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Abstract

Imbalanced classification is a challenging task in the fields of machine learning and data mining.

Cost-sensitive learning can tackle this issue by considering different misclassification costs of

classes. Weighted extreme learning machine (W-ELM) takes a cost-sensitive strategy to alleviate

the learning bias towards the majority class to achieve better classification performance. How-

ever, W-ELM may not achieve the optimal weights for the samples from different classes due to

the adoption of empirical costs. In order to solve this issue, multi-objective optimization-based

adaptive class-specific cost extreme learning machine (MOAC-ELM) is presented in this paper.

To be Specific, the initial weights are first assigned depending on the class information. Based

on that, the representation of the minority class could be enhanced by adding penalty factors. In

addition, a multi-objective optimization with respect to penalty factors is formulated to automat-

ically determine the class-specific costs, in which multiple performance criteria are constructed

by comprehensively considering the misclassification rate and generalization gap. Finally, en-

semble strategy is implemented to make decisions after optimization. Accordingly, the proposed

MOAC-ELM is an adaptive method with good robustness and generalization performance for

imbalanced classification problems. Comprehensive experiments have been performed on sev-

eral benchmark datasets and a real-world application dataset. The statistical results demonstrate

that MOAC-ELM can achieve competitive results on classification performance.

Keywords: Imbalanced classification, cost-sensitive learning, extreme learning machine,

multi-objective optimization

1. Introduction

Class imbalance means that the number of samples of different classes varies greatly, i.e.,

data present skewed class distributions [1, 2]. This phenomenon pervasively exists in a variety of

real-world applications, such as financial distress prediction [3], human activity recognition [4],
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and abnormal condition detection [5], etc. The regular classifier constructed using imbalanced

data usually leads to the decision boundary closer to the minority classes, degrading the classifi-

cation performance on the minority classes [6, 7]. However, in many scenarios, minority classes

are more important and concern ones to be recognized than majority classes, such as disease

diagnosis in the medical domain and fault diagnosis in the industrial domain [8].

Several efforts have been made to develop specific classifiers that could classify minority

classes more accurately, involving decision tree [9], random forest [10], k-nearest neighbors

[11], naive Bayes [12], and support vector machine (SVM) [13]. These algorithms are essentially

effective, but encounter stopping criteria, learning rate, local minima and time-consuming issues.

In the past decade, extreme learning machine (ELM) and its variants have been proved to

be very powerful tools to deal with classification and regression problems [14, 15, 16, 17, 18].

Unlike other learning algorithms, the most advanced features of ELM are that its hidden layer

parameters are independent of training data and the learning procedure is non-iterative. There

have been also a lot of interests in solving the imbalanced classification problem using ELMs.

For example, total error rate ELM (TER-ELM) [19] assigned adjustable parameters for training

samples but could not be applied in multiclass classification directly. Weighted ELM (W-ELM)

[20] provided two weighting schemes for training samples from different classes to strengthen

the performance of the minority classes. Zhang et al. [21] presented a fuzzy matrix to ELM to

highlight the contributions of different inputs. Li et al. [22] explored a modified AdaBoost frame-

work and its distribution weights replaced the training samples weights in W-ELM to enhance

the classification performance. Class-specific cost regulation ELM (CCR-ELM) was proposed

[23], in which class-specific cost regularization was used for misclassification of each class. D-

ifferent from CCR-ELM in the computation of output weights, cost-specific kernelized ELM

(CSKELM) [24] was presented with lower computational overhead. Label-weighted ELM (LW-

ELM) [25] extended the class label of the the minority class samples and two weighing rules

were designed based on class information. Li et al. [26] proposed a sparse cost matrix for W-

ELM. The aforementioned classifiers are based on the concept of cost-sensitive learning, which

has been frequently used for handling imbalanced data, and could achieve satisfactory perfor-

mance in several tasks. However, a good consistency between the classification performance and

the design of the cost is difficult to identify, because the empirical cost only associates with the

class imbalance ratio (CIR) and neglects the specific data distribution. Thus, modeling quality

of the classifier may not be excellent enough. In addition, with the unknown data distribution,

the classifier also suffers from the overfitting problem due to the unclear relationship between

the weighting scheme and generalization performance. Therefore, it is desirable to develop a

weighting scheme utilizing an adaptive method with the purpose of simultaneously achieving

the optimal classification performance and alleviating the overfitting problem.

In view of the aforementioned considerations, we propose a multi-objective optimization-

based adaptive class-specific cost ELM (MOAC-ELM) to promote the classification performance

of ELM for handling imbalanced classification problems. MOAC-ELM has a flexible and effi-

cient weighting scheme for different tasks. In this scheme, considering the multiple classification

performance criteria, a multi-objective optimization problem is formulated to learn the optimal

weights to enhance the generalization performance. Through the comparisons with state-of-the-

art methods on selected benchmark datasets and a real-world application dataset, MOAC-ELM

shows its superiority in solving the imbalanced classification problem. Specifically, the primary

contributions of MOAC-ELM include the following aspects:

1) Without any data distribution information, a flexible and efficient weighting scheme is

developed. This scheme not only considers the CIR, but also introduces a diagonal penalty



adjustment matrix for different classes to strengthen the representation of data distribution.

2) In order to achieve the penalty adjustment factors in an adaptive manner, a multi-objective

optimization problem is developed to learn the parameters to enhance the generalization perfor-

mance. Misclassification rate and generalization gap are defined as the two conflicting optimiza-

tion objectives to improve the classification performance and alleviate the overfitting problem

simultaneously.

3) The non-dominated sorting genetic algorithm version II (NSGA-II) [27] is applied to glob-

ally optimize the penalty factors. Moreover, ensemble strategy is implemented to make a decision

from the multi-objective optimization solutions.

The remainder of this paper is organized as follows. Section 2 introduces preliminaries,

including solutions for imbalanced classification, details of W-ELM and evaluation metrics for

imbalanced classification. Section 3 presents the problem formulation. The proposed MOAC-

ELM is detailed in Section 4. Section 5 presents the experimental results and further analysis.

This is followed by discussions in Section 6. Finally, Section 7 gives the conclusions of our

research work.

2. Preliminaries

This section briefly reviews state-of-the-art methods addressing imbalanced classification,

W-ELM, and evaluation metrics for imbalanced classification, to provide the necessary back-

ground for the proposed MOAC-ELM.

2.1. Solutions for imbalanced classification

Imbalanced data distribution includes several cases as illustrated in Fig. 1, in which the red

diamonds represent the minority class and the green filled stars stand for the majority class.

Class imbalance is affected by many factors, including imbalance ratio, class surrounding, class

overlapping and small disjuncts, etc. It has been proved that the kind of data complexity is

the main determinant of classification performance reduction [6]. When regular classifiers are

employed to imbalanced data, the decision boundary usually biased towards the minority classes,

since the minority classes are underrepresented. Many techniques have been developed to tackle

this issue, which could be grouped as data-level methods and algorithm-level methods.

Data-level methods essentially utilize the preprocessing to rebalance the class distribution.

Different forms of resampling methods, i.e., oversampling and undersampling, try to extract

balanced samples from different classes. Oversampling methods remove some samples corre-

sponding to the majority class while undersampling methods expand samples corresponding to

the minority class [28, 29, 30]. The salient feature of resampling is that it is independent with

classifier, making it more versatile [31]. However, the matter is how to determine the appropriate

class distribution for a skewed distribution. Oversampling may suffer from the overfitting issue

while undersampling may encounter the information loss.

Algorithm-level methods generally attempt to establish a classification algorithm that can

provide a better classification performance for class imbalance problems than regular classifier.

It can be mainly divided as cost-sensitive learning [32], ensemble strategy [33], and one-class

learning [34]. Among them, cost-sensitive learning is the most commonly used strategy, which

introduces the misclassification costs and assigns higher misclassification costs to minority sam-

ples than majority ones. By utilizing this strategy, there are several improved variants in the

ELM community, such as W-ELM [20], AdaBoost W-ELM [22], CCR-ELM [23], CSKELM



(a)Imbalance ratio (b) Class surrounding (c) Class overlapping (d) Small disjuncts

Figure 1: Illustration of different imbalanced data distributions with two-dimensional binary-class data

[24], and Evolutionary ELM [26], etc. However, an appropriate misclassification cost matrix is

still difficult to be estimated.

2.2. Brief review of W-ELM

ELM, a single hidden layer feedforward neural network shown in Fig. 2, can be used for

both regression and classification [35]. The major differences are the assignment of hidden layer

parameters and learning process without iteration in comparison with other traditional learning

methods [36, 37]. Overall, due to the random generation of hidden layer parameters, ELM

has faster training process and better generalization performance. However, ELM treats all the

samples equally, making it not suitable for the imbalanced classification problems.
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i 

Figure 2: ELM network architecture [38]

W-ELM is an effective solution to deal with the imbalanced data, which can be considered

as a cost-sensitive version of ELM. The essence of W-ELM is to assign different weights to

the samples from different classes. The minority class employs larger weights to strengthen its

influence. On the contrary, the majority class employs smaller weights to weaken its relative

influence. Mathematically, we define a N × N diagonal matrix W to allocate the weights for

each training sample xi. In this case, W-ELM actually attaches more significance to the training

errors of the minority class, making the decision boundary emerge in a more impartial position.



Embedding the diagonal matrix W, we have an optimization problem represented as

min :JW−ELM =
1

2
∥β∥2 +CW

1

2

N
∑

i=1

∥ei∥
2

s.t.,h (xi)β = yT
i − eT

i

(1)

where (xi, yi) ∈ Rn ×Rm is a given training dataset with N samples, β is the output weight vector,

ei is the training error, C is a tradeoff parameter and can be determined by users according to the

specific tasks, and h (xi) is the mapped feature vector with respect to input xi.

Similar to ELM, we can achieve the solution of Eq.(1):

β =



















HT
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I
C
+WHHT

)−1
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+HT WH

)−1
HT WY,N ≥ Nh

(2)

Two empirical weighting schemes of W-ELM are

W1 : wii =
1

#ni

W2 : wii =

{ 0.618
#ni

i f #ni > Ā (#ni)
1

#ni
i f #ni ≤ Ā (#ni)

(3)

where #ni represents the sample size belonging to class ni, Ā (#ni) is the average sample size of

all the classes.

The classification error of the minority class is reduced by allocating a different cost distri-

bution to each class. It should be noted that W-ELM maintains the advantages of ELM, and is

competent for both binary classification and multiclass classification tasks.

2.3. Performance metrics for imbalanced classification

Evaluation metrics are indispensable for classification performance evaluation and classifi-

er construction guidance [7]. Considering a binary classification problem, confusion matrix is

defined to represent the classification performance, as shown in Table 1. The minority class is

considered as positive class and the majority class is called negative class. After classification

process, samples are divided into four parts, i.e., TP, FP, FN and TN.

Table 1: Confusion matrix

Predicted as Positive Predicted as Negative

Actually Positive True Positive (TP) False Negative (FN)

Actually Negative False Positive (FP) True Negative (TN)

The most frequently adopted evaluation metrics for the binary imbalanced classification prob-

lems include accuracy, precision (P), recall (R), F-measure (F) and G-mean:

Accuracy =
T P + T N

T P + FP + T N + FN
(4)

Precision (P) =
T P

T P + FP
(5)



Recall (R) =
T P

T P + FN
(6)

F − measure (F) =
2PR

P + R
(7)

G − meanb =

√

T P

T P + FN
×

T N

T N + FP
(8)

Different metrics can characterize the classification performance from different aspects. In

general, accuracy provides a simple manner to quantify the performance of a classifier while it

is sensitive to data changes in some cases. Precision is used to measure the exactness, recall

is used to evaluate the completeness. There is an opposite relationship between precision and

recall. In particular, F-measure is a more comprehensive measure by combining precision and

recall. Another indicator, G-mean, represents the integral assessment of positive accuracy and

negative accuracy.

For the multiclass classification problem, racall of the ith class is expressed as

Ri =
nii

∑k
j=1 ni j

(9)

where ni j denotes the number of samples belonging to class i but classified as class j.

G-mean for the multiclass classification problem is given by

G − meanm =

















k
∏

i=1

Ri

















1
k

(10)

3. Problem Formulation

Cost matrix is the key of cost-sensitive learning, which encodes the penalty for misclassified

samples. Minority class samples are usually assigned higher misclassification costs to enhance

their representation. Although many promising progresses have been made utilizing this strategy

in the ELM community, the existing works highly rely on empirical weighting schemes without

considering data distribution or have a large amount of calculation in finding appropriate cost.

More concretely, the weights were determined by the number of elements in each class in W-

ELM [20]. CSKELM adopted the class specific regularization parameter, which was designed

based on class proportion for handling binary classification problem with imbalanced data [24].

CCR-ELM performed grid search to adjust the regularization parameters, leading to its high

computational complexity [23]. LW-ELM designed two types of weight allocation strategies

based on CIR [25]. The aforementioned works adopt fixed weight mechanism by considering

the percentage of samples belonging to a certain class. The fixed weight is lack of flexibility

and will miss a better selection to achieve better classification performance. In addition, CIR

is not the only factor deteriorating the classifier performance, and also involving other factors,

such as class overlapping and small disjunction (see Fig. 1) [39]. However, we lack the priori

information on data distribution in most scenarios. Thus, it is difficult to define the relationship

between weight setting mechanism and classification performance. Fig. 3 depicts the relationship

between weights and classification performance on a specific imbalanced dataset (the sample

number of the majority class is 490 and that of the minority class is 260). From Fig. 3, we



can find that the best accuracy is 79.17% when the weight on the majority class is 0.1 and the

weight on the minority class is 0.8. In this sense, the original weight setting mechanism based

on the percentage of samples cannot obtain the best performance. Furthermore, the classification

performance is constantly changing as weights vary. Accordingly, the costs in cost-sensitive

learning play important roles in performance improvement. How to find the appropriate cost

matrix for a specific task is a meaningful and challenging issue.

(a) (b)

Figure 3: Relationship between weights and classification performance on a specific imbalanced dataset

Moreover, when building an operational mechanism for evaluating the suitability of cost

matrix, we are usually confused by the lack of practical guidelines. One of the frequently used

schemes is to construct an optimization problem where accuracy-related function is selected as

the objective function, but the classifier may suffer from the overfitting problem in this scenario.

Additional criterion should be considered to enhance the generalization performance.

Accordingly, it is worthwhile to develop a more robust and adaptive determination scheme

fully considering the class information and data complexity during its modeling process to

achieve superior classification performance.

4. Methodology

This section gives the details of the proposed MOAC-ELM for imbalanced classification

problems, covering main framework, classifier construction, multi-objective optimization for

penalty adjustment factors, decision making via ensemble strategy and MOAC-ELM algorithm

description.

4.1. Main framework of MOAC-ELM

Focusing on the aforementioned practical problems in imbalance learning, we propose MOAC-

ELM to determine the optimal misclassification loss without the need of prior knowledge and

many trials. As depicted in Fig. 4, MOAC-ELM can be achieved via the following three phases:

1) Define a penalty adjustment matrix and derive the output weights; 2) Establish the multi-

objective optimization model and search the optimal penalty adjustment factors; 3) Employ the

ensemble strategy for decision making from the obtained Pareto optimal solutions to output the

optimal output weights.



Phase 2: Multi-objective optimization model 

establishment and solution

Objective function selection

Define the detailed optimization problem 

Search the optimal penalty adjustment factors

Output Pareto optimal penalty adjustment factors 

Phase 1: Problem formulation

Define a penalty adjustment matrix Qm

Derive a new output weights β

Phase 3: Decision making

Utilize ensemble strategy on multiple optimal model

Output final result

Figure 4: Main framework of the proposed MOAC-ELM

4.2. Classifier construction

As previously mentioned, existing works mainly depend on empirical weighting schemes,

which are determined by the number of elements in each class without considering data com-

plexity and other factors. In a sense, they can be called experienced domain and the global

optimum cannot be guaranteed. In order to effectively address class imbalance problem, we em-

bed an imbalance representation matrix Wm and a penalty adjustment matrix Qm into ELM to

make the decision boundary locate in the ideal position. Qm is a N ×N diagonal matrix, in which

the element Qii
m denotes the correction value associated with the ith sample and Q

i j
m = 0 (i , j).

The number of different element types in penalty adjustment matrix is consistent with the number

of classes. Define the set of penalty adjustment factors as P = {p1, p2, . . . , pk}, k is the number of

classes, Qii
m = pk means that the ith sample belongs to the kth class. Wm is a N ×N diagonal ma-

trix, in which the element W ii
m denotes the class proportion. Based on Wm and Qm, the objective

function of MOAC-ELM is mathematically represented as

min :JMOAC−ELM =
1

2
∥β∥2 +C (Wm +Qm)

1

2

N
∑

i=1

∥ei∥
2

s.t.,h (xi)β = yT
i − eT

i

(11)

Here we use Wm and Qm as the regulation costs for misclassification caused by class propor-

tion and data complexity.



Based on Karush-Kuhn-Tucker (KKT) theorem [40], the Lagrangian function of Eq.(11) is

L =
1

2
∥β∥2 +C (Wm +Qm)

1

2

N
∑

i=1

∥ei∥
2 −

N
∑

i=1

αi

(

h (xi)β − yT
i + eT

i

)

(12)

where αi is the Lagrangian multiplier.

The KKT optimization conditions of Eq.(12) are as follows:

∂L

∂β
= 0→ β =

N
∑

i=1

αih(xi)
T = HT (13a)

∂L

∂ei

= 0→ αi = C (Wm +Qm) ei, i = 1, . . . ,N (13b)

∂L

∂αi

= 0→ h (xi)β − yT
i + eT

i = 0, i = 1, . . . ,N (13c)

Based on Eq.(13), we can obtain the output weights:

β =



















HT
(

I
C
+ (Wm +Qm) HHT

)−1
(Wm +Qm) Y,N < Nh

(

I
C
+HT (Wm +Qm) H

)−1
HT (Wm +Qm) Y,N ≥ Nh

(14)

Finally, MOAC-ELM classifier can be constructed:

f (x) =



















sign h (x) HT
(

I
C
+ (Wm +Qm) HHT

)−1
(Wm +Qm) Y,N < Nh

sign h (x)
(

I
C
+HT (Wm +Qm) H

)−1
HT (Wm +Qm) Y,N ≥ Nh

(15)

The essence of MOAC-ELM is to determine Wm and Qm to push the decision boundary tend

to the majority class and further minimize the weighted cumulative training error. Hence, we

provide Wm based on class information, which can be represented as

wii =
#ni

∑k
i=1 (#ni)

(16)

where #ni denotes the number of the samples corresponding to class ni, k is the number of

classes. In this case, the weights between the different classes reflect the CIR. Meanwhile, data

complexity has its own characteristics in different tasks. Thus, Qm should be set according to the

case-specific situations, which will be discussed below.

Under the unknown feature mapping h (x) circumstances, ELM kernel matrix is defined as

ΩELM = HHT : ΩELMi, j = h (xi) · h
(

x j

)

= K
(

xi, x j

)

(17)

Inspired by the definition of ELM kernel matrix, the output function of kernel-based MOAC-

ELM can be represented as

f (x) = sign h (x) HT

(

I

C
+ (Wm +Qm) HHT

)−1

(Wm +Qm) Y

= sign
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I

C
+  (Wm +Qm)ΩELM

)−1

(Wm +Qm) Y

(18)



Remark 1 : CIR is generally easy to obtain. It is suppose that we have priori information

about the CIR in the proposed method. Besides, data distribution information is difficult to be

identified and the penalty adjustment matrix is added to capture this issue. Thereby, MOAC-ELM

fully considers both class proportion and data complexity.

Remark 2 : The number of different element types in Qm is consistent with the number of

classes, thus there are less tuned parameters, making the proposed method more convenient to

be implemented for multiclass classification problem. Taken altogether, MOAC-ELM is suitable

for both binary classification and multiclass classification problems. Moreover, hidden layer

activation function or kernel function are free to select to map the raw data into the feature space.

4.3. Multi-objective optimization model for penalty adjustment factors

In order to adapt to data complexity for different applications and determine the penalty

adjustment factors in an adaptive manner, a multi-objective optimization-based determination

mechanism is developed. In this mechanism, two main points should be considered for parameter

optimization before applying any optimizer. The first one is how to design individual encoding

using penalty adjustment factors and the second one is how to select the appropriate fitness

function.

As previously mentioned, the individual of the multi-objective optimization model consists

of the set of penalty adjustment factors P = {p1, p2, . . . , pk}. Then the individual can be defined

as

χ=
[

p1, p2, . . . , pk

]

(19)

where k is the number of classes. All parameters are randomly initialized in the reasonable

bounds. Then, the iterative process is triggered to evolve the initialized population.

In order to evaluate the quality of each generated solution by the optimization algorithm, a

suitable optimization objective (i.e., fitness function) should be selected. As the widely used

model performance measure, misclassification rate refers to the proportion of all samples with

falsely classified samples. It is utilized as one of the objective:

f1 = 1 −
NCC

N
(20)

where N is the number of samples, and NCC indicates the number of correctly classified samples,

which can be expressed as

NCC =

N
∑

i=1

k
∑

j=1

f (i, j)κ (i, j) (21)

where f (i, j) and κ (i, j) are the indicator functions that return 0 or 1. If the sample i belongs to

class j, then f (i, j) = 1, if the predicted class of sample i is j, κ (i, j) = 1.

In addition, a good algorithm is expected to achieve good generalization performance (i.e.,

perform well on unseen data) [26, 41]. Kawaguchi et al. [41] identified the practical roles for

generalization theory, in which the most crucial point is that it can provide theoretical insights

to guide of searching model parameters. Therefore, we take into account the generalization gap

during the optimization. Generalization gap is defined as the difference in the model performance

on training samples versus testing samples, which is given by

GG = |ℓ ( f , strain) − ℓ ( f , stest)| (22)



where ℓ ( f , strain) represents the training accuracy of the model, and ℓ ( f , stest) is the correspond-

ing testing accuracy.

A model with a larger generalization gap means overfitting training samples. Inspired by this,

two nonoverlapped subsets are extracted from the training samples, in which one is for training

and the other for validation. Generalization gap is considered as the other objective, which is

defined as

f2 = |ℓ ( f , strain) − ℓ ( f , sval)| (23)

where ℓ ( f , sval) is the validation accuracy.

We propose a multi-objective optimization model for penalty adjustment factors by minimiz-

ing the above objectives:

min F (P) = { f1 (P) , f2 (P)} (24)

Multi-objective evolutionary algorithms (MOEAs) are the mainstream algorithm for solving

the multi-objective problem by providing the Pareto optimal solutions. Among them, NSGA-II

[27] is one of the most famous and successful approaches, which has excellent multi-objective

search capability with elitist strategy and diversity preservation mechanism. Its distinguishing

features are computationally efficient and less dependent on the sharing parameters. According-

ly, NSGA-II is adopted to solve this multi-objective optimization model to generate the Pareto

optimal solutions. The details are described in Algorithm 1.

Algorithm 1 NSGA-II Algotirhm

Input: Initial parent population P0, Npop size of population and maximal number of iterations Itmax.

Output: Pareto optimal solutions

1: Sort P0 based on non-domination criteria.

2: Evaluate the fitness of the initialized population by the defined objective function.

3: Create offspring population Q0 after selection, recombination and mutation.

4: Set iteration times t = 0.

5: while t < Itmax do

6: Generate a new population Rt with 2Npop size (Rt = Pt ∪ Qt).

7: Apply non-dominated sorting on Rt to identify different non-dominated fronts of objective functions

Fi.

8: Generate a new population Pt+1 from Fi by crowding selection operator.

9: Create a new offspring population Qt+1 after selection, recombination and mutation.

10: t = t + 1.

11: end while

Remark 3 : The main purpose of a learning task is to achieve both the satisfactory accuracy

and good generalization performance. In the multi-objective function shown in Eq.(24), misclas-

sification rate is to enhance classification accuracy while generalization gap is to guarantee the

generalization performance. Misclassification rate is mainly used to demonstrate the difference

between the actual value and the corresponding predicted output of the created model, which

could describe classification or regression capability of the learning algorithm. Generalization

gap is defined as a quantitative measurement for evaluating the identification capability of the

model on the unseen data. In general, the created model will achieve different prediction result-

s under different given data. If we obtain a relatively small training error, it indicates that the

model can well represent the distribution characteristics of the training data. However, due to

the fluctuation of data, the performance of the model on the unseen data may be declined. This



phenomenon shows that the trained model only learns the unique data pattern and not the univer-

sal one, and is defined as overfitting. It is the main barrier faced by a learning task. Therefore,

misclassification rate and generalization gap are conflicting, i.e., one specific solution is best for

one objective, but may be worst in the sense of the other objective.

4.4. Decision making via ensemble strategy

Through the above procedure, we can obtain a Pareto optimal solution set with Npop solutions

by multi-objective optimization. Actually, too many solutions may make it difficult for decision

makers to make choice. Therefore, voting method is implemented to make a decision from the

predicted results of all independent classifiers on the testing samples. Specifically, the class label

vector is first expressed as {l1, l2, . . . , lk}. Then, for each testing sample xtest, the predicted results

of Npop independent classifiers can be obtained, defined as
{

ψ1
i

(

xtest
)

, ψ2
i

(

xtest
)

, . . . , ψk
i

(

xtest
)

}

,

where ψ
j

i

(

xtest
)

indicates that the predicted label of classifier ψi

(

i = 1, . . . ,Npop

)

is l j. The final6

predicted label of xtest is determined by conducting a majority voting on all results obtained by

these independent classifiers:

Ψ
(

xtest
)

= l
arg max
j∈[1,...,k]

∑Npop

i
ψ

j

i
(xtest)

(25)

4.5. MOAC-ELM algorithm description

Considering class proportion and data distribution information, MOAC-ELM introduces im-

balance representation matrix Wm and penalty adjustment matrix Qm for misclassification of

each class to minimize the weighted cumulative training error, as shown in Eq.(11). Wm is

represented by ratio of the number of the samples belonging to each class to total samples. In

addition, duo to the difficulty of identification for data distribution information, a multi-objective

optimization-based determination scheme with respect to penalty factors in penalty adjustment

matrix is presented to adaptively discover the class-specific costs. In order to solve the opti-

mization problem, NSGA-II is adopted to generate the Pareto optimal solutions. It should be

noted that misclassification rate and generalization gap are expected to be minimized, which

are defined by Eq.(20) and Eq.(23), respectively. The fitness values calculation can be achieved

through the steps below: 1) construct the classifier using training dataset to estimate the output

weights and compute the output function; 2) using the data from the validation dataset to perfor-

m the created classifier; 3) calculate the misclassification rate and generalization gap by Eq.(20)

and Eq.(23). Finally, ensemble strategy is performed to make a decision from the obtained so-

lutions to achieve the optimal output weights of MOAC-ELM. In summary, the description of

MOAC-ELM is presented in Algorithm 2.



Algorithm 2 MOAC-ELM Algotirhm

Input: A training dataset D =
{

(xi, yi)| xi ∈ ℜ
n, yi ∈ ℜ

m, i = 1, . . . ,N
}

, validation dataset V, number of

hidden nodes Nh, activation function g (·), initial parent population P0, Npop size of population, iteration

times t = 0, and maximal number of iterations Itmax.

1: Training phase

2: Randomly initialize the population;

3: Estimate the output weight β by Eq.(14) and compute the output function by Eq.(15);

4: Compute the fitness of the initialized population by Eq.(20) and Eq.(23);

5: Determine the new population using NSGA-II algorithm;

6: Repeat the NSGA-II process until the goal is met or the preseted maximal number of iterations is

reached;

7: Get the optimal penalty adjustment factors;

8: Testing phase

9: for any testing sample xtest do

10: Set i = 1;

11: while i < Npop do

12: Using the ith independent classifier to predict the label of the testing sample xtest;

13: i = i + 1;

14: end while

15: Calculate the final predicted label of xtest by Eq.(25);

16: end for

5. Performance evaluation

In this section, comparisons are made with several state-of-the-art methods on both binary

classification and multiclass classification tasks to evaluate the performance of MOAC-ELM. All

experiments are performed in Matlab 2019a environment running on a computer equipped with

an Intel Core i7-9750H CPU at 2.60 GHz.

5.1. Dataset description

Experiments are performed on selected benchmark datasets and a real-world application

dataset to test the effectiveness of MOAC-ELM. For benchmark datasets, we use 10 binary clas-

sification datasets and 2 multiclass classification datasets, which have different CIRs. CIR is

defined as

CIR =















#(N−)
#(N+)

, f or k = 2
min(#(yi))

max(#(yi))
, f or k > 2

(26)

where # (N−) and # (N+) represent the number of samples of the minority class and that of the

majority class, # (yi) is the sample number of class i, and k represents the number of classes.

Table 2 presents the detailed characterization of the benchmark datasets used in the experi-

ments, including attributes number, class number, training data number, testing data number and

CIR. According to Table 2, those datasets cover several different CIRs. The smaller its value, the

higher the skew of the data. For binary classification, CIR ranges from 0.1 to 0.55. The CIRs of

the two multiclass classification datasets are also different. In addition, in order to explore the

performance of MOAC-ELM for handling the real-world imbalanced dataset, we also apply it

on the blast furnace status diagnosis dataset. In this case, two datasets with different CIRs (i.e.,



BFSD1 and BFSD2) are formed from the original dataset, as shown in Table 3. Before the exper-

iments, we normalize all the attributes to the range [−1, 1] to remove the influence of dimension.

The data normalization processing method is

x̃ =
(x̃max − x̃min) (x − xmin)

xmax − xmin

+ x̃min (27)

where xmax and xmin represent the maximum and minimum values of the variable before normal-

ized, x̃max and x̃min are the maximum and minimum values of variable after normalized, x and x̃

are the variables values before and after normalized, respectively.

Table 2: Details of benchmark datasets

Datasets #Attributes #Category #Training Data #Testing Data CIR

Abalone19 8 2 3339 835 0.01

Ecoli1 7 2 268 68 0.30

Ecoli2 7 2 268 68 0.18

Glass0 9 2 171 43 0.49

Glass1 9 2 171 43 0.55

Glass2 9 2 171 43 0.09

Pima 8 2 614 154 0.54

Yeast3 8 2 1187 297 0.12

DNA 180 3 2000 1186 0.44

Wine 13 3 118 60 0.68

Table 3: Details of blast furnace status diagnosis datasets

Code #Attributes #Category CIR

BFSD1
12 2

0.2

BFSD2 0.5

5.2. Experimental settings

During the experiments, we divide all the datasets into training samples and testing samples.

Moreover, two nonoverlapped subsets are extracted from the training samples, in which one is

for training and the other for validation. For fair comparison, all the ELM-based algorithms

adopt Sigmoid nodes G (a, b, x) = 1
/(

1 + exp (− (a · x + b))
)

. Due to the utilization of random

parameters between the input and hidden layers, grid search method is conducted to get the op-

timal combination of the number of hidden nodes Nh and the regularization factor C from the

set {10, 20, . . . , 1000} and
{

2−24, 2−23, . . . , 225
}

. For kernel-based ELM, we test the algorithm on

Gaussian kernel K (u, v) = exp
(

−σ∥u − v∥2
)

. Therein two parameters to be adjusted are the reg-

ularization factor C and kernel widthσ, and they are searched in the range of
{

2−24, 2−23, . . . , 225
}

.

In addition, for NSGA-II in MOAC-ELM, the population size is selected as 200, the crossover

probability is set as 0.95, and the mutation probability is selected as 0.1. The range of decision

variable is [−1, 1]. The different maximal iteration times are set for each dataset.



Fig. 5 illustrates the relationship between user specified parameters and classification per-

formance. CIR is first considered to determine the parameters in MOAC-ELM. It can be seen

that the performance in terms of accuracy fluctuates frequently when C and Nh in Sigmoid node

change. With the variety of C and σ in Gaussian kernel, accuracy appears stable interval. On

the Pima dataset, we see from Fig. 5(a1) that the distribution of validation accuracy for Sigmoid

node has a relative smooth range with the best performance. In this case, when getting consistent

boundary under circumstantiates of different parameter combinations, smaller Nh is preferred.

Therefore, we select the best combination of (C, Nh) in this range with smaller Nh. As observed

from Fig. 5(b1), the best performance of Gaussian kernel falls within a limited range. We prefer

smaller σ than C when getting consistent boundary under circumstantiates of different parameter

combinations. Similarly, all the parameters for each dataset are set based on the aforementioned

observations. The parameter setting for W-ELM, kernel-based W-ELM, CCR-ELM, Boosting

W-ELM also use the grid search manner.

After the model parameters are determined, we use NSGA-II to optimize the two defined

objectives for the setting of penalty adjustment factors in MOAC-ELM. Fig. 6 presents the Pareto

optimal solutions with 50, 100, 200, and 300 iterations on Pima dataset, Ecoli2 dataset, Yeast3

dataset and Glass1 dataset, respectively. In this figure, the vertical and horizontal axes show the

first objective and the second objective, respectively. According to Fig. 6, the two objectives are

mutually incompatible, which is the primary prerequisite for better convergence of the proposed

multi-objective optimization model. It is obvious that the convergence results are not sensitive

to the generations, but it also can be seen that as the maximal iterations increase, the solutions

gradually become stable. Considering the computational complexity, the maximal iteration times

is selected as 200 as a trade-off. Overall, the multi-objective optimization model can obtain the

Pareto optimal solutions from the viewpoint of optimization results.

5.3. Performance evaluation on benchmark datasets

We divide all the datasets into three parts, including binary classification with high imbalance

degree (CIR ≤ 0.2), binary classification with low imbalance degree (CIR > 0.2) and multiclass

classification. G-mean, accuracy and computation time are utilized as measurements of the per-

formance of MOAC-ELM. Tables 4, 5, 6 and Fig. 7 illustrate the detailed comparison results. The

best results achieved by each dataset appear as bold. According to Table 4 and Fig. 7(a), in terms

of G-mean, as CIR increases, the results get worse, and the performance of ELM is pretty bad.

MOAC-ELM achieves better results on Abalone19, Ecoli2 and Yeast3 datasets, especially when

kernel trick is utilized. For Glass2 dataset, Boosting W-ELM achieves the best G-mean. In ad-

dition, the performance of MOAC-ELM and kernel-based MOAC-ELM are better than W-ELM,

indicating that data distribution information has crucial influence on classification performance.

As observed from Table 5 and Fig. 7(b), MOAC-ELM performs better than other comparison

methods on Glass0 and Glass1 datasets. For Pima dataset, the performance of CCR-ELM and

MOAC-ELM are with minor difference. The CIR of these datasets are not much different. Thus,

it is likely that strategy differences between methods contribute to different results. The result-

s presented here indicate that data complexity plays a more important role in the performance

improvement than CIR. Furthermore, MOAC-ELM is also compared with non-ELM classifier,

i.e., fuzzy SVM (FSVM) [42], and the comparison results are given. The accuracy of FSVM on

Ecoli1, Glass0, Glass1 and Pima datasets are 88.12, 83.83, 64.52, 70.24, respectively. It can be

observed that MOAC-ELM is superior to FSVM.

The comparison results of two multiclass classification datasets are listed in Table 6. It can

be observed that kernel-based MOAC-ELM presents more accurate classification results. It is



(a1) (b1)

(a2) (b2)

(a3) (b3)

(a4) (b4)

Figure 5: Validation accuracy distribution with varying user specified parameter (C, Nh) for Sigmoid node or (C, σ) for

Gaussian kernel on four different datasets: (a1), (a2), (a3) and (a4) are the different choices of C and L for Sigmoid node

on Pima dataset, Ecoli1 dataset, Yeast3 dataset and BFSD2 dataset; (b1), (b2), (b3) and (b4) are the different choices of

C and σ for Gaussian kernel on Pima dataset, Ecoli1 dataset, Yeast3 dataset, and BFSD2 dataset, respectively.
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Figure 6: Pareto optimal solutions obtained by 50, 100, 200, and 300 iterations on different datasets.

Table 4: Experimental results of binary classification with high imbalance degree (CIR ≤ 0.2)

Approaches
Abalone19 (0.0078) Ecoli2 (0.1831) Glass2 (0.0947) Yeast3 (0.1234)

G-mean Accuracy G-mean Accuracy G-mean Accuracy G-mean Accuracy

ELM 46.94 98.17 90.19 93.75 74.68 90.12 80.72 93.85

W-ELM 76.77 94.82 91.94 92.81 76.79 83.10 92.99 92.27

kernel-based W-ELM 75.16 98.02 88.85 93.24 78.45 90.11 92.52 94.02

CCR-ELM 65.70 98.33 87.22 89.71 75.50 83.72 91.37 93.41

Boosting W-ELM 76.01 98.16 92.76 92.44 87.21 86.28 93.11 92.45

MOAC-ELM 77.12 98.41 93.11 93.32 86.34 88.73 93.79 93.81

kernel-based MOAC-ELM 76.83 98.55 92.18 93.50 86.77 89.90 93.42 94.40

Table 5: Experimental results of binary classification with low imbalance degree (CIR > 0.2)

Approaches
Ecoli1 (0.2973) Glass0 (0.4861) Glass1 (0.5507) Pima (0.5350)

G-mean Accuracy G-mean Accuracy G-mean Accuracy G-mean Accuracy

ELM 84.78 89.42 85.96 83.34 65.26 68.61 68.14 72.04

W-ELM 87.02 89.11 82.43 81.27 70.35 70.97 70.35 71.55

kernel-based W-ELM 83.21 86.55 85.82 85.06 71.86 72.04 71.26 71.73

CCR-ELM 89.71 85.29 88.56 83.88 72.07 62.79 72.91 77.03

Boosting W-ELM 90.25 91.01 89.10 88.19 73.88 74.02 71.77 72.11

MOAC-ELM 89.59 91.52 89.35 89.10 74.04 74.36 72.12 74.67

kernel-based MOAC-ELM 89.70 91.44 89.93 89.22 73.52 74.81 72.60 75.52
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Figure 7: Comparison results of different datasets: (a) G-mean and (b) Accuracy.



Table 6: Experimental results of multiclass classification

Approaches
DNA Wine

G-mean Accuracy G-mean Accuracy

ELM 93.78 93.84 95.64 97.83

W-ELM 93.54 93.44 97.58 97.67

kernel-based W-ELM 94.24 94.05 97.75 97.88

CCR-ELM 94.88 93.16 96.10 98.33

Boosting W-ELM 94.91 94.65 97.80 98.69

MOAC-ELM 94.79 94.72 98.15 99.02

kernel-based MOAC-ELM 94.80 94.85 98.22 99.21

Table 7: Computation time of different methods on 4 selected datasets

Datasets Ecoli2 Pima Glass1 Yeast3

ELM 0.0156 0.0128 0.1404 0.0312

W-ELM 0.0374 0.1145 0.0425 0.6510

kernel-based W-ELM 0.0343 0.1045 0.0274 0.4619

CCR-ELM 0.0410 0.1288 0.0653 0.6273

Boosting W-ELM 0.2722 0.2751 0.1425 0.9771

MOAC-ELM 182.29 400.45 355.59 640.32

kernel-based MOAC-ELM 185.44 398.38 356.03 621.35

easier to explain this appearance: kernel trick can map the raw data to the higher dimensional

space. Accordingly, MOAC-ELM is also competent for multiclass classification tasks.

Table 7 shows the average training time on 4 selected datasets. The comparison results show

that ELM, W-ELM, and kernel-based W-ELM take less training time than MOAC-ELM. Boost-

ing W-ELM needs several iteration steps, making its training speed slower than ELM and W-

ELM. Comparing with these methods, MOAC-ELM is relatively time-consuming due to the

time spending in training multi-objective optimization model, but it still can meet requirements

of the classification tasks.

5.4. Performance evaluation on real-world application

In this section, the performance of MOAC-ELM in dealing with real-world application is

tested using blast furnace diagnosis dataset. In addition, the effectiveness and feasibility of

MOAC-ELM is verified through comparative experiments.

Blast furnace is the smelting equipment used to produce hot metal in metallurgical indus-

try, as shown in Fig. 8 [43, 44]. Safety and reliability is the primary concern of ironmaking

production. There is no doubt that it is essential to monitor the production status of blast fur-

nace accurately. In actual production, there are often more samples of normal operating than

samples of abnormal operating, thereby status diagnosis of the blast furnace can be viewed as a

imbalanced classification problem.

To be specific, majority class is composed of the normal samples while minority class is

represented by abnormal samples, thus status diagnosis of the blast furnace is designed as a bi-
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Figure 8: Blast furnace system overview

Table 8: Characteristics of two blast furnace status diagnosis datasets with different CIRs

No. CIR Training samples Testing samples

BFSD1 0.2 1200 350

BFSD2 0.5 900 200

nary classification problem. The data were collected from a medium-size blast furnace. Though

the analysis and experts’ experience, the related variables are treated as characteristic feature to

determine whether the status is normal or not, including blast pressure, top pressure, blast tem-

perature, top temperature (including four-point temperature), blast volume, differential pressure,

permeability index, cross temperature (including center and edge temperature). The simulation

is carried out based on a dataset containing 1800 samples, including 1400 normal samples and

400 abnormal samples. In order to verify the validity of MOAC-ELM, datasets with two different

CIRs are formed by randomly selecting normal and abnormal samples from the original dataset,

as shown in Table 3. Table 8 details the characteristics of the two datasets with different CIRs .

The Pareto optimal solutions obtained after different generations on BFSD1 dataset are pre-

sented in Fig. 9. As can be observed, with the generations increase, the convergence results do

not change much. Thus, we set the maximal iteration times equal to 100 in this experiment.

Table 9 illustrates the detailed results on G-mean and accuracy among different methods. The

results are also illustrated in Fig. 10 to make the comparison easier to recognize. According to

Table 9 and Fig. 10, both MOAC-ELM and kernel-based MOAC-ELM outperform the compared

methods. For BFSD1, from the point of view of G-mean, kernel-based MOAC-ELM is 16.3%

higher than ELM, 8.6% higher than W-ELM, 7.0% higher than kernel-based W-ELM, 6.7% high-

er than CCR-ELM, and 5.9% higher than boosting W-ELM. Similarly, for BFSD2, kernel-based

MOAC-ELM is 7.7% higher than ELM, 6.4% higher than W-ELM, 3.8% higher than kernel-

based W-ELM, 5.7% higher than CCR-ELM, and 3.6% higher than Boosting W-ELM. From the

above analysis, we can see that MOAC-ELM has better classification performance under lower
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Figure 9: Pareto optimal solutions obtained by 50, 100, 200, and 300 generations on BFSD1.

CIR. Accordingly, MOAC-ELM is more suitable for BF status diagnosis implementation under

imbalanced data characteristics. In addition, the training time of ELM, W-ELM and MOAC-

ELM are 0.0845s, 0.7338s, and 810.2874s, respectively. It is obvious that MOAC-ELM takes

more time than other methods because multi-objective optimization is involved. We also report

the parameter sensitivity analysis and give the experimental results of different population sizes.

For MOAC-ELM, the G-mean with 100, 150, 200 population sizes on BFSD1 dataset are 84.18,

85.41, 85.71, respectively. The statistical standard deviation is 0.8107. The results are similar

when the population sizes are 150 and 200. It further indicates that MOAC-ELM is not sensitive

to the population size.

6. Discussions

In this section, we discuss the differences between MOAC-ELM and related optimization-

based ELMs, and other cost-sensitive processing manner.

6.1. Differences with respect to related optimization-based ELMs

The multi-objective evolutionary algorithm is regarded as the most popular and effective

algorithm for solving multi-objective optimization problem, which has been used to enhance

the performance of machine learning-based model and the quality of their results [45]. As the

randomly assigned parameters degrade the performance, many researchers tried to optimize the

network parameters to achieve more compact network structure by using several optimization

algorithms [46, 47]. Meanwhile, heuristic feature extraction methods were developed [48, 49,



Table 9: Experimental results of blast furnace status diagnosis

Approaches
BFSD1 BFSD2

G-mean Accuracy G-mean Accuracy

ELM 73.85 84.87 84.63 86.84

W-ELM 79.12 86.42 85.62 86.01

kernel-based W-ELM 80.32 87.69 87.79 88.90

CCR-ELM 80.55 88.07 86.21 85.94

Boosting W-ELM 81.12 88.20 87.95 87.54

MOAC-ELM 85.71 90.33 89.31 88.92

kernel-based MOAC-ELM 85.92 90.17 91.12 90.01
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Figure 10: Bar chart for blast furnace status diagnosis



50]. However, such kind of works only consider RMSE as the performance criterion, which

only can evaluate the error between the actual value and the corresponding predicted value of

the created model. In addition, a multi-objective genetic programming approach was developed

to evolving accurate and diverse ensembles of genetic program classifiers on imbalanced data

[51]. The major differences of MOAC-ELM with respect to related optimization-based ELMs

are that 1) A multi-objective optimization model is investigated to achieve a flexible and efficient

weights determination scheme under the framework of W-ELM for imbalanced classification

problem; 2) Generalization gap is defined as one of the optimization objectives, which represents

the ability of the algorithm to generalize well from the learning data to the unseen data, for

producing insightful and effective generalization bounds. Then, the misclassification rate and

generalization gap are jointly taken into consideration as the two conflicting objectives to ensure

the classification accuracy and alleviate the overfitting issue. It should be pointed out that the

training process of MOAC-ELM is relatively time-consuming compared to classic ELM and W-

ELM due to the multi-objective optimization involved, but it still can meet the requirements of

the classification tasks.

6.2. Differences with respect to other cost-sensitive processing manner

Cost-sensitive learning is the most common strategy to deal with imbalanced data, which

takes the misclassication costs into consideration and gives higher misclassication costs to mi-

nority class samples than majority class samples. For many cases, the prior information of cost

distribution is insufficient and the relationship between cost matrix and classification perfor-

mance is unclear. CCR-ELM [23] and CSKELM [24] use class-specific regularization parame-

ters whose value are fixed by performing a grid search and using the proportion of class samples,

respectively. In order to derive cost matrix in an adaptive manner, Boosting method is intro-

duced to obtain weighting schemes in W-ELM though several iteration steps in [22]. Li et al.

[26] established an upper error bound model for W-ELM to provide some useful guidelines for

assigning case-weighting factors. Compared with such methods, MOAC-ELM embeds an im-

balance representation matrix and a penalty adjustment matrix into ELM by fully considering

class proportion and data complexity. In addition, penalty adjustment factors are regarded as the

solutions of a multi-objective optimization problem to capture data complexity without the need

of prior knowledge and many trials. From the experimental results, MOAC-ELM achieves better

performance than W-ELM in both benchmark datasets and a real-world application dataset, re-

vealing that using penalty adjustment matrix to describe data distribution information has a great

impact on classification performance.

7. Conclusions

In this paper, we focus on the problem of robust and adaptive weighting determination

scheme in class imbalance field, and present a solution of MOAC-ELM. Specifically, an im-

balance representation matrix and a penalty adjustment matrix are embedded into ELM to make

the decision boundary locate in the ideal position. In order to learn the penalty adjustment factors

in an adaptive manner for the case-specific situations, we establish a multi-objective optimiza-

tion model by considering comprehensive optimization criteria. In addition, NSGA-II is adopted

to optimize the objectives to get the compromise solutions and make a decision by ensemble

strategy. The proposed MOAC-ELM can determine the costs adaptively for different tasks, en-

abling to enhance the representation of data distribution, so as to overcome the limitations of the



fixed weight mechanism in the existing methods. As such, W-ELM with uniform weights can be

regards as a special case of MOAC-ELM. Comprehensive comparisons with several state-of-the-

art methods have been performed on selected benchmark datasets and a real-world application

dataset. The experimental results demonstrate the good robustness of MOAC-ELM. Multi-label

imbalanced learning in the ELM community is still challenging. How to deal with multi-label

imbalanced classification task using this strategy is a future research-worthy problem.
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