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Counting generations 
in birth and death processes 
with competing Erlang 
and exponential waiting times
Giulia Belluccini1, Martín López‑García1, Grant Lythe1 & Carmen Molina‑París1,2*

Lymphocyte populations, stimulated in vitro or in vivo, grow as cells divide. Stochastic models are 
appropriate because some cells undergo multiple rounds of division, some die, and others of the 
same type in the same conditions do not divide at all. If individual cells behave independently, then 
each cell can be imagined as sampling from a probability density of times to division and death. 
The exponential density is the most mathematically and computationally convenient choice. It 
has the advantage of satisfying the memoryless property, consistent with a Markov process, but it 
overestimates the probability of short division times. With the aim of preserving the advantages of a 
Markovian framework while improving the representation of experimentally-observed division times, 
we consider a multi-stage  model of cellular division and death. We use Erlang-distributed (or, more 
generally, phase-type distributed) times to division, and exponentially distributed times to death. 
We classify cells into generations, using the rule that the daughters of cells in generation n are in 
generation n+ 1 . In some circumstances, our representation is equivalent to established models of 
lymphocyte dynamics. We find the growth rate of the cell population by calculating the proportions of 
cells by stage and generation. The exponent describing the  late-time cell population growth, and the 
criterion for extinction of the population, differs from what would be expected if N steps with rate � 
were equivalent to a single step of rate �/N . We link with a published experimental dataset, where cell 
counts were reported after T cells were transferred to lymphopenic mice, using Approximate Bayesian 
Computation. In the comparison, the death rate is assumed to be proportional to the generation and 
the Erlang time to division for generation 0 is allowed to differ from that of subsequent generations. 
The multi-stage representation is preferred to a simple exponential in posterior distributions, and the 
mean time to first division is estimated to be longer than the mean time to subsequent divisions.

Cells of the immune system patrol our bodies for months or years1,2. During an adaptive immune response, a 
subset of specific cells, initially a small fraction of the total population, expands as cells undergo multiple rounds 
of division over a few days3. Although most of these cells die as the infection is overcome, lasting immunity 
is ensured by the transformation, or “differentiation” of individual cells to a memory phenotype. The most 
convenient mathematical and computational models of the dynamics of cell populations, which can consider 
heterogeneity at the single-cell level, are Markov models. In these models, the variables describe the number of 
cells of each type as a function of time, and cellular events such as division, death or differentiation are defined 
by their associated rates; each event corresponds to a possible fate of an individual cell and cells are independ-
ent of each other. In this formulation, inter-event times are exponentially-distributed random variables, with 
probability density maximised at zero.

The rapid expansion of cohorts of lymphocytes is recreated in laboratories, either by stimulation in vitro or 
by transferring cells to lymphopenic mice. By labelling cells with carboxyfluorescein succinimidyl ester (CFSE) 
or cell trace violet at the beginning of an experiment, and then using flow cytometry at a later time, a cohort 
of cells can be classified into generations because each round of division dilutes the intracellular dye4–9. At the 
beginning of an experiment, when cells are labelled, it is considered that all cells are in generation 0. In time-lapse 
microscopy experiments, individual cells are tracked and correlations within family trees identified10–17. Over 
the timescales of such experiments, hours to days, it is not appropriate to treat cell division as an instantaneous 
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event. Rather, cells are “cycling” through gap, synthesis and mitosis phases ( G1/G2 , S and M), and daughter cells 
cannot immediately redivide18. To improve on the exponential distribution, Smith and Martin proposed a model 
in which the time between divisions is the sum of a fixed time spent in phase B, corresponding to S/G2/M, and a 
variable time spent in phase A, corresponding to G1

19. In the “single stochastic division” model of Hogan et al., 
the rate of transition from A to B phase depends on the T cell clonotype and on the number of cells competing 
for the same resources20. If there is a common molecular mechanism controlling the time spent in all phases 
of the cell cycle, then phase B may, instead, occupy a fixed proportion of the total time10. Takahashi21,22 divided 
the cell cycle into four phases, with the duration of each drawn from a Pearson type III distribution. Weber et 
al. postulated a delayed exponential waiting time for each of three phases, corresponding to G1 , S and G2/M23.

The cyton model is a general framework for modelling proliferating lymphocytes, based on the idea that each 
cell has a set of competing clocks, determining its fate13. A number of features are incorporated in the model: 
generation-dependent parameters, heritable factors, and correlations between cells of the same generation11,16,24. 
When the fate of an individual cell is determined by competing internal clocks, the probability density of observed 
times between divisions is not the same as that of the division clock because division only happens if another fate 
does not. The probability density of division times is said to be “censored”25. When all clocks have exponential 
probability densities, the probability density of observed division times is also exponential due to the memory-
less property of exponential random variables; this conservation of shape does not hold for non-exponential 
distributions, including the log-normal and Erlang distributions.

Kendall26 introduced the idea of cell division occurring at the end of a sequence of k phases, with an expo-
nentially-distributed time spent in each phase. Luzyanina et al.27 made use of a similar model, where each phase 
identifies a cell generation, to study methodological and computational issues related to CFSE labelling data. 
Gamma and Erlang distributions have been considered to model a cell’s time to division28,29. Yates et al.30 incor-
porated the idea of a sequence of exponentially-distributed phases, also referred as stages, before division in a 
multi-stage representation of a population of dividing cells. This yields an Erlang distribution of times to divi-
sion, while retaining some of the mathematical and computational advantages of the exponential distribution30. 
The number of stages and their mean duration can be used as free parameters to compare with experimental 
data31,32. On the other hand, the internal stages are a mathematical construct that do not directly correspond to 
biological phases.

In this manuscript we adopt a multi-stage representation of the cell cycle and we include cell death as a com-
peting fate. In the simplest case, obtained by assuming identical birth and death rates across stages, we derive an 
analytical expression for the expected number of cells in each stage as a function of time, and study the limiting 
behaviour of the system as t → +∞ . We also consider cell generations, in order to make theoretical predictions 
comparable to CFSE experimental data20. The expected number of cells in each generation is found in the case 
of constant birth and death rates, and number of stages across generations. Although arising from different 
motivations, our multi-stage model with cell generations can be accommodated within the cyton framework, 
with the progressor fraction equal to one, division and death clocks following Erlang and exponential distribu-
tions, respectively. We show the applicability of this stochastic approach by calibrating our multi-stage model 
with cell generations and its exponential version with CFSE data from two populations of murine T cells20. 
Model calibration is performed making use of Approximate Bayesian Computation Sequential Monte Carlo 
(ABC-SMC) approaches33.

In the “Methods: multi-stage models of cell division and death with a Markovian framework”  section, we 
introduce the multi-stage model including cell death and obtain analytical results for the multi-stage framework 
under some conditions on the model parameters. In the “Case study: lymphopenia-induced proliferation” sec-
tion, we calibrate the multi-stage model with cell generations by making use of CFSE data from Hogan et al.20. 
Its performance is compared with a simple exponential model of cell division. A final discussion is provided in 
the “Discussion”  section.

Methods: multi‑stage models of cell division and death with a Markovian framework
We present a multi-stage (MS) model of the time between cell divisions. Cells pass through a sequence of N 
stages before dividing. The stages are not directly related to the biological phases of the cellular cycle. The time 
to progress from stage j to the next one, j + 1 , is an exponentially-distributed random variable with mean 1/�(j) . 
We will refer to these rates, �(j) , j = 1, . . . ,N , as birth rates. Times to death are also distributed exponentially, 
with per cell death rate µ . Thus, at each stage, each cell may either proceed to the next one, with probability 
�
(j)/(�(j) + µ) , or die, with probability µ/(�(j) + µ) . The time increment is a random variable, following the 

exponential distribution with mean 1/(�(j) + µ).
Figure 1 illustrates the dynamics. Our multi-stage model is equivalent to considering two independent clocks 

for cell division and death, which compete to decide the cellular fate. The time-to-death clock follows an expo-
nential distribution with rate µ , while the division time follows a continuous phase-type distribution with 
parameters τ and T34. A particular choice of phase-type distribution is the Erlang(�,N) , which is a concatenation 
of N identically distributed exponential steps, where all birth rates are equal: �(j) = � , j = 1, . . . ,N  . The case 
µ = 0 has been considered by Yates et al.30.

The number of cells in stage j at time t, is the random variable Sj(t) , j = 1, . . . ,N . Let Mj(t) = E[Sj(t)] , be 
the expected value of Sj(t) . The following set of differential equations may be obtained by considering the events 
that can happen in a short time interval:

(2.1)
dMj(t)

dt
=

{
2�(N)MN (t)− (�(1) + µ)M1(t), if j = 1,

�
(j−1)Mj−1(t)− (�(j) + µ)Mj(t), if j = 2, . . . ,N .
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When we extend the MS model to assign a generation to each cell, we refer to the model as the MS-G model. In 
this way, mean quantities can be compared with CFSE experimental data8. Histograms of CFSE intensity display a 
series of peaks, each corresponding to a generation, or a number of divisions over the course of the experiment35.

In the MS-G model, generation g ≥ 0 is split into Ng different stages. The notation Ng reflects the fact that the 
number of stages may depend on the generation g. A cell in generation g has to sequentially visit all Ng compart-
ments to divide. On the other hand, cells might also die at any stage of the cycle. As depicted in Fig. 2, if a cell 
belongs to generation g and is in compartment j, j = 1, . . . ,Ng − 1 , it may proceed to the following stage, with 
birth rate �g , or die with death rate µg . Again the notation reflects the potential for these rates to depend on the 

Figure 1.   Multi-stage model of cell division and death (MS model). The cell cycle is divided into N different 
stages. A cell has to visit N stages in order to divide. At each stage j, j = 1, . . . ,N , the cell may proceed to the 
next stage, with birth rate �(j) , or die, with death rate µ.

Figure 2.   Multi-stage model with cell generations (MS-G model). Each cell in the first stage of generation 0 has 
to visit all the N0 compartments (or stages) in order to divide. When cells arrive at the last stage of generation 0, 
N0 , they may divide with birth rate �0 , or die with death rate µ0 . If a cell divides, its daughter cells join the first 
compartment of the next generation, and the process continues.
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generation. When a cell reaches the last stage, Ng , of generation g and divides, its two daughters will join the 
first compartment of generation g + 1 . In summary, given a cell in generation g, its time to division follows an 
Erlang distribution with parameters (�g ,Ng ) , whereas its time to death follows an exponential distribution with 
rate µg . These distributions correspond to two independent competing clocks to control cellular fate, similarly 
to those considered in Fig. 1.

The number of cells in stage j of generation g at time t is the random variable Sgj (t) , g ≥ 0 , j = 1, . . . ,Ng . Let 
M

g
j (t) = E[Sgj (t)] be the expected value of Sgj (t) . The following set of differential equations may be obtained by 

considering the events that can happen in a short time interval:

We are interested in computing the mean number of cells over time for the MS and MS-G models. Specifically 
the MS-G model will provide the mean number of cells in each generation, and thus, can be used together with 
CFSE data to obtain division and death rates. When division times are Erlang distributed (MS model), or if one 
considers that those Erlang distributions are identical across generations (MS-G model), it is possible to carry 
out a comprehensive analytical study. This is shown in the “Analytical results” section.

When convenient analytical solutions cannot be obtained, (2.1)–(2.2) can be solved numerically in different 
ways. For example, for the MS-G model, and keeping in mind our interest in modelling CFSE data, we assume 
there exists a maximum generation G that can be measured by the dye. Thus, one might be interested in follow-
ing cells within generations g = 0, . . . ,G . For these generations, Eq. (2.2) can be solved by making use of the 
matrix exponential. To this end, let M(t) be the column vector of the mean number of cells in each stage and 
generation as time evolves, i.e.,

which has length 
∑G

g=0 Ng , and where the column sub-vectors Mg (t) contain the mean number of cells across 
stages in generations g = 0, . . . ,G . Let us also define the coefficient matrix

where

Agg is a square Ng × Ng matrix, whereas Ag ,g−1 is a Ng × Ng−1 matrix. A is then a real square matrix of dimension ∑G
g=0 Ng , and 0a×b represents a null matrix with dimension a× b . Given the vector of the initial conditions n0 , 

which has length 
∑G

g=0 Ng , the system of Eq. (2.2) can be rewritten as the following Cauchy problem

The solution of the system is given by M(t) = eAtn0 , where

represents the matrix exponential. For efficient ways of computing this matrix, see Refs.36–39. Finally, we note 
that since CFSE data describe the number of cells in each generation, one can then compute the mean number 
of cells in each generation over time as

(2.2)
dM

g
j (t)

dt
=





−(�0 + µ0)M
0
1 (t), if g = 0, j = 1,

�gM
g
j−1(t)− (�g + µg )M

g
j (t), if g ≥ 0, j = 2, . . . ,Ng ,

2�g−1M
g−1
Ng−1

(t)− (�g + µg )M
g
1 (t), if g ≥ 1, j = 1.

M(t) =
(
M0

1 (t), . . . ,M
0
N0
(t),M1

1 (t), . . . ,M
1
N1
(t), . . . ,MG

1 (t), . . . ,M
G
NG

(t)
)T

= (M0(t)
T ,M1(t)

T , . . . ,MG(t)
T )T ,

A =




A00 0N0×N1 0N0×N2 · · · 0N0×NG−1 0N0×NG

A10 A11 0N1×N2 · · · 0N1×NG−1 0N1×NG

...
. . .

. . .
. . .

...
...

0NG−1×N0 0NG−1×N1 0NG−1×N2 · · · AG−1,G−1 0NG−1×NG

0NG×N0 0NG×N1 0NG×N2 · · · AG,G−1 AG,G



,

Agg =




−(�g + µg ) 0 0 0 · · · 0
�g − (�g + µg ) 0 0 · · · 0
0 �g − (�g + µg ) 0 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 �g − (�g + µg ) 0
0 · · · 0 0 �g − (�g + µg )



,

Ag ,g−1 =




0 · · · 0 2�g−1

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0


.

{
dM(t)

dt
= A ·M(t),

M(0) = n0.

eAt =
+∞∑

k=0

(At)k

k!
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Using (2.2) and (2.3), we compute the time evolution of Mg (t) as follows

In a related approach by Zilman et al.29, a cell’s time to division is a gamma-distributed random variable, and time 
to death is exponentially distributed. Solutions are given in terms of integral equations. Here, with Erlang-distrib-
uted division times, we find a set of linear differential equations for the expected number of cells in each stage.

Analytical results
In this Section, we show how the Markovian framework of the proposed multi-stage models provides analytical 
tractability under some simplifying assumptions. Our aim is to compute the mean number of cells in each stage 
and generation over time, especially the limiting behaviour as t → +∞.

MS model with Erlang division time.  In this Section, we consider a simple case of the MS model, where 
identical birth rates are assumed across different stages; that is, �(j) = �, j = 1, . . . ,N . The  phase-type distribu-
tion for the time to division in Fig. 1 is Erlang(�,N) and the mean time to division is given by N

�
 . Note that when 

N = 1 the MS model becomes a Markov linear birth-and-death process, with birth rate, � , and death rate, µ . 
Equation (2.1) becomes

As in Yates et al.30, we introduce the new variables mj(t) = e(�+µ)tMj(t) , j = 1, . . . ,N  , which satisfy the fol-
lowing ODEs:

We find an Nth-order homogeneous differential equation for mN (t) that does not depend on µ:

together with a set of ODEs that relate mj(t) to the derivatives of mN (t) with respect to time

The solution is30

j = 1, . . . ,N and t ≥ 0 , where z = e
2π i
N  is the first Nth root of unity, and ck (for k = 0, . . . ,N − 1 ) are constants 

which depend on the initial conditions.
If, at time t = 0 , there are C0 cells in the first stage and zero cells in any other stage, we have

Then the solutions of the system (3.1) in terms of the original variables are

Therefore, the expected total number of cells in the population at time t, M(t), is given by

(2.3)Mg (t) =
Ng∑

j=1

M
g
j (t), g ≥ 0.

(2.4)

dM0(t)

dt
= −�0M

0
N0
(t)− µ0M

0(t),

dMg (t)

dt
= 2�g−1M

g−1
Ng−1

(t)− �gM
g
Ng
(t)− µgM

g (t), g ≥ 1.

(3.1)
dMj(t)

dt
=

{
2�MN (t)− (�+ µ)M1(t), if j = 1,
�Mj−1(t)− (�+ µ)Mj(t), if j = 2, . . . ,N .

(3.2)
dmj(t)

dt
=

{
2�mN (t), if j = 1,
�mj−1(t), if j = 2, . . . ,N .

(3.3)dNmN (t)

dtN
= 2�NmN (t),

(3.4)mj(t) =
(
1

�

)N−j dN−jmN (t)

dtN−j
, j = 1, . . . ,N − 1.

mj(t) = 21−
j
N

N−1∑

k=0

ck z
−kj e2

1
N �zkt ,

ck = C0
2

1
N

2N
zk , k = 0, . . . ,N − 1.

(3.5)Mj(t) = C0
2

1−j
N

N
e−µt

N−1∑

k=0

z(1−j)ke

(
2
1
N zk−1

)
�t
, j = 1, . . . ,N .

(3.6)M(t) =
N∑

j=1

Mj(t) = C0
2

1
N

2N
e−µt

N−1∑

k=0

zk

2
1
N zk − 1

e

(
2
1
N zk−1

)
�t
.
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Population extinction or growth.  Let us consider the MS model with Erlang division time, and define 
S(t) =

∑N
i=1 Si(t) , the total number of cells in the population at time t ≥ 0 , so that M(t) = E[S(t)] . One can 

define

the probability of population extinction at late times, for m cells initially in stage j at time t = 0 . Since cells behave 
independently, it is clear that p(m)

j = (p
(1)
j )m , so we omit the superindex from now on and denote p(1)j ≡ pj . A 

first-step argument leads to

These equations can be solved recursively, leading to

where r = µ
µ+�

 . When N = 1 , p1 = µ
�

 ; when N = 2 , p1 = µ2+2µ�
�2

.
The analytical solutions (3.5)–(3.6) provide another route to study the limiting behaviour as t → +∞ . The 

largest term in the summation of (3.5) is the one corresponding to k = 0 . The combination (21/N − 1)�− µ , 
is positive if µ < (21/N − 1)� , negative, when µ > (21/N − 1)� , or zero if µ = (21/N − 1)� . Thus, extinction 
of the cell population is certain if µ > (21/N − 1)� . Figure 3 (centre) shows an example of extinction when 
N = 5, � = 0.5,µ = 0.1 and the initial number of cells C0 = 102 . An example of behaviour when µ = (21/N − 1)� 
is shown in the left panel of Fig. 3.

If µ < (21/N − 1)� then, as t → +∞,

and

which is illustrated in Fig. 3 (right). The total population size is easily obtained using

As t → +∞,

p
(m)
j = lim

t→+∞
P(S(t) = 0 | Sj(0) = m, Sk(0) = 0, k �= j), j = 1, . . . ,N ,

pi =
µ

�+ µ
+

�

�+ µ
pi+1, i = 1, . . . ,N − 1,

pN =
µ

�+ µ
+

�

�+ µ
p21.

(3.7)p1 =
{ 1

(1−r)N
− 1, if µ < (21/N − 1)�,

1, if µ ≥ (21/N − 1)�,

(3.8)Mj(t) ≃ C0
2

1−j
N

N
e−µt e(2

1
N −1)�t , j = 1, . . . ,N ,

(3.9)lim
t→+∞

M1(t)

MN (t)
= 2

N−1
N ,

(3.10)
dM(t)

dt
= �MN (t)− µM(t).

Figure 3.   Limiting behaviour when t → +∞ of a population with an initial number of cells, C0 = 102 . Birth 
and death rates, � and µ , have units of inverse time, t−1 . Left: Parameters: N = 5 , � = 0.6 , µ = (21/N − 1)� . 
The population of cells in stage j levels out to 2

1−j
N C0/N for sufficiently large times. Centre: Parameters: N = 5 , 

� = 0.5 , µ = 0.1 . The population of cells at any stage becomes extinct at late times. Right: Parameters: N = 5 , 
� = 0.8 , µ = 0.1 . The populations grow according to (3.11) and the relation between M1 and M5 given by 
Eq. (3.9) is satisfied. For example, at t = 100 , M1(t) ≃ 24/5M5(t).
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The exponent σN = 2
1
N − 1 , describing the  late-time cell population growth, plotted in Fig. 4, is lower than 

would be expected if N steps with rate � were equivalent to a single step of rate �/N  . As N → +∞ , we have 
NσN → log 2 . In terms of (3.10), �σN < �/N since MN (t) < 1/N as t → +∞ . Because the cell population is 
unevenly distributed across stages, with a bias towards earlier stages in the long run, N steps with rate � are not 
equivalent to a single step of rate �/N.

Mean fraction of cells at each stage.  We define the mean fraction of cells in each stage, Pj(t) , as the ratio between 
the mean number of cells in compartment j and the expected total number of cells in the population, i.e.,

We make use of (3.1) and (3.10) to write,

which have the following steady state solution

One observes that P∗j < P∗j−1 , j = 1, . . . ,N − 1 , which means (on average) the fraction of cells decreases stage 
by stage, independently of the initial distribution of cells. In fact, one can solve (3.14) to determine P∗j  , as follows

which does not depend on � or µ . Thus, at late times the fraction of cells in each stage only depends on the 
number of stages considered; the parameter � sets the timescale of the dynamical system, and all cells are equally 
susceptible to death, regardless of the stage they are in.

MS‑G model with identical Erlang division times across generations.  The solutions of the sys-
tem (2.2) can be written in a closed analytical form in particular cases. For example, one may consider a simpli-
fied scenario where the number of stages is equal to 1 for all the generations, i.e., Ng = 1 for all g ≥ 0 . Then, 
if we consider that at time t = 0 , there are C0 cells in generation 0, so that n0 = (C0, 0, . . . , 0) , this leads to the 
following solutions:

In this case the MS-G model becomes a birth-and-death process tracking cell generations, and becomes identical 
to that considered in Refs.27,40–42, where the inter-event times of cell death and division are modelled as expo-
nential random variables, rather than Erlang distributions.

(3.11)M(t) ≃ C0
2

1
N

2N
(
2

1
N − 1

) e(σN�−µ)t , where σN = (2
1
N − 1)�.

(3.12)Pj(t) =
Mj(t)

M(t)
, j = 1, . . . ,N .

(3.13)
dPj(t)

dt
=

{
�(2PN (t)− P1(t)− P1(t)PN (t)), if j = 1,
�(Pj−1(t)− Pj(t)− Pj(t)PN (t)), if j = 2, . . . ,N ,

(3.14)P∗1 =
2P∗N

1+ P∗N
, P∗j =

P∗j−1

1+ P∗N
, j = 2, . . . ,N .

(3.15)P∗j =
(

N
√
2
)N−j(

N
√
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)
, j = 1, . . . ,N ,

(3.16)

M0(t) = C0e
−(�0+µ0)t ,

Mg (t) = 2g C0




g−1�
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�l


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Figure 4.   The exponent σN that determines the asymptotic growth rate of the population is shown against the 
number of stages. The dotted line would be expected if N steps with rate � were equivalent to a single step of rate 
�/N.
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In this Section we consider the case with identical number of stages, N, and rates, � and µ , for each generation, 
so that division times are Erlang-distributed in each generation. Under these assumptions, it is possible to obtain 
an analytical expression for the mean number of cells in each generation. Then Eq.  (2.2) becomes

These equations can be rewritten in terms of the new variables mg
j (t) = e(�+µ)tM

g
j (t) , for g ≥ 0 , j = 1, . . . ,N . 

This is equivalent to multiplying (3.17) by the integrating factor e(�+µ)t . Thus, (3.17) becomes

To determine the solutions of (3.18), we focus here on the case M0
1 (0) = m0

1(0) = C0 and all the other compart-
ments are empty at time t = 0 . This implies that m0

1(t) = C0 for t ≥ 0 , and by solving (3.18) recursively one gets

This expression allows one then to determine the mean number of cells in each stage of generation 1,

By recursion of (3.18) the mean number of cells in each compartment j of generation g is given by

Going back to the original variables, Mg
j (t) , the solutions of (3.17) are

From the previous equations, one can show that

since cells in each generation and compartment either proceed to the next stage within their generation, divide 
(proceeding to the next generation), or die.

Once the mean number of cells in each compartment for a given generation is at hand, the expected number 
of cells in each generation can be determined according to (2.3). We can write

This equation is consistent with the results of the exponential model ( N = 1)27. On the other hand, if one is 
interested in the mean number of cells in each compartment, Mj(t) for j = 1, . . . ,N , regardless of the generation 
they belong to, this can be computed as follows

for j = 1, . . . ,N and t ≥ 0 . In practice, one could truncate the series above to get an approximation of the mean 
number of cells in each stage. However, we note that one can use instead the solution provided by (3.5), since the 
dynamics of the MS-G model is equivalent to the dynamics of the MS model, when the parameters N, � and µ 
are generation-independent. It can be numerically checked that this indeed provides equivalent results. In fact, 
when N = 1 or N = 2 , one can analytically show the equivalence. In the former case ( N = 1 ), it is enough to 
recall the power series of the exponential function. In the latter case ( N = 2 ), we derive from (3.5)

(3.17)
dM

g
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


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g
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

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g
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j−1 tj−1

(j − 1)!
, j = 1, . . . ,N .
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where we used the fact that z = eπ i = −1 . On the other hand, from (3.22) we obtain

This shows that the two models lead to the same expected number of cells in each stage.

Comparison between the MS‑G model and the cyton model.  The cyton model is a stochastic model 
proposed to describe the population dynamics of B and T lymphocytes13. Division and death times are regulated 
by two independent clocks, and the competition between both clocks determines the fate of the cell. When a cell 
divides, these clocks, which depend on the number of divisions the cell has undergone, are reset for each daugh-
ter cell. However, when analysing an in vitro experiment with this type of cells, there is evidence that not all 
cells either divide or die. For instance, a portion of them may not respond to the stimulation43, or may respond 
without division44. This is the reason why a progressor fraction is defined in the cyton model. This progressor 
fraction represents for a given generation, the fraction of cells that are capable of undergoing further division. 
Each clock is described by a probability density function, and the parameters that define these probabilities are 
the free parameters in the model. Right skewed distributions, such as log-normal or gamma, are usually adopted 
to characterise the two independent clocks that regulate cell division and death. In summary, the cyton model is 
based on the following assumptions:

•	 death and division are random events, characterised by a probability density function for the time to divide 
or die, respectively,

•	 these processes are independent, and compete to determine the fate of the cell,
•	 the clocks responsible for these processes are reset when a cell divides,
•	 only a fraction of the cells in each generation are capable to undergo further divisions, and
•	 the machineries that regulate cellular fate depend on the cell’s generation.

In order to translate these assumptions into mathematical terms, let γg be the progressor fraction characterising 
cells having undergone g divisions, and let φg (·) and ψg (·) represent the probability density functions for the 
time to division and death, respectively, for cells in generation g. The number of cells dividing for the first time, 
or dying, per unit time at time t ≥ 0 can be calculated, respectively, as13:

where C0 is the initial number of cells in the population. Consequently, the time evolution of the expected number 
of cells in generation 0, M̃0(t) , obeys the differential equation

The number of cells in generation g dividing, or dying, per unit time at time t can be computed, respectively, as

Hence, the dynamics of the average number of cells in each generation, M̃g (t) , is governed by the differential 
equations

In the next sections we show how the cyton model is equivalent to our model for particular choices of the prob-
ability density functions of the division and death clocks, φg (·) and ψg (·) , and the progressor faction γg.
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2
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(3.23)ndiv0 (t) = γ0 C0

(
1−

∫ t

0
ψ0(s)ds

)
φ0(t),

(3.24)ndie0 (t) = C0

(
1− γ0

∫ t

0
φ0(s)ds

)
ψ0(t),

(3.25)dM̃0(t)

dt
= −

[
ndiv0 (t)+ ndie0 (t)

]
.

(3.26)ndivg (t) = 2γg

∫ t

0
ndivg−1(s)

[
1−

∫ t−s

0
ψg (l)dl

]
φg (t − s)ds,

(3.27)ndieg (t) = 2

∫ t

0
ndivg−1(s)

[
1− γg

∫ t−s

0
φg (l)dl

]
ψg (t − s)ds.

(3.28)dM̃g (t)

dt
= 2ndivg−1(t)− ndivg (t)− ndieg (t), g ≥ 1.
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Exponential time to division and death.  We consider here the MS-G model with number of stages across gen-
erations equal to one, i.e., Ng = 1 for all g ≥ 0 . This means that cells in generation g divide after an exponentially 
distributed time with rate �g , and die with rate µg . We note that this is different to a standard Markov birth-and-
death process, since rates are generation-dependent. Equation (2.4) become

In this case, our model is equivalent to the cyton model with exponential times for division and death, and 
progressor fraction γg = 1 , g ≥ 0 . One can show this equivalence by proving that ndivg (t) = �gM

g (t) and 
ndieg (t) = µgM

g (t) , by induction on g. In the cyton model, the assumption of exponential time to division and 
death implies that φg (t) = �ge

−�g t and ψg (t) = µge
−µg t , g ≥ 0 . Therefore, according to (3.23) and (3.24), the 

number of cells at time t dividing for the first time or dying to exit generation 0 per unit time is given by

We know from (3.16) that M0(t) = C0e
−(�0+µ0)t  . Therefore, we can write ndiv0 (t) = �0M

0(t) and 
ndie0 (t) = µ0M

0(t) , which proves the case g = 0 . We assume ndivg (t) = �gM
g (t) and ndieg (t) = µgM

g (t) hold for 
generation g and we need to show they also hold for generation g + 1 . We make use of (3.16) and (3.26) to write

For the number of cells in generation g + 1 dying, Eq. (3.27), together with (3.16) lead to

which concludes the proof. With the identities ndivg (t) = �gM
g (t) and ndieg (t) = µgM

g (t) in (3.25) and (3.28), 
one can show that Mg (t) and M̃g (t) obey the same differential equations for all g ≥ 0 . Thus, the two models are 
equivalent.

Erlang time to division and exponential time to death.  We now consider the more interesting case where the 
number of stages in each generation is greater than one, and the cell cycle can be described as a multi-stage 
process. We focus here on the case where identical number of stages N and birth and death rates, � and µ , 
respectively, are considered across generations. Similarly to the previous case, we prove that ndivg (t) = �M

g
N (t) 

and ndieg (t) = µMg (t) by induction on g. Since a cell’s time to division is Erlang distributed and a cell’s time to 
death is exponentially distributed, ψg (t) = µe−µt for all g ≥ 0 and

where the progressor fraction is again set to 1 for each generation. Note that in this case the parameters in φg (·) 
and ψg (·) are independent of the generation g, since the number of stages and the birth and death rates are 
identical for all generations. From (3.23) and (3.24), the number of cells dividing for the first time or dying to 
exit generation 0 per unit time at time t is

The dynamics of the expected number of cells in generation 0 is given by (3.25), as in the previous case. 
Using (3.20) and (3.21), we observe that

(3.29)
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Therefore, ndiv0 (t) = �M0
N (t) and ndie0 (t) = µM0(t) , which concludes the case g = 0 . We make use of these 

identities in (3.25) to obtain

which is the differential equation derived in (2.4) for M0(t) . Now, let us suppose that the identities 
ndivg (t) = �M

g
N (t) and ndieg (t) = µMg (t) hold for generation g and we prove them for generation g + 1 . 

Using (3.26) and the induction hypothesis, we have

where we have used (3.20) for the last step. The same arguments can be used to look at the number of cells in 
generation g + 1 dying per unit of time,  (3.27). Together with the induction hypothesis, we can write

where the last identity was obtained making use of (3.21). Hence, (3.28) becomes

which is identical to (2.4) for Mg (t) , g ≥ 1 . This concludes the proof of the equivalence between the cyton model 
and the multi-stage model with generations when a cell’s time to divide is Erlang distributed with parameters � 
and N, and a cell’s time to die is exponential with rate µ . In summary, the analysis presented in this section for 
the multi-stage model with Erlang division time and exponential death time leads to exact closed solutions for 
the cyton model with the previous choice of clocks.

Case study: lymphopenia‑induced proliferation
In this Section we illustrate the applicability of the MS-G model to CFSE data, making use of an experimental 
study of lymphopenia-induced proliferation20. In particular, we compare the performance of the MS-G model 
to that of a simple exponential (or single stage) model with generations, which is equivalent to making Ng = 1 
for all g in the MS-G model.

Differences in T cell proliferation have been observed to vary between different T cell clonotypes (i.e., the set 
of T cells with the same T cell receptor). Hogan et al.20 transferred CFSE-labelled OT-I or F5 T cells intravenously 
to lymphopenic mice. A certain number of days (3, 4, 5, 6, 7, 10, 12 and 18 days) after the transfer, spleens and 
lymph nodes were recovered from the mice and analysed by flow cytometry to quantify the expression levels of 
CD8, CD5, CD44, and CFSE dilution20. For each time point, the number of mice analysed was between 3 and 
7. We note that two independent transfer experiments, carried out under identical conditions, were performed: 
one for OT-I cells and a second one for F5. In Fig. 5 both data sets are shown: for each time point the number 
of cells is plotted for each mouse and generation (identified via the CFSE dilution measurement). On the left 
(right), OT-I (F5) cells are represented by the green (blue) histograms. In order to infer model parameters, we 
will consider all cells which have divided five or more times as a single class, denoted 5+ . This is similar to the 
approach considered in Refs.4,29,35. The rationale behind this choice is to reduce errors in the quantification of 
labelled cells with low CFSE fluorescence, as is the case for five or more divisions.

Figure 5 clearly shows that OT-I T cells proliferate faster than F5 cells, so that by day 7 there are OT-I cells 
in generation 10, whereas for F5 cells the maximum generation observed at day 7 is 6. This greater proliferative 
capacity of OT-I cells eventually leads, after one week, to competition for resources (e.g., IL-7 cytokine) and the 
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OT-I population approaching its carrying capacity20. Since our model does not account for competition, it can 
only appropriately describe the dynamics of OT-I cells during the first week of the experiment. Thus, for OT-I 
cells we will only make use of the data set up to that time (one week). Yet for the F5 population we will use the 
entire data set. In Hogan et al.20 this competition was incorporated with a density-dependent birth rate, �(P) , 
as follows

where �̄ is the rate of growth under unlimited resources, δ the size of reduction caused by the expansion of 
competing cells, and P is the size of the population20. Figure 6 shows the density-dependent birth rate, �(P) , as 
a function of the population size P. It suggests that the competition for resources is greater in the case of OT-I 
T cells. In the experiments the number of OT-I cells after one week (about 5× 105 ) is larger than the population 

(4.1)�(P) = �̄ e−δP ,

Figure 5.   Data set of murine T lymphocytes from Hogan et al.20. Left: OT-I T cells. Right: F5 T cells. For each 
time point, the number of cells is plotted for each mouse and generation.
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of F5 T cells at day 18 (about 4× 105 ). Therefore, the population of F5 T cells never reaches its carrying capacity 
and the role of competition for resources can be neglected.

We estimate model parameters with the ABC-SMC algorithm33. Thus, the posterior distribution of the param-
eters is obtained by T sequential applications of the ABC algorithm, where the posterior obtained in each itera-
tion is used as prior for the next one. This algorithm requires the definition of prior distributions for the first 
iteration, a distance function, a tolerance threshold for each iteration, and a perturbation kernel33. We assume 
all parameters are initially distributed according to a uniform prior distribution, as described in Table 1. When 
a prior distribution spans several orders of magnitude, the uniform distribution is taken over the exponent to 
efficiently explore parameter space. Given xgD(t) , the experimentally determined mean number of cells in genera-
tion g at time t, for g ∈ {0, 1, 2, 3, 4, 5+} , and its corresponding model prediction, xgM(t) = Mg (t) for a particular 
choice of parameters θ = (C0,N0,N , �0, �,α) , the distance function is defined as

where T is the set of time points and depends on the clonotype of interest, σ g
D(t) represents the standard 

deviation of the experimental data at time t and generation g, and G is the merged (and maximum) generation, 
G = 5+ . In practice, we define the first tolerance threshold, ε1 , in the ABC-SMC algorithm as the median value 
of the distances obtained from 104 preliminary realisations, with the parameters sampled from the prior distribu-
tions in Table 1. The subsequent tolerance thresholds, εj , j = 2, . . . ,T can be then defined as the median of the 
distance values obtained from the previous iterations of the algorithm. Finally, we use a uniform perturbation 
kernel to perturb the parameters during the sequence of iterations33, and implement the algorithm for T = 16 
in the case of the multi-stage model and T = 7 for the single stage one.

Before performing the Bayesian inference, we make some assumptions based on the experimental set up. 
Several studies have shown that the time to a first division is larger the time to subsequent divisions, since cells 
require time to become activated before they divide13,15,16. Thus, we assume that all generations but 0 are com-
prised of the same number of stages N, whereas generation 0 is characterised by N0 stages. Similarly, cells in 
generation 0 proceed to divide with birth rate �0 , whilst all the other generations have a birth rate � . Therefore, 
in contrast to the inference in29, the number of stages N0 and N are free parameters in the model. On the other 

(4.2)d(model,data | θ) =

√√√√√
G∑

g=0

∑

t∈T

[
x
g
M(t)− x

g
D(t)

σ
g
D(t)

]2
,

Figure 6.   Density-dependent birth rate, �(P) , as a function of the population size, P. The parameter �̄ , with 
units of cell · day−1 , represents the rate of growth under no competition and δ quantifies the level of reduction 
caused by the expansion of competing cells. Values for �̄ (shown in the inset) and δ = 6.0× 10−6 are taken 
from20, Table 1].

Table 1.   Prior distributions for model parameters. Units for �0 , � and α are inverse hours ( h−1).

Model parameters Description Prior distribution

C0 Initial number of cells C0 = 10x , x ∼ U(4, 6)

N0 , N Number of stages Udiscrete(1, 50)

�0 , � Birth rate �0 = 10y , � = 10z , y, z ∼ U(−3, 1)

α Death rate slope α = 10w , w ∼ U(−5,−1)
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hand, we propose that the per cell death rate in a given generation is linear on the number of cell divisions that 
the cell has undergone35,45. We write

where α is a parameter to estimate. These linear death rates encode the fact that cells are more likely to die 
when they have already undergone several divisions35,45. Finally, the initial number of cells, C0 , is considered 
a parameter to be estimated, since the actual number of transferred cells which make it to the lymph nodes or 
spleen cannot be measured.

(4.3)µg = α g , g ≥ 0,

Figure 7.   Exponential (solid turquoise line) and multi-stage (solid magenta line) model predictions compared 
to the data sets (orange dots) for OT-I (A) and F5 (B) T cells. Bars on data points represent their standard 
deviation. The expected number of cells in each generation is plotted as a function of time. These predictions 
represent the median value of 104 simulations with the accepted parameter values from the posterior 
distributions. Shaded areas represent 95% confidence intervals.
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The predictions obtained for each model, and for each clonotype (OT-I or F5), are shown in Fig. 7. We run the 
model with the parameters being sampled from the estimated posterior distributions and compute the median 
of all the simulations, which corresponds to the solid magenta (multi-stage model) and turquoise (exponential 
model) lines in Fig. 7. The bands around median predictions represent 95% confidence intervals. Data points are 
plotted with the standard deviation from the multiple experimental replicates. As shown in Fig. 7, the calibrated 
MS-G model successfully captures the dynamics of the proliferating T cell populations (OT-I and F5), whereas 
the single stage model significantly underestimates the expected number of cells beyond generation 1, particularly 
in the case of OT-I T cells. We made use of the corrected version of the Akaike Information Criterion ( AICC)46,47 
to quantify the better fit of the MS-G model accounting for the extra parameters N0 and N in the multi-stage 
model. The values of AICC for each model and clonotype are listed in Table 2. Despite the two extra parameters, 
the values of AICC corresponding to the multi-stage model are significantly lower for both clonotypes. Overall, 
the MS-G model is able to explain the data from the OT-I transfer experiment better, since this data set is less 
noisy than the F5 set.

The marginal posterior distributions for each parameter are shown in green and blue in Figs. 8 and 9, for 
the multi-stage and exponential models, respectively, and the (uniform) prior distributions are plotted in red. 
Summary statistics of these posterior distributions are shown in Tables 3,  4, 5 and 6. Cell death is governed by 

Table 2.   AICC values for the exponential and multi-stage models calibrated with CFSE data of murine T 
lymphocytes.

Mathematical model Cell type Value of AICC

Multi-stage OT-I T cells 50.4

Exponential OT-I T cells 283

Multi-stage F5 T cells 206

Exponential F5 T cells 317

Figure 8.   Posterior distributions (green and blue) for the parameters in the multi-stage (A) and exponential 
(B) model for OT-I T cells. In the exponential model, the number of stages for all generations is equal to 1, i.e., 
N0 = N = 1 . Prior distributions are shown in red.
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Table 3.   Summary statistics of OT-I clonotype posterior distributions for the multi-stage model.

Parameter Minimum Maximum Mean Median Standard deviation

C0 3.00× 104 1.03× 105 4.67× 104 4.54× 104 8.03× 103

N0 1 7 2.83 3 1.23

N 2 34 6.59 5 4.30

�0 1.98× 10−2 1.08× 10−1 4.64× 10−2 4.56× 10−2 1.45× 10−2

� 2.80× 10−2 8.08× 10−1 1.48× 10−1 1.20× 10−1 1.01× 10−1

α 1.00× 10−5 5.97× 10−3 5.06× 10−4 1.76× 10−4 7.47× 10−4

Figure 9.   Posterior distributions (green and blue) for the parameters in the multi-stage (A) and exponential 
(B) model for F5 T cells. In the exponential model, the number of stages for all generations is equal to 1, i.e., 
N0 = N = 1 . Prior distributions are shown in red.

Table 4.   Summary statistics of F5 clonotype posterior distributions for the multi-stage model.

Parameter Minimum Maximum Mean Median Standard deviation

C0 4.74× 104 1.85× 105 9.26× 104 8.94× 104 2.22× 104

N0 1 10 3.01 3 1.53

N 1 35 2.42 2 2.57

�0 2.68× 10−3 7.20× 10−2 1.70× 10−2 1.47× 10−2 1.07× 10−2

� 2.06× 10−3 5.88× 10−1 2.20× 10−2 9.54× 10−3 3.90× 10−2

α 1.00× 10−5 6.21× 10−3 1.35× 10−3 8.19× 10−4 1.40× 10−3
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the parameter α , and is estimated to be low for both models and clonotypes, suggesting that cell death does not 
have a significant impact on the dynamics during lymphopenia, which is in fact dominated by cell division. This 
result is in agreement with Hogan et al.20, where the death rate is assumed to be zero. The initial number of cells 
can be estimated with relative success, and does not seem to depend heavily on the model considered. On the 
other hand, cell division is governed by parameters (N0, �0,N , �) , with N0 = N = 1 in the exponential model. 

Figure 10.   Joint posterior distributions (left two plots) of the number of stages N0 , N and the birth rates �0 , � . 
Marginal posterior distributions (right two plots) for the mean time to first and subsequent divisions estimated 
from the multi-stage model (third column) and the exponential model (fourth column). Panel A for OT-I T cells 
and B for F5 T cells.

Table 5.   Summary statistics for the posterior distributions of the exponential model for the OT-I clonotype.

Parameter Minimum Maximum Mean Median Standard deviation

C0 1.43× 104 5.46× 105 2.40× 104 2.34× 104 5.28× 103

�0 1.56× 10−2 6.19× 10−2 2.40× 10−2 2.28× 10−2 5.69× 10−3

� 7.45× 10−3 1.29× 10−2 9.88× 10−3 9.78× 10−3 1.10× 10−3

α 1.00× 10−5 7.23× 10−3 4.76× 10−4 1.32× 10−4 8.17× 10−4

Table 6.   Summary statistics for the posterior distributions of the exponential model for the F5 clonotype.

Parameter Minimum Maximum Mean Median Standard deviation

C0 4.54× 103 1.10× 105 7.33× 104 7.22× 104 1.39× 104

�0 2.50× 10−3 7.18× 10−3 4.24× 10−3 4.13× 10−3 9.28× 10−4

� 1.79× 10−3 3.92× 10−3 2.77× 10−3 2.76× 10−3 4.66× 10−4

α 1.00× 10−5 1.52× 10−3 1.72× 10−4 7.30× 10−5 2.23× 10−4
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We note that in both models, N0
�0

 and N
�

 represent the mean time to the first and subsequent divisions, respectively. 
Although all division-related parameters can be estimated from the data, for both models and clonotypes, a 
correlation between the division rate and the number of stages is seen in the scatter plots of Fig. 10. Instead of 
plotting the marginal posterior distributions for these parameters, one can consider the posterior distribution 
for the mean times N0

�0
 and N

�
 (see Fig. 10). The fact that N = 1 is never chosen as an accepted parameter value in 

the posterior distribution for the multi-stage model and the OT-I clonotype already suggests that a multi-stage 
representation of cell division is preferred for this clonotype. On the other hand for the F5 clonotype the marginal 
distribution for N shows a non-zero frequency for the value 1, but larger values of N are also represented in its 
posterior distribution. The mean time to both first and subsequent divisions, N0

�0
 and N

�
 , are significantly longer 

for the F5 clonotype than the OT-I. In fact, our results estimate that F5 T cells divide slowly compared to OT-I 
cells, requiring on average 192 h to carry out a first division (59 h taken by OT-I T cells), as shown in Fig. 10 for 
the multi-stage model. The time to subsequent divisions is represented by the blue histograms. Interestingly, 
our estimation of the mean time to first division of OT-I cells, on average 59 h, is close to the value obtained 
by Hogan et al.20 (52 h when considering the best fit parameter estimates). In the case of F5 cells, we predict an 
average of 192 h to undergo their first division, whereas Hogan et al. obtained a value of 137 h. We note that the 
value 137 h is within the range covered by our predicted posterior distribution.

Our results indicate that OT-I T lymphocytes require on average 59 h for their first division, and a bit less, 
46 h, for subsequent divisions (see upper left plot of Fig. 10). Based on our Bayesian approach, we conclude 
that a multi-stage model with a constant division rate after the first division event, is a suitable description of 
lymphopenia-induced proliferation5,29,40. The MS-G model estimates that F5 cells take on average slightly less 
than 200 h to divide, both for the first or subsequent division rounds, as shown in the lower left plot of Fig. 10. 
This difference can be explained by the different characteristics of OT-I and F5 T cells, and was previously 
observed20. The posterior distributions of the expected time to subsequent divisions in the MS-G model, N

�
 , and 

in the exponential one 1
�
 , shown as blue histograms in Fig. 10, indicate that the exponential model predicts a 

longer division time than the multi-stage model for both clonotypes. This can be justified by the implementation 
of the ABC-SMC algorithm. Indeed, when parameterising the exponential model, the algorithm tries to keep 
the distance between the model predictions and the experimental observations low. This leads to the choice of 
parameter sets which limit cell proliferation, as shorter division times in the exponential model would lead to an 
increase in cell numbers not observed in the data set, and thus larger distance values. This is why the estimated 
birth rates in the exponential model are lower than the ones in the multi-stage representation. As a result, the 
exponential model predicts a greater average division time than the multi-stage model for both clonotypes. 
Finally, our results indicate that for both clonotypes the exponential model (see Fig. 10) found a shorter time 
to first division than to subsequent ones, contradicting previous findings13,15,16, which support longer first divi-
sion times. This is related to the fact that, overall, the exponential model is not able to capture the observed cell 
dynamics for neither of the clonotypes, as can be seen in Fig. 7.

Discussion
We analyse a multi-stage model of cell proliferation and death, tracking cell generations, in a framework that 
retains the benefits of a Markov process. With particular choices of rates, the models are equivalent to others 
in the literature13,27,29,40–42. In the case study of “Case study: lymphopenia-induced proliferation” section, the 
MS-G model performs better than the exponential model of time to division. The model implemented here 
provides a flexible framework for estimating the birth and death rates that describe the dynamics of lymphocyte 
populations48,49. The representation retains the advantages of a Markovian approach, including analytical tracta-
bility in some cases, and computational efficiency of numerical simulations with the Gillespie algorithm50,51. The 
expected number of cells in each generation satisfy a set of linear differential equations. Further comparison of 
this and of published models13,27,29,40–42 with different experimental datasets is the aim of future work.

It has been observed13,15,16 that immune cells typically need longer to divide for the first time, whereas later 
divisions require shorter times5. It is possible to assume that divided and undivided cells have different probabil-
ity densities of time to cell division in exponential and Smith-Martin models7,35,45. With the multi-stage model 
introduced here, the separation need not be explicit because it is incorporated in the generation-dependent 
parameters. A longer mean time to first division, N0

�0
 , than mean time to subsequent divisions, N

�
 , is a natural 

part of the framework. Extension of the mathematical analysis in “Analytical results” section to the case �0  = � , 
N0  = N and possibly generation-dependent death rate µg , g ≥ 0 , would be desirable.

Our calculations rely on the assumption that cells are independent of each other. In particular, no fate cor-
relation is assumed between daughter cells and their progenitors, or between siblings. However, data sets from 
time-lapse microscopy of B and T cell families10–12,14,16,17,25 show that division and death times for siblings are 
correlated, and “division destiny” is a familial characteristic24. A further potential extension of the MS-G model 
is the introduction of a population carrying capacity. In the model as described in “Analytical results” section, 
the mean number of cells over time either increases without bound, dies out or reaches a steady-state, depending 
on the relation between division-related parameters (birth rate and number of stages in the cell cycle), and the 
death rate. Competition for resources may be modelled using density-dependent birth and/or death rates20,52, 
or by rates that depend on the time-dependent availability of resources53.

Data availability
Python codes to carry out parameter calibration in the “Case study: lymphopenia-induced proliferation” section 
are available at https://​doi.​org/​10.​5281/​zenodo.​63376​79.

https://doi.org/10.5281/zenodo.6337679
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