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Abstract. In this paper we extend our previous work on the use of do-
main decomposition (DD) preconditioning for the parallel finite element
(FE) solution of three-dimensional elliptic problems [3, 6] and convection-
dominated problems [7, 8] to include the use of local mesh refinement.
The preconditioner that we use is based upon a hierarchical finite element
mesh that is partitioned at the coarsest level. The individual subdomain
problems are then solved on meshes that have a single layer of overlap
at each level of refinement in the mesh. Results are presented to demon-
strate that this preconditioner leads to iteration counts that appear to
be independent of the level of refinement in the final mesh, even in the
case where this refinement is local in nature: as produced by an adaptive
finite element solver for example.

1 Introduction

In [3] we introduce a new two level additive Schwarz (AS) DD preconditioner
based upon the existence of a nested sequence of meshes on each subdomain. This
preconditioner is proved to be optimal for a particular class of symmetric self-
adjoint partial differential equations (PDESs) in both two and three dimensions.
In order to construct the preconditioner it is necessary to generate a decomposi-
tion of the finite element space, WV say, in the following manner. The description
here is given in two dimensions for simplicity but the extension to a tetrahedral
mesh in three dimensions is straightforward (and is outlined explicitly in [10]).
Let 7o be a coarse triangulation of the problem domain, {2 say, consisting of

Ny triangular elements, 7'](0), such that TJ(O) = ?5.0),
No
2= and To={r"}¥,. (1)
j=1

Also let diameter(T](O)) = O(H), and divide 2 into p non-overlapping subdo-

mains (2;. These subdomains should be such that:

a-Um. @

i=1
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2NRi=¢ (#75), (3)
0, = U 7-;0) where I; C {1,...,No} (L; # ¢) . (4)
JjEel;

We now permit 7; to be refined several times, to produce a family of triangula-
tions, 7o, ..., Ty, where each triangulation, 7, consists of Ny triangular elements,
T}k), such that
Ny,
- k k)N,
O=r" and Ti={r"} . (5)
Jj=1
The successive mesh refinements that define this sequence of triangulations need
not be global and may be non-conforming, however we do require that they
satisfy a number of conditions:

1. 7 € Tg41 implies that either
(a) T € Ty, or
(b) 7 has been generated as a refinement of an element of Ty into four regular
children (eight in 3-d) by bisecting each edge of this parent of 7,
2. the level of any triangles which share a common point can differ by at most
one,
3. only triangles at level k may be refined in the transition from 7y to Tg41-

(Here the level of a triangle is defined to be the least value of k¥ for which that
triangle is an element of 7%.) In addition to the above we will also require that:

4. in the final mesh, 7;, all pairs of triangles which share an edge which lies
on the interface of any subdomain with any other subdomain have the same
level as each other (i.e. the mesh is conforming along subdomain interfaces).

Having defined a decomposition of (2 into subdomains and a nested sequence
of triangulations of {2 we next define the restrictions of each of these triangula-
tions onto each subdomain by

Qi = {T;k) : T](k) C 2;}. (6)

In order to introduce a certain amount of overlap between neighbouring subdo-
mains we also define

Qip = {T;k) : T](k) has a common point with 2;} . (7

Following this we introduce the FE spaces associated with these local triangula-
tions. Let G be some triangulation and denote by S(G) the space of continuous
piecewise linear functions on G. Then we can make the following definitions:

W =S(T7) (8)
Wo = S(To) 9)
Wik = S(2ix) (10)
Wik = S(Q; ) (11)
)
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It is evident that _ B .
W=Wo+ Wi+ ...+ W, (13)

and this is the decomposition that forms the basis of the two level additive
Schwarz preconditioner (see [13] for example), M say, in [3]. Hence, for a global
FE stiffness matrix A, this preconditioner takes the form:

M~ =) RTA'R; (14)

where (using the usual local bases for W and W;) R; is the rectangular matrix
representing the L? projection from W to W;, and A, is the FE stiffness matrix
corresponding to the subspace W.

A parallel implementation of the above preconditioner is described in 2-d in
[2] and in 3-d in [7], for example. In both of these cases, the coarse grid solve is
combined with each of the subdomain solves to yield a preconditioner which is
actually of the form

P
M~ =Y RlA7'R;. (15)

i=1

Here, R; and A; differ from R; and A; in (14) since R; now represents the
projection from W to Wy UW; for i = 1, ..., p. In addition to this, and following
[5], both the 2-d and the 3-d parallel implementations in [2,7] use a restricted
version of the AS preconditioner (15). This involves the following simplification:

p
M~ =) DA 'R;, (16)
=0

where D; is a diagonal matrix with entries of 1 for those rows corresponding
to vertices inside subdomain 4, 0 those rows corresponding to vertices outside
subdomain ¢, and % for those rows corresponding to vertices on the interface of
subdomain ¢ (shared with ¢ — 1 neighbouring subdomains).

Results presented in [2,7] show that the preconditioner (16) outlined above
appears to behave in an optimal manner when applied to a range of problems as
the FE mesh is uniformly refined. That is, the number of iterations required to
obtain a converged solution appears to be bounded independently of the mesh
size h. In particular, in [7] it is demonstrated that when (16) is applied to solve
three-dimensional convection-dominated problems using a stabilized (streamline-
diffusion) FE discretization, the quality of the preconditioning is excellent.

2 Local Mesh Refinement

In our previous work in three dimensions (e.g. [6-8]) we have focused on ap-
plying the finite element method on sequences of uniformly refined meshes. For
many practical problems however the solution exhibits local behaviour, such as
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the existence of shocks or boundary layers, which lead to the requirement for
meshes obtained via local, rather than global, refinement. Consider, for example,
a convection-diffusion equation of the form

—eAu+b-Vu=f (17)

on some domain 2 C ®3. When [b| > ¢ > 0 it is common for the solution
to involve boundary layers of width O(le), depending on the precise nature of
the boundary conditions. If the solution is smooth away from these layers then
it is most efficient, computationally, to concentrate the majority of the degrees
of freedom in and around the layers. The following test problem is of the form
(17), with a computational domain 2 = (0,2) x (0, 1) x (0,1) and exact Dirichlet

boundary conditions applied throughout 912:

b =(1,0,00",
f=2 (o= 2 D) 1 -y) +2(1-2) +y(1-9)2(1=2), L (1g)
u:(m—z((ll%‘f:)))y(l—y)z(l—z).

The streamline-diffusion discretization of (17) on a mesh, 7y, of tetrahedra
seeks a piecewise linear solution of the form

N+B

ul = Z u; N; (z) (19)

i=1

where N; are the usual linear basis functions, N is the number of nodes of Ty
inside (2 and B is the number of nodes of 77 on 8f2. The values of the unknowns
u; are determined so as to satisfy the finite element equations

E/ Vuyp - V(N; + ab- VN;) dg+/ (b-Yup)(Nj +ab-VN;) dz =

o o
[ @@ +ab-IN) dz @0
2

for j =1,...,N (see, for example, [9] for further details). This yields an N x N
non-symmetric linear system of the form

Ku=f. (21)

In [7] it is shown that when the above DD preconditioner, (16), is applied with
an iterative method (GMRES, [11,12]) to solve (21) on a sequence of uniformly
refined meshes excellent iteration counts are obtained. Table 1, taken from [7],
illustrates this for two choices of €. The precise values for the iteration counts
obtained using this preconditioner depend on the particular partition of the
coarse mesh into subdomains (see (2), (3) and (4)) that is used. For all of the
calculations presented in this paper we partition the domain (2 with cuts that
are parallel to the convection direction b in (17). For the specific test problem,
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Table 1. The performance of the preconditioner (16) on the system (21), the dis-
cretization of (17) and (18), using global mesh refinement: figures quoted represent the
number of iterations required to reduce the initial residual by a factor of 10°.

e=10" e=10"°
Elements/Procs.|| 2 4 8 | 16 2 4 8 | 16
6144 2 3 3 3 2 3 3 3
49152 3 3 4 4 3 4 4 4
393216 3 4 4 5 3 4 4 4
3145728 4 5 6 6 3 4 4 4

Fig. 1. An illustration of the partitioning strategy, based upon cuts parallel to b =
(1,0,0)7, used to obtain 2, 4, 8 and 16 subdomains, where £2 = (0,2) x (0,1) x (0,1).

(18), considered here this means that all cuts are parallel to the z-axis, as il-
lustrated in Fig. 1. This strategy is shown in [10] to yield convergence in fewer
iterations than is possible with more isotropic partitions when (17) is convection-
dominated. Furthermore, in the following section on parallel results, we are able
to ensure good load balancing when using this strategy, even in the presence of
local refinement.

We now consider the use of a simple a priori local mesh refinement strategy
for the stabilized finite element solution of (17), (18). The purpose of this is to
illustrate the potential for the DD preconditioner (16) to be used successfully
within an adaptive FE framework, a discussion of which is included in Section
4. For this particular test problem however we make use of the fact that the
only boundary layer in the solution is known to be next to the domain boundary
z = 2, and that the solution is smooth elsewhere. Hence, beginning with a
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Table 2. The performance of the preconditioner (16) on the system (21), the dis-
cretization of (17) and (18), using local mesh refinement: figures quoted represent the
number of iterations required to reduce the initial residual by a factor of 10°.

e=10" e=10"°
Elements/Procs.|| 2 4 8 | 16 2 4 8 | 16
2560 4 5 5 6 5 6 6 6
9728 5 5 6 6 5 6 6 6
38400 5 6 6 7 5 6 7 7
153088 6 8 8 8 6 7 7 7

mesh of 768 elements, we are able to get results of a similar accuracy to those
obtained using uniform mesh refinement by applying local mesh refinement to
the same number of levels: only refining elements in the neighbourhood of z = 2
at each level. The iteration counts obtained using the DD preconditioner with
this mesh refinement strategy are shown in table 2. Although slightly higher than
the corresponding numbers of iterations shown in table 1, we again see that the
results appear to be bounded independently of both h and p.

3 Parallel Results

The parallel implementation of our preconditioner (16) is described in detail in
two and three dimensions respectively in [2, 7]. The use of local mesh refinement
does not alter this implementation in any way however it does require extra
attention to be paid to the issue of load balancing. This issue is of fundamental
importance in the parallel adaptive FE solution of PDEs and is beyond the
scope of this paper: see, for example, [14]. For the test problems described in
this section all refinement is applied in a neighbourhood of the domain face at
x = 2 and the partitions illustrated in Fig. 1 are used. Whilst the overlapping
nature of the preconditioner leads to a load balance that is far from perfect in
the cases p = 8 and p = 16, it is sufficiently good to yield quite respectable
parallel speed-ups, as demonstrated below.

In addition to the potential load imbalance there are at least two more sig-
nificant factors that affect the performance of our parallel implementation of
(16). The first of these is the quality of (16) as a preconditioner, and the second
is the parallel overhead associated with inter-processor communications. The
numerical tests described in this work were all undertaken on a tightly cou-
pled parallel computer, the SG Origin2000, and so communication overheads
are quite moderate in the results presented. The quality of (16) as a precondi-
tioner is considerably more important however. In all of the tables of timings
we include not only the parallel solution times but also the sequential solution
times for different choices of p. As can be seen, these times vary enormously and
are generally significantly slower than the fastest sequential solution time that
we are able to obtain (using [11]). For this reason we present two speed-up rows
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Table 3. Timings for the parallel DD solver applied to problem (17), (18) with ¢ = 10~>
using four levels of local mesh refinement.

[Processors/Subdomains]| 1 [ 2 | 4 | 8 | 16 |

Parallel Time 26.20(17.54|10.54| 7.17 | 5.35
Speed-up - | 15|29 |37 |49

Sequential Time — 134.64|40.54|50.35(66.96
Parallel Speed-up - 1201 38|70 |125

Table 4. Timings for the parallel DD solver applied to problem (17), (18) with e = 1073
using four levels of local mesh refinement.

[Processors/Subdomains[| 1 | 2 [ 4 [ 8 | 16 |

Parallel Time 20.07(14.02| 8.62 | 6.02 | 4.87
Speed-up - |14 1]23|33]41

Sequential Time — 127.64(33.12{42.05|58.88
Parallel Speed-up - 1201|3870 121

in each table: a regular speed-up which contrasts the parallel solution time with
the best sequential solution time, and a parallel speed-up which contrasts the
parallel solution time with the sequential time of the p subdomain DD solver.

Tables 3 and 4 present parallel timings for the entire solution algorithm when
solving problem (17), (18) on the final mesh obtained using the a priori adaptive
algorithm (i.e. containing 153088 elements). These timings are for ¢ = 10~2 and
103 respectively. It should be noted that equivalent results are presented for
the first of these cases in [7] using global mesh refinement to a similar resolution.
In that paper parallel solution times of between 505.7 seconds (p = 2) and 144.7
seconds (p = 16) are reported. The use of local refinement clearly leads to a
significant improvement on these times therefore.

An initial assessment of the figures presented in Tables 3 and 4 shows that
a speed-up of about 5 has been achieved on 16 processors. Whilst this may be
a little disappointing, inspection of the parallel speed-ups achieved gives much
greater grounds for optimism. The major cause of loss of efficiency in the overall
parallel solution appears to be due to the growth in the solution time of the
sequential version of the p subdomain algorithm as p increases. If this can be
overcome, through the use of a sequential multigrid solver (e.g. [4]) for each
subdomain solve for example, then the parallel speed-ups suggest that there is
significant scope for the use of this solution algorithm.

It is also apparent from the results in Tables 3 and 4 that the second most
important factor in determining parallel performance is the quality of the load
balance across the processors. When p = 2 and p = 4, as may be observed from
Fig. 1, each subdomain has the same boundary area and will therefore have
the same number of overlapping elements into neighbouring subdomains. When
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p = 8 or p = 16 this is not the case however: with some subdomains (in the
centre) having a larger overlap than others. In these latter cases the individual
subdomain problems are of a different size and so the parallel efficiency can
be expected to deteriorate. This is clearly observed in Tables 3 and 4 with
a parallel speed-up of 3.8 on 4 processors compared to a parallel speed-up of
7.0 on 8 processors and just 12.1/12.5 on 16 processors. The communication
overhead associated with the parallel implementation would appear to be the
least significant of the three main factors identified above as leading to losses in
parallel efficiency.

4 Discussion

The results presented in the previous section demonstrate that the modified
additive Schwarz preconditioner, that was successfully applied in parallel to
convection-dominated problems in three dimensions using global mesh refine-
ment in [7,8], may also be successfully applied in parallel to the same class of
problem using local mesh refinement. The algorithm is shown to parallelize very
efficiently, although there is an additional complexity in ensuring the load bal-
ance of the overlapping grids on each subdomain when local refinement is used.
Other than this, the major constraint on the efficiency of the algorithm comes
from the observed growth in the sequential solution time as p increases. From
Table 2 it is clear that the number of iterations taken does not grow with p,
so it is apparent that the work per iteration must be growing as the number of
subdomains is increased. This is inevitable in the sense that the total size of the
overlap region increases with p however there may be scope for improving this
aspect of the solution algorithm through the use of a sequential multigrid solver
for the subdomain problems.

Whilst the results described in this paper demonstrate that the proposed pre-
conditioner may be applied as part of a parallel adaptive finite element algorithm,
we have not explicitly considered such an algorithm here. The examples used in
the previous section are based upon a mesh refinement strategy that is known
a priori and therefore allows a partition of {2 to be made that is guaranteed to
lead to reasonably well load-balanced subdomain problems once refinement has
taken place. Developing a strategy for incorporating this DD solution method
within a robust adaptive mesh refinement procedure, based upon a posteriori
error estimation for example, is a current area of research. One approach that
has been proposed, that involves partitioning the coarse mesh, Ty, based upon
an initial a posteriori error estimate, is described in [1]. It is our intention to use
this technique as a framework for the implementation of a prototype adaptive
algorithm that further exploits the DD solution strategy described here.

Acknowledgments

SAN gratefully acknowledges the funding received from the Government of Pak-
istan in the form of a Quaid-e-Azam scholarship.



Parallel Domain Decomposition 9

References

1. R.E. Bank and M. Holst, “A New Paradigm for Parallel Adaptive Meshing Algo-
rithms”, STAM J. on Scientific Computing, 22, 1411-1443, 2000.

2. R.E. Bank and P.K. Jimack, “A New Parallel Domain Decomposition Method for
the Adaptive Finite Element Solution of Elliptic Partial Differential Equations”,
Concurrency and Computation: Practice and Experience, 13, 327-350, 2001.

3. R.E. Bank, P.K. Jimack, S.A. Nadeem and S.V. Nepomnyaschikh, “A Weakly Over-
lapping Domain Decomposition Method for the Finite Element Solution of Elliptic
Partial Differential Equations”, to appear in STAM J. on Scientific Computing, 2002.

4. R.E. Bank and J. Xu, “A Hierarchical Basis Multigrid Method for Unstructured
Meshes”, in Tenth GAMM-Seminar Kiel on Fast Solvers for Flow Problems (W.
Hackbusch and G. Wittum, eds.), Vieweg-Verlag, Braunschweig, 1995.

5. X.-C. Cai and M. Sarkis, “An Restricted Additive Schwarz Preconditioner for Gen-
eral Sparse Linear Systems”, SIAM J. on Scientific Computing, 21, 792-797, 1999.

6. P.K. Jimack and S.A. Nadeem, “A Weakly Overlapping Parallel Domain Decompo-
sition Preconditioner for the Finite Element Solution of Elliptic Problems in Three
Dimensions, in Proceedings of the 2000 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA’2000), Volume III,
ed. H.R. Arabnia (CSREA Press, USA), pp.1517-1523, 2000.

7. P.K. Jimack and S.A. Nadeem, “Parallel Application of a Novel Domain Decompo-
sttion Preconditioner for the Stable Finite Element Solution of Three-Dimensional
Convection-Dominated PDEs, in Euro-Par 2001 Parallel Processing: 7th Interna-
tional Euro-Par Conference Manchester, UK, August 2001 Proceedings, ed. R. Sakel-
lariou et al. (Lecture Notes in Computer Science 2150, Springer), pp.592-601, 2001.

8. P.K. Jimack and S.A. Nadeem, “ A Weakly Overlapping Parallel Domain Decom-
position Preconditioner for the Finite Element Solution of Convection-Dominated
Problems in Three-Dimensions, to appear in proceedings of Parallel CFD 2001,
Egmond aan Zee, NL, 21-23 May, 2001.

9. C. Johnson “Numerical Solution of Partial Differential Equations by the Finite El-
ement Method”, Cambridge University Press, 1987.

10. S.A. Nadeem “Parallel Domain Decomposition Preconditioning for the Adaptive
Finite Element Solution of Elliptic Problems in Three Dimensions”, Ph.D. Thesis,
University of Leeds, 2001.

11. Saad, Y.: SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations, Ver-
sion 2. Technical Report, Center for Supercomputing Research and Development,
University of Illinois at Urbana-Champaign, Urbana, IL, USA (1994).

12. Y. Saad, and M. Schultz, “GMRES: A Generalized Minimal Residual Algorithm
for Solving Nonsymmetric Linear Systems”, SIAM J. on Sci. Comp. 7, 856-869,
1986.

13. B. Smith, P. Bjorstad and W. Gropp, “Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations”, Cambridge University Press,
1996.

14. N. Touheed, P. Selwood, P.K. Jimack and M. Berzins, “A Comparison of Some
Dynamic Load-Balancing Algorithms for a Parallel Adaptive Flow Solver”, Parallel
Computing, 26, 1535-1554, 2000.



