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ABSTRACT

We investigate the resolution dependence of Hii regions expanding past their Strömgren spheres. We find that their structure and

size, and the radial momentum that they attain at a given time, is in good agreement with analytical expectations if the Strömgren

radius is resolved with 𝑑𝑟 ≤ 0.3 𝑅st. If this is not satisfied, the radial momentum may be over- or under-estimated by factors up to

10 or more. Our work has significance for the amount of radial momentum that a Hii region can impart to the ambient medium

in numerical simulations, and thus on the relative importance of ionizing feedback from massive stars.
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1 INTRODUCTION

Massive stars affect their surroundings through their ionizing radia-

tion, powerful winds, and supernova (SN) deaths. These inputs heat

and accelerate nearby gas, and can both compress and disperse gas

clouds (e.g. Rogers & Pittard 2013; Kim et al. 2018; Wareing et

al. 2018). As such, massive stars are recognized as key agents in-

fluencing star formation on both local and galactic scales. In recent

years, attention has focused on the radial momentum that Hii regions,

wind-blown bubbles, and supernova remnants can inject into the in-

terstellar medium, since this determines the amplitude of gas motions

which limit gravitational condensation and collapse (e.g. Shetty &

Ostriker 2012).

Initial implementations of supernova feedback in galaxy and cos-

mology simulations used an energy injection approach, and suffered

from an “over-cooling” problem caused by insufficient numerical

resolution (e.g. Katz 1992). Only in the latest prescriptions has SN-

driven feedback become independent of numerical resolution (e.g.

the FIRE-2 algorithm implemented by Hopkins et al. 2018). Simi-

larly, wind feedback has not always been adequately resolved. Pit-

tard, Wareing & Kupilas (2021) showed that the wind injection radius

must be below some maximum value, 𝑟inj,max, in order for the bubble

momentum to closely agree with analytical predictions. Agreement

within 25 per cent was obtained when 𝑟inj = 0.1 𝑟inj,max, and within

10 per cent when 𝑟inj . 0.02 𝑟inj,max.

We now turn our attention to ionizing feedback, which creates

Hii regions around massive stars. Much numerical modelling of

Hii regions exists in the literature, but we find that not all work has the

necessary numerical resolution to capture the correct growth of the

Hii region and its radial momentum. In this work we examine how

the development of the Hii region depends on numerical resolution.

We focus only on the ionizing feedback, so that other effects, such as

the impact of the wind, for example, do not complicate the matter.

In Sec. 2 we discuss the essential theory of Hii regions. In Sec. 3 we

★ E-mail: j.m.pittard@leeds.ac.uk

describe our calculations and our implentation of the photoionization

microphysics. In Sec. 4 we present our results. We summarize and

conclude in Sec. 5.

2 Hii REGION ESSENTIAL FEATURES

For simplicity we consider a star that emits ionizing photons at a con-

stant rate ¤𝑆 into a neutral medium of constant density and pressure.

We assume that there are no dust grains or magnetic field. In reality,

radiation pressure on dust and the dynamics of dust-gas coupling can

be important for Hii region dynamics (Akimkin et al. 2017).

The ionizing photons ionize the neutral gas, and drive an ionization

front that moves at a velocity 𝑣IF. Throughout this work we assume

that any recombination to the ground state of hydrogen creates an

ionizing photon with a very short mean free path and thus creates

an ionization at roughly the same location (Osterbrock 1989). In this

“on-the-spot” approximation the case B recombination coefficient is

appropriate. If the neutral gas is molecular a dissociation front also

moves outwards at a velocity 𝑣DF. At early times these fronts are

coincident (Krumholz et al. 2007).

The ionization front expands very rapidly at first, and is known as

R-type (Kahn 1954). Its radius increases as

𝑟IF = 𝑅st

(

1 − 𝑒−𝑡/𝑡rec

)1/3
, (1)

where 𝑅st is the Strömgren radius given by (Strömgren 1939)

𝑅st =

(

3 ¤𝑆
4𝜋𝛼B

rr𝑛
2
H

)1/3

. (2)

The recombination timescale, 𝑡rec = 1/𝛼B
rr𝑛H, is roughly the

timescale for this first phase. The case B recombination coefficient

is 𝛼B
rr ≈ 2.59 × 10−13(𝑇/104 K)−0.7 cm3 s−1 (Osterbrock 1989; Ri-

jkhorst et al. 2006), and 𝑛H is the total hydrogen nucleon number

density (molecular plus atomic plus ionized).

© 2022 The Authors
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The ionized gas has a substantially higher pressure than the sur-

rounding neutral gas (mostly due to the increase in temperature,

but also because of the increase in number density). This pressure

increase causes the ionized gas to expand after a sound-crossing

timescale. Around this time the ionization front changes from R-type

to D-type. Because the ionization front moves at subsonic speed rel-

ative to the ionized gas but at supersonic speed relative to the neutral

gas, it drives a shock front into the surrounding medium and sweeps

up a dense shell of neutral material.

For ¤𝑆 & 1047 s−1, the molecular hydrogen dissociation front does

not have a significant effect on the dynamics, as it remains trapped

between the ionization front and the shock front (Hosokawa & In-

utsuka 2005; Krumholz et al. 2007). During the D-type expansion,

Ritzerveld (2005) found that direct photons still dominate over diffuse

ones and the on-the-spot approximation remains valid.

The shock radius in this second phase evolves as (Spitzer 1978;

Hosokawa & Inutsuka 2006; Bisbas et al. 2015)

𝑅sh = 𝑅st

(

1 +
7

4

√︂

4

3

𝑐i𝑡

𝑅st

)4/7

, (3)

where 𝑐i is the isothermal sound speed of the ionized gas. The shock

velocity is given by

𝑣sh = 𝑐i

√︄

4

3

(

𝑅st

𝑅sh

)3/2

− 𝜇i𝑇0

2𝜇0𝑇i
, (4)

where 𝑇 is the gas temperature, 𝜇 is the mean molecular weight,

and subscripts “0” and “i” indicate the ambient and ionized medium

respectively. The radial momentum of the shell swept-up by the

expanding Hii region is

𝑝sh =
4𝜋

3
(𝑅3

sh
− 𝑅3

st)𝜌0𝑣s. (5)

Eventually, the Hii region attains pressure equilibrium with its sur-

roundings. The radius at this time is (Raga, Cantó & Rodríguez 2012)

𝑅stag = 𝑅st

(

8

3

)2/3 (

𝑐i

𝑐0

)4/3

, (6)

where 𝑐0 is the isothermal sound speed in the neutral medium.

3 THE CALCULATIONS

The Euler equations of gas dynamics for a spherically symmetric,

inviscid and non-heat-conducting fluid may be written in Lagrangian

coordinates in conservative form as follows (for the conservation of

mass, momentum and energy, respectively):

𝜕

𝜕𝑡

(

1

𝜌

)

− 𝜕(𝑟2𝑢)

𝜕𝑚
= 0, (7)

𝜕𝑢

𝜕𝑡
+ 𝑟2 𝜕𝑝

𝜕𝑚
= 0, (8)

𝜌

[

𝜕𝐸m

𝜕𝑡
+
𝜕(𝑟2𝑢𝑝)

𝜕𝑚

]

= ¤𝐸int,v, (9)

where 𝜌 is the fluid mass density, 𝑢 is the velocity and 𝐸m is the

total energy per unit mass. 𝑚 is the mass coordinate defined as

𝑑𝑚 = 𝜌𝑟2𝑑𝑟, where 𝑟 is the radial coordinate. The internal energy

per unit mass 𝑒m = 𝐸m−𝑢2/2, and the pressure 𝑝 = (𝛾−1)𝜌𝑒m. The

source term on the right-hand side of the energy equation, ¤𝐸int,v, is

the internal energy change per unit volume, and represents cooling

and heating processes that are discussed below.

We use a heavily modified version of VH-11 to solve Eqs. 7-9.

The interface values are obtained via piecewise parabolic spatial

reconstruction of the cell-averaged quantities, with flattening as ap-

propriate. A 2-shock approximate Riemann solver is then used to

obtain the interface fluxes, based on averages over the domain of

influence of the characteristics. The cell-averaged quantities are then

updated and a conservative remap is used to place them back onto the

original stationary Eulerian grid. The method is third-order accurate

in space for smooth parts of the flow, and first-order at shocks. A

Courant number of 0.6 is used.

An advected scalar is used to track the hydrogen ionization frac-

tion, 𝑦. Advected scalars are unchanged by the Lagrangian step but

are modified during the remap step. The neutral fraction 𝑥 = 1 − 𝑦.
The total H number density 𝑛H = 𝜌/𝜇H, where 𝜇H is the mean

mass per H nucleon. The number density of neutral hydrogen nu-

cleons is 𝑛HI = 𝑥𝑛H, and the number density of ionized hydrogen

is 𝑛HII = 𝑦𝑛H. To calculate the electron number density, 𝑛e, we as-

sume that He is singly ionized whenever H is (Mackey et al. 2015),

and that C is always singly ionized due to the interstellar UV field

(Rijkhorst et al. 2006). We assume that all of the metals are Carbon.

The electron number density is then given by 𝑛e = 𝑦(𝑛H + 𝑛He) + 𝑛C,

where 𝑛He and 𝑛C are the Helium and Carbon number densities, re-

spectively. We assume mass fractions 𝑋H = 0.7381, 𝑋He = 0.2485,

and 𝑋C = 0.0134 for the abundances (cf. Grevesse et al. 2010).

Changes to the ionization of the gas and heating/cooling processes

are included via an operator split step. The rate of change of the

ionization fraction and the internal energy per unit volume are:

¤𝑦 = 𝐴pi(1 − 𝑦) + 𝐴ci𝑛H𝑦(1 − 𝑦) − 𝛼B
rr𝑛H𝑦

2, (10)

¤𝐸int,v = (𝜌/𝑚H)Γ + Gph − (𝜌/𝑚H)2Λ(𝑇) − 𝑛e𝑛HIIΛrec. (11)

In Eq. 10, the terms on the right hand side are due to photoionization,

collisional ionization and recombination. In Eq. 11, the terms on the

right hand side are due to background heating, heating due to the

photoionization process, gas cooling and recombination cooling.

The ionizing radiation model uses a photon conservative scheme.

The photoionization rate coefficient, 𝐴pi, depends on the rate of

ionizing photons entering the cell minus the rate leaving. The pho-

toionization rate within the cell is given by

¤𝑁ion = ¤𝑆𝑒−𝜏 (1.0 − 𝑒−𝑑𝜏 ), (12)

where 𝜏 is the optical depth to ionizing photons from the star to the

inner edge of the cell, and 𝑑𝜏 is the optical depth to ionizing photons

in the cell. The optical depth

𝜏 =

∫

(1 − 𝑦)𝜎 𝑛H𝑑𝑙, (13)

where 𝜎 = 6.3 × 10−18 cm2 is the photoionization cross-section

for neutral H at the ionizing threshold and 𝑑𝑙 is the path length.

We then have 𝐴pi = ¤𝑁ion/𝑛HI𝑉 , where 𝑉 is the cell volume. The

collisional ionization rate coefficient is given by 𝐴ci = 5.84 ×
10−11√𝑦 exp(−13.6/𝑘𝑇) cm3 s−1 for gas at temperature 𝑇 .

We assume that each absorption of an ionizing photon results in

a photoelectron with an energy 𝑒Γ = 2.4 eV (Whalen & Norman

2006). These heat the gas, giving a heating rate per unit volume

Gph = 𝑒Γ ¤𝑁ion/𝑉 . For the recombination cooling we use Λrec =

6.1× 10−10𝑘𝑇0.11 erg cm3 s−1 if 𝑇 & 100 K (Osterbrock 1989). The

cooling curve, Λ(𝑇), is constructed from 3 separate parts (see also

Wareing et al. 2017a,b; Kupilas et al. 2021). At low temperatures

1 http://wonka.physics.ncsu.edu/pub/VH-1/
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(𝑇 < 104 K) we use a fit to the data in Koyama & Inutsuka (2002),

corrected by Vazquez-Semadeni et al. (2007):

Λ

Γ
= 107 exp

(

−1.184 × 105

𝑇 + 1000

)

+ 0.014
√
𝑇 exp

(

−92

𝑇

)

. (14)

For 104 ≤ 𝑇/K < 107.6, Λ(𝑇) is constructed using data from

CLOUDY v10.0 (Gnat & Ferland 2012). For 𝑇 ≥ 107.6 K, we

use data from the MEKAL plasma emission code (Mewe, Kaas-

tra & Liedahl 1995). We use a constant heating coefficient (Γ =

2 × 10−26 erg s−1).

A temperature-dependent average particle mass, 𝜇, is used. In the

molecular phase 𝜇 = 2.36, while 𝜇 = 0.61 in ionized gas. The value

of 𝜇 is determined from a look-up table of values of 𝑝/𝜌 (Sutherland

2010). The ratio of specific heats is set as 𝛾 = 5/3 at all temperatures.

In the operator split step we integrate 𝑥 and 𝐸int,v using the

CVODE solver from the sundials v5.8.0 numerical library2.

CVODE is a sophisticated solver that automatically detects stiff-

ness. Like Mackey (2012), we find that the numerical integration is

more stable if 𝑥 rather than 𝑦 is integrated. Because the ray-tracing

is performed once per step, the photon conservation is first-order

accurate in time, and our photoionization algorithm is the same as

method A2 in Mackey (2012). We also set the same error tolerances

for the CVODE solver (a relative error of 10−4 and absolute errors of

10−12 and 10−17 for 𝑥 and 𝐸int,v, respectively). Following Mackey

(2012), we also limit the timestep of the microphysics to

Δ𝑡 = min

(

𝐾1𝑡rec, 𝐾2

𝐸int,v

| ¤𝐸int,v |
, 𝐾3

max(0.05, 1 − 𝑦)
| ¤𝑦 | , 𝐾4

1

| ¤𝑦 |

)

. (15)

In all of our calculations we set 𝐾1 = 𝐾4 = ∞ and 𝐾2 = 𝐾3 =

0.3/𝜏cell, where 𝜏cell is the initial optical depth of each grid cell.

We use the smallest of the Courant-limited and microphysics-limited

timesteps to advance both the hydrodynamics and the microphysics

(i.e. we do not super-sample the microphysics).

Other ionization schemes are available that are more sophisticated

than our scheme. These include the second-order explicit method A3

in Mackey (2012), and implicit schemes, such as C2-ray (Mellema

et al. 2006) and method A1 in Mackey (2012). However, because of

the nature of the PPMLR hydrodynamics scheme used in this work,

a first-order photoionization scheme is appropriate here. We do not

expect our conclusions to be affected by our choice of scheme.

Naively, one might expect that the Strömgren radius should be

resolved in order that the Hii region expand correctly. Therefore, our

focus is around this numerical resolution and we define

𝜒 =
𝑑𝑟

𝑅st
, (16)

where 𝑑𝑟 is the width of the grid cells. We then vary the value of 𝜒

in our simulations.

4 RESULTS

We adopt the following set of parameters for all of our simulations.

We assume that ¤𝑆 = 1049 s−1 and 𝜌0 = 2 × 10−21 g cm−3 (𝑛H =

𝜌0/𝜇H = 884 cm−3, given a mean mass per H nucleon 𝜇H = 2.26 ×
10−24 g). Our adopted value of 𝜌0 determines that 𝜇0 = 2.36 and𝑇0 =

21 K. The pressure of the ambient gas, 𝑝0 = 1.48 × 10−12 dyn cm−2

(or 𝑝0/𝑘 = 1.07×104 K cm−3). This then gives 𝑐0 = 5.3×104 cm s−1.

We find that the temperature of the ionized gas 𝑇i ≈ 8100 K, giving

2 https://computing.llnl.gov/projects/sundials

Table 1. The models investigated. The columns show the model name, the grid

resolution, the ratio of the grid resolution to the Strömgren radius (Eq. 16),

and the measured radial momentum of the Hii region after 5 Myr.

Model 𝑑𝑟 𝜒 𝑝sh

(pc) ( M⊙ km s−1 )

chi0.1 0.0702 0.1 2.78 × 105

chi0.3 0.211 0.3 2.86 × 105

chi1.0 0.702 1.0 3.12 × 105

chi3.0 2.11 3.0 3.57 × 105

chi5.0 3.51 5.0 4.03 × 105

chi7.5 5.27 7.5 3.33 × 105

chi10 7.02 10 6.88 × 104

chi30 21.1 30 2.01 × 104

𝑐i ≈ 1.04 × 106 cm s−1. The mean molecular weight in the ambient

and ionized gas is 𝜇0 = 2.36 and 𝜇i = 0.61, respectively.

The Strömgren radius, 𝑅st = 0.702 pc. Due to the large ratio of

𝑐i/𝑐0, the stagnation radius 𝑅stag ≈ 70 pc. We evolve the simulations

for 5 Myr, which is a typical lifetime for a massive star with an

ionizing flux of this magnitude. Table 1 lists some other details of

our models. In model chi0.1, each cell has a width 𝑑𝑟 = 0.0702 pc

and an optical depth to ionizing photons 𝜏cell = 1210. The other

models have larger cell widths and optical depths.

4.1 Hii region profiles

Fig. 1 shows profiles of density, pressure, temperature and ionization

fraction at 𝑡 = 5 Myr for each of our models. In model chi0.1, we can

clearly see the dense shell (at 𝑟 ≈ 12 pc) swept-up by the expanding

Hii region. Although the maximum density in the shell is not con-

verged, with models with smaller values of 𝜒 showing higher values,

the global properties are converged. The Hii region is still a factor of

20 over-pressured with respect to the ambient medium at this time.

Due to the compression of the gas in the swept-up shell, the tem-

perature drops below 10 K. The ionization fraction of the gas drops

away from unity only near the edge of the Hii region. Waves within

the Hii region are also visible. These cause the density, velocity and

pressure to oscillate, but the temperature and ionization fraction are

largely unaffected. Waves are also seen in other work (e.g. see Fig. 4

in Bisbas et al. 2015). In our case they may also result from the

PPMLR method employed by VH-1 where strong shocks that move

slowly across the grid are known to cause strong oscillations.

As the resolution of the models change, the profiles begin to deviate

from model chi0.1. The 𝜒 = 1 model matches the higher resolution

models reasonably well, and the 𝜒 = 3 model still displays their main

qualitative features despite not resolving the Strömgren radius. It is

clear, therefore, that models with 𝜒 > 1 may still create a Hii region.

In such cases, gas in the grid cell closest to the star becomes partially

photoionized (from a greater to a lesser degree as 𝜒 increases). This

raises the cell pressure which initiates a flow of gas out of the grid

cell. The density in the grid cell drops, which allows the ionization

fraction to increase further. In model chi3.0, this process runs-away

on a timescale determined by the decreasing sound-crossing time of

the gas as the cell changes from partially to fully ionized. The result

is that model chi3.0 creates a Hii region with features qualitatively

similar to higher resolution models by 𝑡 = 5 Myr.

In contrast, models with 𝜒 & 10 fail to create completely ionized

gas with 𝑦 = 1.0 and 𝑇 = 8100 K at 𝑡 = 5 Myr in the grid cell closest

to the star. The ionization fraction of this gas is 2.8% and 0.08% in

MNRAS 000, 1–5 (2022)
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Figure 1. Profiles of a) density; b) pressure; c) temperature; and d) ionization fraction at 𝑡 = 5 Myr for models with 𝜒 = 0.1, 0.3, 1.0, 3.0, 10 and 30. The

ambient density and temperature values are visible on the far right of the plots in panels a) and c). Note the differences in the profiles as the resolution is varied.

To aid the reader the plot style is deliberately chosen to show steps, as this displays the cell averaged quantity over the radii encompassed by each cell. In model

chi30 the cell width is 21.1 pc, so values from only two cells are visible.

models chi10 and chi30 respectively. Nevertheless, in both cases the

partially ionized gas is able to initiate a flow away from the star due

to the pressure difference that exists between it and the ambient gas.

At 𝑡 = 5 Myr, the ratio of 𝑝/𝑝0 is 12.1 and 1.21 in models chi10 and

chi30, respectively.

4.2 Hii region size and momentum evolution

Fig. 2a) shows the shock front radius in models with 𝜒 ≤ 1. The

shock front position is calculated as follows. We find the cell with

the highest density and examine cells either side to see if they have

any excess mass, 𝛿𝑚 (i.e if 𝜌 > 𝜌0). Those cells that have excess

mass are included in the summations to obtain a mass weighted

radius (𝑟 =
∑

𝛿𝑚𝑟cell/
∑

𝛿𝑚, where 𝑟cell is the radius of the centre

of the grid cell). The shock radius from models with 𝜒 > 1 is very

dependent on the particular algorithm and so are not shown. For the

models shown in Fig. 2a), the shock front radius compares well with

analytical expectations.

Fig. 2b) shows the radial momentum of the Hii region, calculated

by summing over every grid cell, including those past the shock

front. Careful checks were made to ensure that small random velocity

perturbations to the ambient gas due to numerical round-off error did

not make any significant contribution to the measured momentum.

Simulations with identical resolution but a different number of grid

cells also confirm that this is the case.

It is immediately clear from Fig. 2b) that the simulations show

some complex behaviour. Models with 𝜒 < 1 are in good agreement

with analytical expectations over the whole timescale considered. In

models chi1.0 and chi3.0 the radial momentum is over-estimated at

early times but converges towards the analytical solution at late times.

In model chi5.0 the radial momentum is over-estimated at mid-late

times. Models with 𝜒 ≥ 10 show a dramatic reduction in the radial

momentum at all times considered. Interestingly, we see that the

model with 𝜒 = 7.5 initially underestimates the radial momentum,

but that there is a rapid increase between 𝑡 = 2 − 3 Myr. This timing

is consistent with the initial sound crossing time of the gas in the

grid cells of 9.7 Myr (an upper limit, with this timescale dropping as

the gas heats). It appears that the chi10 model is also heading for a

similar rapid rise.

Table 1 lists the radial momentum from each model at 𝑡 = 5 Myr.

The radial momentum obtained from Eq. 5 is 𝑝sh = 3.32 ×
105 M⊙ km s−1 . As already noted, the momentum measured from

model chi0.1 is in good agreement with it.

5 SUMMARY AND CONCLUSIONS

We have examined the effect of numerical resolution on the D-type

expansion of Hii regions. We find that a Hii region can be created,

expand, and attain a radial momentum in good agreement with an-

alytical predictions if the Strömgren radius is resolved such that

𝜒 = 𝑑𝑟/𝑅st ≤ 0.3. With 𝜒 = 1.0 the radial momentum is overes-

timated at early times. Models with higher values of 𝜒 either over-
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Figure 2. a) The radius of the shock front as a function of time for models with 𝜒 ≤ 1. b) The radial momentum of the Hii region as a function of time for each

model. The lines labelled 𝑅sh and 𝑝sh are calculated using Eqs. 3 and 5, respectively.

estimate, or significantly underestimate the radial momentum. For

𝜒 = 10 and 𝜒 = 30, the final radial momentum measured from our

models is reduced by factors of 4 and 14, respectively.

Not all numerical simulations in the published literature seem to

resolve the Strömgren radius. Amongst the SILCC group of papers,

Peters et al. (2017) were the first to consider photoionization feed-

back. The SILCC models have a resolution of 𝑑𝑥 = 3.9 pc. In their

model FRWSN (which also includes wind feedback), the sink parti-

cles are star clusters with a typical mass of 103 M⊙ . These clusters

have an ionizing luminosity 𝐿ion ∼ 1039 erg s−1 , which corresponds

to ¤𝑆 ∼ 5× 1049 s−1. Since the sink particles are created above a den-

sity threshold 𝜌 = 2 × 10−20 g cm−3, we estimate that 𝑅st ≈ 0.2 pc.

This gives 𝜒 ≈ 20.

In another paper, Butler et al. (2017) describe kpc-scale zoom

simulations of a galactic disk. The resolution is 0.5 pc. Sink particles

are generated in cells where 𝑛 > 105 cm−3. They are born with a

mass of 100 M⊙ and IMF-averaged stellar evolution tracks are then

followed. No accretion takes place onto the star particles. Rosdahl et

al. (2015) shows that 𝐿UV/M⊙ = 1036 erg s−1 , so each star particle

has an ionizing flux ¤𝑆 ∼ 5×1048 s−1. The resulting Strömgren radius

is 𝑅st ∼ 0.02 pc. This gives 𝜒 ≈ 25.

In both of these papers, the resolution is likely to be too low for

the Hii reigons to grow correctly (unless they are clustered together).

We stress that these papers are simply ones that we are familiar

with; other work may suffer also from this problem. In scanning the

literature we have sometimes found it hard to determine a value for

the Strömgren radius given the information presented. We hope that

future numerical work will explicitly demonstrate that the Strömgren

radius is sufficiently resolved (i.e. 𝜒 . 0.3).

A further complication is that in both reality and in numerical

simulations, the Hii region is typically interacting with a very inho-

mogeneous medium. In such cases the Hii region will expand more

quickly into regions of lower density, and vice-versa. While the global

behaviour of the Hii region can likely be represented by an averaged

density for the local environment, it is not immediately clear how

the radial momentum attained in such circumstances may differ from

the spherically symmetric case. Further study of such a scenario is

therefore warranted.
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