme under-simulation, Fig. 7c), and 
some quite high negative values (moderate to high over-simulation, 
Fig. 7d). The remainder of this results section is therefore focused on 
attempting to resolve some of these discrepancies by identifying possible 
reasons why the regionalisation has failed in some areas and using the 
outcomes of this investigation to revise and improve the regioanlisation 
approach. The order in which the sub-basins are discussed is largely 
determined by the scale of the discrepancies between the observed data 

Fig. 5. Revised groundwater estimates after the consistency check with the 
Q90/MMQ constraint. The dashed and solid lines represent the upper and lower 
uncertainty bounds of the recharge values of Döll and Fiedler (2008). 
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Table 4 
Overall statistics of the simulated flow time series and flow duration curves across gauging stations used in this study, based on both the original (first row of each 
gauging station code) and revised simulations (from second row of each gauging station code).  

SN Code Time series Flow duration curve 
Below Within Above Below Within Above 10% 50% 90% 

1 C_CB138 5.4 15.0 79.6 4.3 1.1 94.6 6 9 9  
New&New slope 8.6 30.1 61.3 2.2 6.4 91.4 4 5 6 

2 C_CB169 4.9 1.9 93.2 3.7 2.4 93.9 9 37 60  
New slope 5.8 13.6 80.5 1.2 16.1 82.7 2 10 30  
Unidel 35.0 11.7 53.2 37.2 16.1 46.7 − 4 3 18  
With CL 31.1 21.4 47.5 19.5 39.9 40.6 − 2 2 10 

3 C_CB185 74.2 15.8 10.0 89.2 10.8 0.0 0 − 2 − 4  
Less rain 47.9 35.3 8.4 24.2 70.0 5.8 3 0 − 2 

4 C_CB188 17.5 37.5 45.0 5.0 50.8 44.2 2 4 4  
New 20.0 34.2 45.8 4.2 58.3 37.5 2 3 4 

5 C_CB218 35.1 23.7 41.2 10.3 49.5 40.2 5 4 0  
New 22.7 34.0 43.3 7.2 34.0 58.8 4 4 − 1 

6 K_CB259 9.7 19.5 70.8 6.6 8.9 84.5 2 10 10  
With CL 37.7 17.0 45.3 19.5 48.2 32.3 − 2 4 5 

7 L_CB18 24.8 15.0 60.2 0.3 78.4 21.3 2 2 7  
New 43.6 32.2 24.2 52.2 47.8 0.0 0 − 2 1 

8 L_CB27 17.1 31.5 51.4 4.2 53.2 42.6 1 3 6  
New 26.9 37.0 36.1 9.7 46.8 43.5 0 3 4 

9 L_CB191 1.1 2.3 96.6 0.0 0.0 100.0 22 41 53  
New slope 14.6 25.8 59.5 0.0 0.0 100.0 5 5 12  
New rain 38.2 29.2 32.6 30.3 59.6 10.1 0 − 3 2 

10 L_CB196 13.7 38.2 48.1 6.8 66.7 26.5 1 3 3  
New 35.3 37.3 27.4 16.7 83.3 0.0 − 1 1 1 

11 L_CB200 8.6 17.1 74.3 8.6 2.8 88.6 4 6 8  
New 8.6 17.1 74.3 5.7 5.7 88.6 6 6 7 

12 L_CB201 18.0 29.0 53.0 6.3 93.7 0.0 0 2 3  
New 36.9 43.9 19.2 18.4 81.6 0.0 − 1 0 0 

13 L_CB202 6.9 23.4 69.7 0.0 16.4 83.6 3 6 6  
New 10.2 22.0 67.8 0.7 12.8 86.5 3 7 5 

14 L_CB203 28.2 32.0 39.8 5.5 94.5 0.0 2 2 1  
New 32.3 37.8 29.9 11.0 89.0 0.0 3 2 − 1 

15 L_CB205 8.3 46.4 45.3 3.0 61.7 35.3 0 3 4  
New 12.3 54.7 33.0 1.3 98.7 0.0 1 3 3 

16 L_CB207 23.3 33.3 43.4 4.9 62.5 32.6 1 2 5  
New 23.6 41.7 34.7 9.7 65.3 25.0 0 2 4 

17 L_CB230 3.2 13.6 83.2 1.2 11.1 87.7 3 9 11  
New 3.7 17.0 79.3 1.7 12.1 86.2 3 8 10 

18 L_CB261 29.8 47.3 22.9 12.1 87.8 0.0 0 1 0  
New 32.1 44.3 23.6 19.8 80.2 0.0 0 1 − 1 

19 O_CB76 38.4 40.6 21.0 8.1 91.9 0.0 0 0 1  
New 40.6 49.4 10.0 10.7 89.3 0.0 0 1 0 

20 O_CB95 25.8 45.4 28.8 7.7 83.8 8.5 0 1 3  
New 33.9 47.6 18.5 7.7 92.3 0.0 0 0 2 

21 O_CB176 25.1 25.5 49.4 9.2 53.1 37.7 4 3 1  
New 28.2 28.2 43.6 13.8 52.3 33.9 2 3 0 

22 O_CB179 41.6 42.8 16.4 42.5 57.5 0.0 2 0 − 2  
New 44.4 37.7 17.9 34.9 65.1 0.0 2 0 − 1 

23 O_CB181 37.3 32.5 30.2 30.6 67.5 1.9 2 0 1  
New 46.4 32.8 20.8 57.4 42.6 0.0 2 0 − 1 

24 O_CB355 16.2 42.8 41.0 3.1 66.7 30.2 1 2 3  
New 17.1 35.6 47.3 7.7 27.0 65.3 1 4 2 

25 S_CB55 57.7 27.0 15.3 62.7 37.3 0.0 0 0 − 4  
New 48.7 33.7 17.6 31.3 68.7 0.0 − 1 1 − 1 

26 S_CB61 31.3 25.3 43.4 8.1 87.8 4.1 2 2 2  
New 25.9 40.6 33.5 5.6 94.4 0.0 1 2 2 

27 S_CB134 72.0 22.7 5.3 94.0 6.0 0.0 − 1 − 2 − 5  
New 28.0 31.3 10.7 63.3 36.7 0.0 − 2 − 1 − 3 

28 S_CB158 30.5 37.4 32.1 10.6 88.4 1.0 − 1 2 2  
New 29.1 42.7 28.2 10.3 88.4 1.3 0 2 2 

29 S_CB236 58.5 22.0 19.5 53.5 46.5 0.0 − 1 1 − 5  
New 48.0 28.0 24.0 31.5 68.5 0.0 0 1 − 1 

30 S_CB243 24.2 21.4 54.3 12.6 45.6 41.8 − 1 3 5  
New 25.8 36.8 37.3 12.1 66.5 21.4 − 1 2 4 

31 S_CB395 23.3 27.3 49.4 5.2 68.8 26.0 2 3 3  
New 23.7 35.3 41.0 4.6 61.9 33.5 3 4 2 

Footnote: Purple colour indicates acceptable results based on FDC and blue good results (or at least adequate for parts of the FDC) based on the original constraints 
developed by Kabuya et al. (2020). The sub-basin code in bold refers to the calibration gauging stations as already shown in Table 1. The first row of each gauging 
station shows the results using the original and subsequent other rows show revised simulations after applying: (i) slope adjustment factor (New slope), (ii) adjusted 
rainfall estimates (New rain), (iii) Unidel rainfall data (Unidel), (iv) channel routing parameter (With CL), (v) scaled rainfall (Less rain) and re-run of the model after 
the convergence of the uncertainty bounds at low AI values was removed (New). “New” refers to revised results based on adjustments to the input parameter bounds to 
try and achieve a more even distribution of the outputs relative to the input constraint bounds (see text for more detail). 

P.M. Kabuya et al.                                                                                                                                                                                                                             



Advances in Water Resources 159 (2022) 104093

10

and the simulated uncertainty bounds. 

4.3. Reassessment of the results 

One of the largest discrepancies between the simulations and the 
observed data occur for L_CB191 (a total of 12 sub-basins lying near the 
rift valley to the west of Rwanda) and it is immediately evident that this 
area has high slopes (>10%, and some >20%) relative to nearly all the 

rest of the Congo River Basin. This observation prompted the use of a 
slope correction factor to reduce the aridity index in sub-basins with 
slopes greater than about 7%. After some trial and error attempts to find 
a suitable correction approach, Eqs. (1) and (2) were used for adjusting 
the aridity index (AI) that is applied to the regional estimation equations 
for MMQ and Q90/MMQ, with the condition that the adjustment factors 
are limited to a maximum value of 1. For slopes of 8% or less, both 
adjustment factors are relatively close to 1, while for a slope of 20%, the 

Fig. 6. Simulated uncertainty bounds of the flow duration curve (a) and the time series (b) at the Chipili (L_CB261) gauging station in the upper Lualaba.  

Fig. 7. Simulated uncertainty bounds showing different situations of acceptable upper FDC (a), acceptable parts of FDC (b), moderate over-simulation (c) and 
extreme under-simulation (d). 

P.M. Kabuya et al.                                                                                                                                                                                                                             



Advances in Water Resources 159 (2022) 104093

11

MMQ adjustment factor is 0.3 and the Q90 factor is 0.7. Reference to 
Fig. 2 suggests that the effects of reducing the AI value by these amounts 
will vary with the original AI value and have a large effect for AI values 
of less than about 0.8. The rationale for a lower Q90 correction factor is 
that the actual Q90 value will be affected by both an increase in the 
MMQ constraints, as well as in the Q90/MMQ constraint. The adjust
ment factor required for the AI value used with the Q10/MMQ and Q50/ 
MMQ relationships was expected to be less and was set to half way 
between 1 and the AIAdjQ90 value. The format of Eqs. (1) and (2) was 
largely guided by the initial results for L_CB191, but C_CB138 and 
C_CB169 also included sub-basins with quite high slopes and can 
therefore be used to test the slope adjustments. 

AIAdjMMQ = (ln(slope))− 3
× 8 (1)  

AIAdjQ90 = (ln(slope))− 1
× 2.1 (2) 

After applying the slope adjustments to L_CB191 the results 
improved substantially (Table 4, 2nd row for L_CB191), but the under- 
simulation remained. It was further noted that many of the sub-basins 
in the upper parts of the catchment have lower CRU rainfall (and 
higher AI values) than the lower areas, which appears to be somewhat 
counter-intuitive. The UNIDEL rainfall data also show a similar pattern, 
but the rainfall based on a water balance (Table 5) using MODIS actual 
evapotranspiration data (Observed runoff depth + MODIS AET) suggest 
rainfalls that are much higher for the upper parts of the catchment. After 
the lower rainfall sub-basins were adjusted to increase the total basin 
weighted rainfall by some 15%, the results improved substantially 
(Table 4, 3rd row for L_CB191). The rainfall adjustments applied were 
very simplified, given the lack of any detailed evidence that could be 
used for individual sub-basins. It is also acknowledged that the evidence 
for the adjustments is not very precise, given the uncertainties inherent 
in the MODIS AET estimates. However, the balance of evidence suggests 
that they are justified, even if the actual adjustments are not likely to be 
at all accurate. 

For C_CB169 (Batéké plateaux) the original results suggest very high 
levels of under-simulation for moderate to low flows and the observed 
flow duration curve has a very low slope which is inconsistent with the 
simulated constraint ranges. The slopes are generally quite high (9.5 to 
13.3) and the slope adjustments certainly improve the simulations 
(Table 4). The UNIDEL rainfall is some 14% higher than the CRU data 
(Table 5), and if the UNIDEL data are used to force the model, not only 
will there be more rainfall available but the AI values also decrease, both 
of which improve the simulations (Table 4, 3rd row for C_CB169), but 
low flows remain under-simulated. These sub-basins are the main ones 
draining the Batéké Plateaux and the major river valleys are deeply 
incised with floodplain wetlands. This suggests the possibility of some 
high flow attenuation, which was roughly simulated using uncertain 
ranges for the channel routing parameter in the second stage run of the 
model (i.e. not affecting the sub-basin incremental flow simulations 

driven by the estimated constraint ranges, but only the routing through 
the sub-basins). This improves the results further (Table 4, 4rd row for 
C_CB169), despite the approach being a very simplified way of ac
counting for possible floodplain and wetland attenuation effects. 

The original results for C_CB138 (Inkisi) suggest quite high levels of 
under-simulation, notably for low flows and the influence of the slope 
adjustments is quite small as the slopes are mostly about 8% or less. 
There is some evidence from the water balance calculations (Table 5) 
that the rainfall might be slightly under-estimated and there is some 
evidence that the MMQ value based on the relatively short observed data 
period (1951 to 1959) under-represents the long-term MMQ by some 
10%. Applying these adjustments gives slightly better results (Table 4), 
but the observed flows remain under-simulated. 

The observed flows for K_CB259 (upper Kasai) are quite highly 
under-simulated for moderate to low flows (Table 4). The slopes are all 
quite low, but the basin is long and quite narrow, suggesting that 
channel attenuation may play a role. Applying the channel routing 
parameter gives some improvements and this could have implications 
for other ungauged rivers in the south western partf of the Congo River 
Basin, many of which have similar basin shape characteristics (Fig. 1). 
L_CB200, 201 and 202 are gauged sub-basins of LCB18 (Table 2), while 
L_CB230 is in the same area. While the results for the downstream site 
(L_CB18, Table 4) improved, the results for the smaller headwater 
catchments did not change much with some being under- and others 
being over-simulated. L_CB200, LCB202 and L_CB230 remain quite 
highly under-simulated for moderate to low flows and there is no 
currently available evidence to suggest why this region has an appar
ently different low flow regime than other parts of the total basin. 
However, previous work (unpublished, but including field observations) 
in these Zambian catchments confirm that sustained flows occur 
throughout the dry season. It is possible that there is an influence related 
to geology, but we were unable to identify any data sources that could 
suggest any unique characteristics of the geology that would contribute 
to sustaining low flows. 

C_CB185 (Itimbiri) is generally over-simulated, particularly for 
moderate to low flows, while the slope adjustment changes do not affect 
this set of sub-basins. The water balance check using MODIS AET data 
(Table 5) suggest that both the CRU and UNIDEL rainfalls could tend to 
over-estimate the available moisture and the constraints were re-set and 
the model re-run with the CRU rainfall data scaled by 94%. The results 
are certainly better, with low flows still being somewhat over-simulated 
(Table 4). The results for the remaining sub-basins were generally quite 
good, or only moderate over- or under-simulated and the revisions did 
not change the situation very much with some improving slightly and 
others being somewhat poorer. However, Table 4 indicates that in 
general terms the revisions have generated improved results. S_CB236 
(in the northwestern sub-basins) represents one of the few sub-basins 
where there is a relatively large difference between the MMQ for the 
short observation period (1951 to 1970) and the longer simulation 
period. However, the overall result did not change very much. It is also 
an area that has very high forest cover and one of the changes that was 
made was based on turning off the surface runoff generation part of the 
model and simulating all flows as either interflow or groundwater 
discharge. This improved the results (Table 4) partly because the final 
simulations had a larger uncertainty range than the original ones based 
partly on surface runoff generation. 

5. Discussion 

Fig. 8 illustrates the frequency distributions of the containment 
indices for the original and revised simulations. It is evident that there 
are relatively few changes in the Q10 and Q50 indices, apart from the 
fact that some of the small number of large under-simulations have been 
improved. There are also quite a high number (≥20) gauging stations 
where the observed data were totally within both the original and 
revised simulated bounds. There are far fewer (<15) gauging stations 

Table 5 
Examples of the water balance analysis.  

SN Code Water Balance components 
Stream 
flows 
(mm 
y− 1) 

MODIS 
AET 
(mm 
y− 1) 

Rainfall 
water 
balance 
(mm y− 1) 

CRU 
rainfall 
(mm 
y− 1) 

UNIDEL 
rainfall 
(mm y− 1) 

1 C_CB138 419.1 814.8 1234.0 1388.9 1363.9 
2 C_CB169 809.9 732.8 1542.7 1685.0 1916.1 
3 C_CB185 320.6 1106.3 1426.9 1698.5 1643.2 
4 C_CB218 839.5 989.0 1828.6 1849.5 1988.0 
5 L_CB191 1060.7 929.2 1990.0 1389.1 1678.4 
6 O_CB76 262.7 640.7 903.3 1547.1 1534.3 
7 O_CB95 133.2 384.6 517.7 1324.0 NA 
8 O_CB176 347.6 609.7 957.3 1485.7 1480.0 
9 O_CB179 209.5 528.3 737.8 1459.0 1380.3  

P.M. Kabuya et al.                                                                                                                                                                                                                             



Advances in Water Resources 159 (2022) 104093

12

where the low flows (Q90) are successfully simulated, and there remain 
quite a high number where the low flows are either under-simulated 
(mostly), or over-simulated after the revisions to the constraint values. 
This result could almost have been predicted, given the large spread in 
Q90/MMQ values shown in Fig. A1 (Appendix 1). While some of the 
identified adjustments have improved the situation, there are evidently 
other factors that have not been accounted for that cause quite large 
differences in low flow response in different parts of the Congo River 
Basin. Some of the adjustments made have been based on including the 
channel routing parameter to attenuate high flows and increase lower 
flows. This parameter has the greatest impact on downstream flows from 
a number of upstream sub-basins and has already been justified in some 
sub-basins (C_CB169 and K_CB259), but it may also apply in others 
where there is expected to be high flow attenuation. However, it is not a 
simple matter to identify those areas where the use of the channel 
routing parameter can be justified based on measurable physical char
acteristics (Tshimanga and Hughes, 2014). 

Differences in land cover have not been taken into account in the 
regional analysis of the constraint values, largely because there were no 
clear signals in the orginal analysis (Kabuya et al., 2020b), possibly 
because of the relatively small data set. There are also no clear signals in 
the current analysis and therefore the effects of land cover on runoff 
ratio and the shapes of FDCs remain largely unknown for the Congo 
River Basin. The effects of increased evapotranspiration losses from 
forestry areas has largely been accounted for through uncertainty ranges 
in the annual potential evaporation demand, but differences in this 
range have not been fully related to the area of forest cover. The lower 
value of the range has been set to the IWMI estimates (http://www.iw 
mi.org), which could under-estimate evapotranspiration losses in 
densely forested areas. However, this would mainly increase the 

simulated range of at least some of the constraint indices. 
During the simulation runs it was noted that some of the simulated 

ranges were relatively low, and certainly lower than the input constraint 
ranges. This has the potential to exacerbate any over- or under-estimates 
relative to observed data as the quartiles of the simulated range will be 
quite small. It is therefore considered to be important to ensure that the 
simulated ensembles cover the range of the input constraints (i.e. are not 
biased to either extreme, or concentrated in a small part of the range), to 
ensure that the results reflect the input constraints rather than any bias 
in the model simulations within these constraints. However, this is not 
always straightforward to achieve, given the large parameter space and 
inherent equifinalities (Hughes, 2016; Her and Seong, 2018). One 
observation is that it is often better to fix some of the parameters to 
achieve more clearer control over the uncertainty in the outputs (i.e. 
reduce the equifinality in the uncertainty). The situation for S_CB236 
(including S_CB332) illustrates this problem, in that the original simu
lated range of the Q10/MMQ constraint was always limited to a narrow 
band within the middle of the input range. Various combinations of the 
surface runoff parameters affecting high flows made very little differ
ence to this result, while turning off the surface runoff generation pa
rameters and focusing on simulating high flows with the interflow 
function made a large difference. This is a justifiable result for a heavily 
forested area and it would be worthwhile to assess whether this 
approach would be beneficial in other heavily forested areas, despite the 
fact that many of these already have acceptable results. It should be 
noted that in the case of S_CB236 (Table 4), all of the observed values for 
the constraint indices are well within the regionalised uncertainty 
ranges input to the model. It is therefore evident that at least some of the 
results that show containment indices that are just outside of the ideal 
range of 0 to 3 are a modelling artefact where the observed data are 

Fig. 8. Frequency distributions of the indices used to determine the containment of observed flows within the simulated flow duration curve bounds.  

P.M. Kabuya et al.                                                                                                                                                                                                                             

http://www.iwmi.org
http://www.iwmi.org


Advances in Water Resources 159 (2022) 104093

13

inside the input constraint ranges, but the model has generated an 
output range that is narrower and biased toward one end of the input 
range. 

The same principles could be applied to C_CB218 (Ruki/Ingende) 
which has 10 sub-basins (Table 2), all of which are forested. One of the 
observations is that, while the observed data have values for the 
constraint indices that fall within the input uncertainty range, the 
observed Q50/MMQ and Q90/MMQ are close to the upper end of the 
uncertainty range. The UNIDEL rainfall data are some 8% higher than 
the CRU data and using the UNIDEL data has the effect of lowering the 
aridity index which in turn, increases the runoff ratio, Q50/MMQ and 
Q90/MMQ, while slightly decreasing the Q10/MMQ constraint. This 
effect places the observed constraint indices more within the input 
constrain ranges, as well as providing more water. Re-running the model 
with the new constraints and the increased rainfall improved the results 
with the three key containment indices largely improving (Q10=3, 
Q50=1, and Q90=− 2). The Nash-Sutcliffe efficiency values also 
improved from approximately 0.3 (for both untransformed and ln 
transformed data) to values of better than 0.55 across the ensemble set. 
This result offers further support for replacing the CRU rainfall data with 
the UNIDEL data for this set of sub-basins. It was also noted that the 
short record (97 months of available data) creates an observed FDC that 
is not smooth and with quite large changes within a few percentage 
points, particularly at the extremes, making the containment results 
very sensitive to the exact percentage points chosen for comparison. The 
overall result shows the ensemble of flow duration curves that were very 
close to the observed data for the most part, but this was achieved with a 
low uncertainty range, which meant that even relatively small de
viations outside this range by the observed values lead to poor 

containment index values at some percentage points. The conclusion for 
this site is that possible problems with the rainfall data (possibly also the 
short record of observed flows) combined with possible effects of 
forestry make the original constraint indices inappropriate.Table 1A. 

One of the issues that is extremely difficult to account for is un
certainties in the observed streamflow, input rainfall and evaporation 
demand data, largely because there are not enough alternative datasets 
to confirm or deny the appropriateness of the data that have been used. 
Some attempts were made to use MODIS AET data and alternative 
rainfall data sets (UNIDEL) to assess the validity of the CRU data. In 
some cases this analysis pointed to some potential problems in the CRU 
data, but the MODIS data are also very uncertain (Ruhoff et al., 2013; 
Velpuri et al., 2013), as evidenced by some very low values in some 
areas (Table 5). The effects of all these data uncertainties has a com
pound effect. They not only affect the simulations themselves (e.g. not 
enough rainfall to force the model to achieve the observed outputs, as 
noted for parts of L_CB191), but they also affect the regional relation
ships that are used to quantify the input constraint values, because they 
impact on the aridity estimates (Kabuya et al., 2020b). Given that these 
compound effects could be quite different for each of the sub-areas used 
in this analysis (i.e. the uncertainties are likely to be quite random in 
their effects), it is very difficult to resolve them to improve the results. 

It is important to note that the model can be calibrated to closely 
reproduce the shapes of all the observed flow duration curves, even if 
the statistics of fit for the time series can frequently be quite poor (e.g. 
Nash Sutcliffe efficieny values of less then 0.4 in Kabuya, 2020). The key 
issue is therefore not that the model cannot be parameterised to generate 
appropriate responses, but that the constraints (which are model inde
pendent), in combination with the input forcing data used, do not 

Fig. A1. Regression relationships and uncertainty bounds for the four main constraints (the ardity index is extended downwards for the Runoff ratio and Q90/MMQ 
constraints to account for lower values due to the higher adjustments based on slope). 
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Table 1A 
Initial model parameter range values used across different drainage systems of the Congo Basin.  

Drainage system RDF PI1 SER ZMIN ZAV ZMAX ST POW FT GW R TL CL GPOW DDENS T S RGWS GWL RSF 

Kasai Mean 0.6 2 1 69.4 0.3 728.4 1200 3.6 30 20.4 0.4 0.3 0 3.3 0.5 32 0.1 0 15 1  
Dist. type 3 3 3 3 3 3 3 3 3.0 3   3  3    3  
Min 0.6 2 0.7 45 0.3 650 900 3 30 10.0 0.3 0.2 0 3 0.2 30 0 0 10 1  
Max 0.8 4 1 70 0.5 900 1250 4 50 30.0 0.6 0.3 0 4 0.5 50 0.1 0 30 2.5 

Lomami Mean 0.6 1.5 1.0 75.0 0.2 900.0 1800.0 4.0 15.0 15.0 0.6 0.3 0.0 3.5 0.4 40.0 0.0 0.0 15.0 1.8  
Dist. type 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0   3.0      3.0  
Min 0.6 2.0 0.3 50.0 0.2 800.0 1400.0 3.0 10.0 5.0 0.3 0.2 0.0 3.0 0.2 20.0 0.0 0.0 10.0 0.6  
Max 1.2 4.0 1.0 120.0 0.4 1100.0 1800.0 4.0 35.0 20.0 0.7 0.8 0.6 4.0 0.7 50.0 0.0 0.0 50.0 2.0 

Lower Congo Mean 1.2 2 1 31 0.6 590 680 3.9 40 60.0 0.4 0.3 0 5 0.5 30 0.1 0 25 1.1  
Dist. type 3 3 3 3 3 3 3 3 3.0 3   3  3    3  
Min 0.6 1.2 0.3 15 0.2 1000 650 3 60 50.0 0.2 0 0 3 0 30 0 0 0 0.5  
Max 1.2 3 1 60 0.6 1300 1050 4.5 90 70.0 0.6 0 0 4.5 0 70 0.1 0.1 0 2 

Lualaba Mean 0.7 2.1 0.9 144 0.4 677.5 730.7 4.2 29.3 23.8 0.3 0.3 0 3.8 0.5 25 0 0 15 1.4  
Dist. type 3 3 3 3 3 3 3 3 3.0 3   3  3    3  
Min 0.6 2 0.9 140 0.3 600 500 3.5 20.0 15.0 0 0.2 0 3.5 0.2 8 0 0 5 0.5  
Max 0.8 4 1 180 0.5 900 800 4.5 37.0 30.0 0.5 0.3 1 4.5 0.5 30 0.1 0 15 1.5 

Oubangui Mean 0.6 1.5 1.0 50.0 0.2 900.0 1800.0 4.0 15.0 15.0 0.6 0.3 0.0 3.5 0.4 40.0 0.0 0.0 25.0 1.5  
Dist. type 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0   3.0  3.0      
Min 0.6 1.5 0.4 40.0 0.1 400.0 950.0 2.5 12.0 5.0 0.0 0.2 0.0 3.0 0.2 50.0 0.0 0.0 10.0 0.6  
Max 1.2 3.0 1.0 100.0 0.5 800.0 1400.0 4.5 35.0 12.0 0.5 0.3 0.0 4.0 0.7 70.0 0.0 0.0 50.0 2.0 

Ruki Mean 0.6 1.8 1.0 90.0 0.3 650.0 1800.0 3.8 28.0 10.0 0.3 0.3 0.0 3.5 0.4 57.0 0.0 0.0 25.0 1.5  
Dist. type 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0   3.0  3.0      
Min 0.6 1.2 0.7 60.0 0.2 500.0 1600.0 3.5 15.0 5.0 0.2 0.2 0.0 3.0 0.2 40.0 0.0 0.0 10.0 0.6  
Max 1.2 3.0 1.0 120.0 0.5 800.0 1850.0 4.5 40.0 15.0 0.5 0.3 0.0 4.0 0.7 74.0 0.0 0.0 50.0 2.0 

Sangha Mean 0.6 1.8 1.0 90.0 0.3 650.0 1800.0 3.8 28.0 10.0 0.3 0.3 0.0 3.5 0.4 57.0 0.0 0.0 25.0 1.5  
Dist. type 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0   3.0  3.0      
Min 0.6 1.2 0.7 60.0 0.2 500.0 1600.0 3.5 15.0 5.0 0.2 0.2 0.0 3.0 0.2 40.0 0.0 0.0 10.0 0.6  
Max 1.2 3.0 1.0 120.0 0.5 800.0 1850.0 4.5 40.0 15.0 0.5 0.3 0.0 4.0 0.7 74.0 0.0 0.0 50.0 2.0  
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generate outputs that are always a match to the observed data. There are 
some situations where the model is not able to generate ensembles with 
constraint index values that are evenly distributed across the various 
input constraint ranges. This is possibly because some parts of the input 
constraint ranges are incompatible with each other and the model is not 
able to generate ensembles that match the full ranges of multiple con
straints. One of the consequences of this is that the final uncertainty 
range of ensembles is much narrower than the input range of the con
straints and even if the observed data are close (but not within the 
range), the containment indices suggest a poor fit. Notwithstanding 
these rather negative comments about the results, Fig. 8 suggests that 
quite for a large proportion of the sub-basins the results are quite good, 
while the details for all sub-basins in Table 4 suggests that there is no 
real difference between the calibration and validation sites. 

6. Conclusions 

The overall conclusion is that the orginal regionalised constraint 
indices based soley on aridity index are appropriate in many sub-basins, 
but not all. Further detailed examination of these results suggested that 
the effects of high slopes (prevelant in a relatively small number of sub- 
basins) could increase the runoff ratio and Q90/MMQ values and that 
implementing an adjustment factor based on slope did improve some of 
the very poor results. However, it was also clear that some of the CRU 
rainfall data under-represented the real rainfall in some areas and this 
also removed some of the gross under-simulations. It was recognised 
that there are missing data in the CRU dataset at the start and ends of the 
total record (these are represented by mean monthly values in the time 
series), an indication that there are few local data available to generate 
the gridded values. The worst affected areas (the most years with mean 
monthly values) stretches across the total basin in a band from the south 
west to the north east, and mainly covers sub-basins C_CB188 and 
C_CB218 used in this analysis, but also covers many ungauged sub- 
basins not included here. Attempts to apply a water balance approach 
using observed flows plus MODIS AET data to compare with the avail
able rainfall data, were largely inconclusive because of some clearly 
incorrect MODIS values. Future studies ideally need to more critically 
assess the rainfall data used to force the model, and in the absence of 
data to validate any rainfall products, could consider the use of uncer
tain rainfall inputs into the model using a range of different rainfall 
products (including satellite derived estimates) to quantify the un
certainties. Multiple information sources of remote sensing products (e. 
g. satellite water level observations; Jung et al., 2010) may be also useful 
in the larger rivers to supplement in situ observations. 

Some minor improvements were made through the use of the 
channel routing parameter to reduce high flows and this approach was 
applied where there is some evidence that upstream high flows could be 
attenuated. However, this concept was not applied to all other sub- 
basins, partly because it is not always straightforward to identify 
where attenuation effects might be applicable. There is some evidence 
that land cover, and particularly the effects of dense tropical forest 
should be part of the approach to the regional estimation of the 
constraint indices. However, once again, this result is far from conclu
sive as the effects do not appear to apply to all the sub-basins that have 
high proportions of forest. One of the recommendations for further work 
is that this issue should be investigated in more detail, both from an 
empirical (i.e. looking at response differences across all forested areas 
using the available observed data), and conceptual persepective. The 
conceptual perspective should include considerations of the likely runoff 
generation processes across all forested areas and how these should be 
represented in the model parameter sets. 

Some of the sub-basins in the Zambian part of the Congo River Basin 
appear to have very sustained dry season low flows, resulting in higher 
Q90/MMQ values than other areas and certainly values that are at the 

very high end of the regional ranges for this constraint index. We could 
not find any information that would explain this characteristic of the 
flow regimes, and this also requires further investigation. 

There is some evidence to suggest that sites with quite short records 
(less than 10 years) and sites with high proportions of missing data can 
skew the results, even though only the simulated values that were 
matched with available observed data were included in the containment 
analysis. There is very little that can be done to improve this situation, 
although it is possible that some form of observed flow data patching 
could be attempted. This type of approach, however, might simply end 
up adding another layer of uncertainty into an analysis that is already 
very uncertain. 

It should be noted that previous work (Tshimanga et al., 2011; 
Tshimanga and Hughes, 2014) conducted in the Congo Basin has 
demonstrated that the Pitman model can be calibrated with acceptable 
statistics in most gauged basins (Nash-Sutcliffe coefficient of efficiency 
for the majority of the gauging stations range from 0.5 to 0.9) and is 
therefore considered applicable to the region. However, this does not 
help to decide how to set the model up for all the many ungauged 
sub-basins in the remainder of the basin. The current paper attempted to 
address this problem by applying regionalised indices of sub-basin hy
drological response characteristics, and testing the approach using the 
same gauged basins used in the regionalisation, as well as a set of vali
dation gauging stations that were not previously used. Most of the 
validation stations are downstream of multiple sub-basins and therefore 
the validations are based on applying the regional constraint indices to 
sub-basins and then assess whether the cumulative simulated flow 
bounds at the gauges are comparable to the observed data in terms of 
both FDC characteristics as well as their time series variations. This 
study has not reported on the differences between parameter values 
across the sub-basins, partly because this would take up a great deal of 
space in an already lengthy paper, and partly because the main focus of 
the study was to evaluate the regionalised constraint indices, which are 
model independent. However, it is recommended that future studies 
should look at this issue more closely and try to ensure that there is a 
degree of consistency in the way in which the responses of sub-basins 
with similar characteristics are simulated by the model. 
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Appendix 1. Re-assessment of the constraint index regional relationship uncertainty bounds 

The Runoff Ratio (RR: used to calculate MMQ) bounds required extending to account for lower aridity index (AI) values after they have been 
adjusted downwards by the effect of slope. The extensions of the two bounds are based on linear extrapolation of the slopes of the main bound re
lationships fitted to the 5% and 95% confidence limits of the regression equations (Eqs. (A1) and (A2)) between AI values of 0.75 and 0.65. Fig. A1(a) 
suggests that this approach may under-estimate the upper bound values for low AI: 

For AI values ≥ 0.65 

RRLower = 1.2944 × exp− 2.508×AI (A1)  

RRUpper = 0.2608 × AI− 0.951 (A2) 

For AI values < 0.65 

RRLower = 0.254 + 0.5758 × (0.65 − AI) (A3)  

RRUpper = 0.395 + 0.5 × (0.65 − AI) (A4) 

The Q90/MMQ bounds also needed extending and the same approach was used: 
For AI values ≥ 0.65 

Q90
/

MMQLower = 0.4975 × AI2 − 1.4935 × AI + 1.1334 (A5)  

Q90
/

MMQUpper = 0.4077 × AI− 1.037 (A6) 

For AI values < 0.65 

Q90/MMQLower = 0.373 + 0.8 × (0.65 − AI) (A7)  

Q90
/

MMQUpper = 0.637 + 0.879 × (0.65 − AI) (A8) 

There is no need to extend the Q10/MMQ and Q50/MMQ bound relationships as the slope adjustments are smaller and the relationships fitted to 
the confidence limits are smoother without any signs of convergence at low or high AI values: 

Q10
/

MMQLower = 1.635 × AI0.843 (A10)  

Q10
/

MMQUpper = 2.4425 × AI0.5614 (A11)  

Q50
/

MMQLower = 0.58 × AI− 0.695 (A12)  

Q50
/

MMQUpper = 0.8383 × AI− 0.599 (A13)  
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