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Abstract Zero-shot learning (ZSL) aims to recognize novel classes by trans-
ferring semantic knowledge from seen classes to unseen classes. Though many
ZSL methods rely on a direct mapping between the visual and the semantic
space, the calibration deviation and hubness problem limit the generalization
capability to unseen classes. Recently emerged generative ZSL methods gen-
erate unseen image features to transform ZSL into a supervised classification
problem. However, most generative models still suffer from the seen-unseen
bias problem as only seen data is used for training. To address these issues,
we propose a novel bidirectional embedding based generative model with a
tight visual-semantic coupling constraint. We learn a unified latent space that
calibrates the embedded parametric distributions of both visual and semantic
spaces. Since the embedding from high-dimensional visual features comprises
much non-semantic information, the alignment of visual and semantic in latent
space would inevitably be deviated. Therefore, we introduce an information
bottleneck (IB) constraint to ZSL for the first time to preserve essential at-
tribute information during the mapping. Specifically, we utilize the uncertainty
estimation and the wake-sleep procedure to alleviate the feature noises and im-
prove model abstraction capability. In addition, our method can be easily ex-

* Lei Zhou and Yang Liu contribute equally to this work.
� Corresponding author: Xiao Bai

E-mail: baixiao@buaa.edu.cn

1 School of Computer Science and Engineering, State Key Laboratory of Software Devel-
opment Environment, Jiangxi Research Institute, Beihang University, Beijing, China

2 RIKEN AIP, Tokyo, Japan
3 The University of Tokyo, Tokyo, Japan
4 School of Information and Communication Technology, Griffith University, Australia
5 School of Computer Science and Engineering, Nanjing University of Science and Tech-

nology, Nanjing, China
6 Department of Computer Science, University of York, York, U.K.



2 Lei Zhou1,* et al.

tended to the transductive ZSL setting by generating labels for unseen images.
We then introduce a robust self-training loss to solve this label-noise problem.
Extensive experimental results show that our method outperforms the state-
of-the-art methods in different ZSL settings on most benchmark datasets.

Keywords Zero-shot learning · Information bottleneck · Uncertainty
estimation · Label-noise learning · Transductive ZSL

1 Introduction

Thanks to the abundant human annotated data, deep learning has achieved
great success in many supervised learning problems, such as image classifica-
tion and retrieval (Krizhevsky et al., 2017; Zhou et al., 2019, 2020), object
detection (Ren et al., 2015; Wang et al., 2018a), semantic segmentation (Long
et al., 2015; Chen et al., 2017). However, labeling large-scale training data
for each task is time consuming and expensive. Inspired by the human’s re-
markable ability in recognizing instances of unseen classes solely based on
class descriptions without seeing any visual example of such classes, zero-shot
learning (ZSL) was proposed as an image classification setting to mimic the
human learning process (Lampert et al., 2009). Given the semantic descrip-
tions of both seen and unseen classes but only the seen class training images,
ZSL aims to classify test images of unseen classes.

Based on the images and labels that a model can see in the training phase,
ZSL includes two settings which are Inductive ZSL(IZSL) and Transductive
ZSL(TZSL). IZSL can only utilize the images and labels of seen classes during
training. TZSL can use extra images of unseen classes without labels during
training. In the test phase, the ZSL problem is further categorized into two set-
tings: conventional ZSL and generalized ZSL. In conventional ZSL, the images
to be recognized at test time belong only to unseen classes. In the generalized
ZSL (GZSL) setting, the images at test time may belong to both seen or unseen
classes. The GSZL setting is practically more useful and challenging, since the
assumption that images at test time come only from unseen classes need not
hold.

Most early ZSL methods learn a direct or indirect mapping between the
visual space and the semantic space (Akata et al., 2013; Romera-Paredes and
Torr, 2015; Akata et al., 2015b; Xian et al., 2016; Guo et al., 2016; Kodirov
et al., 2017; Xie et al., 2019, 2020; Liu et al., 2021). However, the performance
of these methods is often poor on GZSL setting. The reason is that the em-
bedding model is learned only from seen classes, which leads to a bias towards
predicting seen classes. To address this issue, more recent approaches (Xian
et al., 2018b; Mishra et al., 2018; Wang et al., 2018b; Li et al., 2019a; Schon-
feld et al., 2019; Ma and Hu, 2020; Verma et al., 2020; Yu et al., 2020) utilize
generative models, e.g., generative adversarial networks (GAN) (Goodfellow
et al., 2014) or variational autoencoders (VAE) (Kingma and Welling, 2013),
to generate synthetic features of unseen classes. This transfers the ZSL task to



Information Bottleneck and Selective Noise Supervision for Zero-Shot Learning 3

visual space (v)

min 𝐼(𝐬;𝐱)

Orchard Oriole Barn Swallow Red headed Woodpecker Category prototypes

Information 
bottleneck

Attributes: 𝐜

Image features: 𝐱

𝐬

Class label 𝑦:

Wake-Sleep 
procedure

Uncertainty 
estimation

(a) (b)

brown throat
blue upperparts

brown breast
…

red forehead
black upper tail

white breast
…

black eye
black breast
brown wing

…

visual space (v) semantic space (a)

semantic space (a) semantic space (a)

visual space (v)

latent space (l)

calibration hubness

max 𝐼(𝐬;𝐜)

Fig. 1 Comparison of existing direct mapping methods and our latent bidirectional embed-
ding based generative model. (a) Traditional ZSL frameworks are based on direct mapping.
The hubness problem and calibration deviation make it difficult to accurately align visual
and semantic distributions in respective spaces. (b) Our bidirectional embedding based gen-
erative model with a unified latent space. Firstly, an information bottleneck constraint on
the latent bidirectional embedding preserves more essential attribute information while elim-
inating the non-semantic information of visual features. Secondly, uncertainty estimation is
utilized to alleviate the visual noises and a bias passing mechanism is designed to solve
the unicity of human annotated semantics. Thirdly, a wake-sleep procedure uses both real
and generated data for joint training to improve the model representation and abstraction
capability.

a supervised classification problem. Since GAN-based loss functions are unsta-
ble in training, VAE-based methods (Schonfeld et al., 2019; Ma and Hu, 2020)
were developed to tackle this problem and achieved better performance. How-
ever, most of these generative models still suffer from the deviation between
generated features and unseen classes due to the lack of tight visual-semantic
coupling.

Since high-dimensional visual features contain non-semantic information
which is redundant for semantic discrimination (Tong et al., 2019; Han et al.,
2020b; Shen et al., 2020), it is difficult to well align the semantic categories to
the centers of visual sample distributions when mapping the semantic features
to the visual space. This causes a calibration deviation problem as illustrated
in Figure 1. In addition, when high-dimensional visual features are mapped
to a low-dimensional semantic space, the shrink of feature space would aggra-
vate the hubness problem that some instances in the high-dimensional space
become the nearest neighbors of a large number of instances (Radovanovic
et al., 2010). To address the above challenges, we propose an information bot-
tleneck (IB) (Tishby et al., 2000) constrained bidirectional embedding based
generative model which utilizes advantages of both embedding model and
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Fig. 2 Illustration of the proposed model. We learn a latent bidirectional embedding based
generative model via a modified VAE network. A unified latent space is simultaneously
learned to align visual and semantic distributions. A novel Information Bottleneck (IB) loss
(LIB) is proposed as the constraint between the latent space and the other two spaces.
We exploit the data uncertainty estimation to learn the bias (σ) of the original visual data
and share the bias from visual distribution to the semantic distribution (bias passing). In
addition, a wake-sleep procedure is used for joint training of real data and generated data.

generative model to align visual and semantic distributions in a unified la-
tent space. As shown in Figure 2, our proposed method first learns a latent
bidirectional embedding via a modified VAE network. Visual features x and
attributes semantic c are embedded to the unified latent space respectively by
two encoders. Then the visual-semantic distributions alignment is constrained
in the latent space by KL-Divergence and Center-Calibration. To facilitate the
distribution alignment, the redundant non-semantic information in the visual
space should be discarded to preserve the attributed related part when it is
flowing to the latent space. To achieve this, we design an IB loss (LIB) on the
latent bidirectional embedding to impose the mutual information relationships
between feature spaces. Due to the wide existence of noises such as the labeling
noise (Kunran Xu and Gu, 2020), the human annotated semantics are insuf-
ficient to fully describe the diversified visual samples (Ding and Liu, 2019).
The deviation between visual and semantic distributions will accumulate dur-
ing the embedding process. Therefore, we learn the bias of the original visual
distribution by introducing an uncertainty estimation technique (Kendall
and Gal, 2017) to alleviate the influence of noises. Since one semantic class
may correspond to a variety of visual samples, we also propose a bias pass-
ing mechanism to share this variety bias to the latent semantic distribution
to benefit the distributions alignment. The two decoders are respectively used
to generate attributes semantic and visual features for auxiliary training, i.e.,
the reconstruction losses LV CE and LSCE . Since VAE does not incorporate
the generated samples for learning, the latent features generated by VAE are
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largely randomized and uncontrollable (Hu et al., 2017, 2018). Therefore, we
introduce a wake-sleep procedure (Hinton et al., 1995) that uses both real
and generated data for joint training to improve the model representation and
abstraction capability. Furthermore, base on the proposed framework, we can
easily extend our method to solve the TZSL task. We use the generated se-
mantics as pseudo labels for unseen images and regard the problem as a label
noise circumstance. Then a robust loss is introduced to solve this label noise
problem. Finally, with the generated latent features, we can solve both the
IZSL and TZSL as a supervised classification problem.

The contributions of this paper are as follows.

– We propose a novel ZSL method based on an information bottleneck (IB)
constrained generative model with a tight visual-semantic bidirectional em-
bedding. The IB loss minimizes the non-semantic information when em-
bedding the visual domain to latent space. To the best of our knowledge,
this is the first work that adopts the IB theory in ZSL.

– We exploit the data uncertainty estimation technique for the first time
in ZSL to learn the bias of visual distribution and design a bias passing
mechanism, which alleviates the noises and gap between visual features
and human annotated semantics.

– We train the model on both real and generated data with a wake-sleep
training mechanism to improve the model representation and abstraction
capability via a VAE model.

– We further extend our method to adapt the transductive ZSL setting with
a robust label noise loss.

Extensive experimental results on four widely used ZSL benchmarks for
both generalized ZSL and conventional ZSL show the superiority of our method
under both inductive ZSL and transductive ZSL settings compared with state-
of-the-art ZSL methods.

The rest of this paper is organized as follows: We first review the related
works on two different ZSL settings in Section 2. In Section 3, we describe the
problem setting and our proposed method. The extended method for TZSL is
introduced at the end of Section 3. Section 4 shows the experimental results
on four benchmark datasets under different ZSL settings. Finally, we conclude
our method in Section 5.

2 Related Works

In this section, we review related works on IZSL and TZSL. For the IZSL,
we divide the existing methods into two categories, embedding models and
generative models.
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2.1 Embedding Models for IZSL

Embedding models for ZSL focus on learning a direct or indirect mapping
between visual and semantic spaces to transfer semantic knowledge from seen
classes to unseen classes. There are three typical embedding strategies. The
earliest methods learned the mapping function from the visual space to the se-
mantic space, which include, for example DAP and IAP (Lampert et al., 2013),
ALE (Akata et al., 2015a), DeViSE (Frome et al., 2013) and ESZSL (Romera-
Paredes and Torr, 2015). To alleviate the severe hubness problem caused by
embedding from the high-dimensional visual space to the low-dimensional se-
mantic space, reverse mapping from the semantic space to the visual space was
proposed for the nearest neighbor classification in the visual space (Chang-
pinyo et al., 2017; Zhang et al., 2017). Some models such as SSE (Zhang and
Saligrama, 2015), SYNC (Changpinyo et al., 2016) and BiDiLEL (Wang and
Chen, 2017) explore the idea of embedding both visual and semantic features
into a common intermediate space. Though these methods perform well in the
conventional ZSL setting, their performance deteriorates on the GZSL setting
since there are only seen class features for model training.

2.2 Generative Models for IZSL

Recently, abundant generative models (Guo et al., 2017; Chen et al., 2018; Fe-
lix et al., 2018; Kumar Verma et al., 2018; Xian et al., 2018b; Zhu et al., 2018;
Li et al., 2019a; Schonfeld et al., 2019; Ma and Hu, 2020; Keshari et al., 2020)
were proposed to address the training data imbalance problem between seen
and unseen classes by synthesizing unseen class features. Among these, both
generative adversarial networks (GAN) (Chen et al., 2018; Felix et al., 2018;
Zhu et al., 2018; Li et al., 2019a), and variational autoencoders (VAE) (Bucher
et al., 2017; Kumar Verma et al., 2018; Schonfeld et al., 2019; Ma and Hu, 2020;
Keshari et al., 2020) have been used for ZSL. f-CLSWGAN (Xian et al., 2018b)
adapts the Wasserstein GAN (WGAN) (Arjovsky et al., 2017; Gulrajani et al.,
2017) by adding a classification loss to enforce the generator to synthesize fea-
tures that are suited for ZSL. Motivated by the cycle consistency loss (Zhu
et al., 2017), cycle-CLSWGAN (Felix et al., 2018) utilizes a multi-modal cycle
consistency loss to enforce that the generated visual features map back to their
original semantic features, which can generate more robust unseen samples.
LisGAN (Li et al., 2019a) exploits conditional WGAN to generate fake un-
seen classes from random noises and introduces soul samples regularizations
to guarantee the generated sample is close to real. Due to the hardness of
training GAN based models, CADA-VAE (Schonfeld et al., 2019) adopts a
cross-aligned VAE to align the visual and semantic distributions in a latent
space. More recently, a new flow-based generative model (Shen et al., 2020)
was introduced to ZSL which utilizes an invertible generative flow network to
generate distinguishable samples.
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Although these generative models have achieved encouraging performance
for GZSL, feature generation for unseen classes still needs tight visual-semantic
coupling constraints to alleviate the deviation. Our proposed method combines
the advantages of both embedding and generative models for an accurate align-
ment of visual-semantic distributions while generating discriminative image
features.

2.3 Transductive ZSL

Different from the IZSL, the TZSL assumes the availability of unlabeled tar-
get unseen images (Fu et al., 2015) during training. But the relationship be-
tween the unseen image and label is still unavailable. With unseen images, the
distribution discrepancy between seen and unseen domains can be exploited
to alleviate the domain shift problem. Therefore, the TZSL methods usually
achieve better performance than the IZSL setting. QFSL (Song et al., 2018)
alleviates the bias problem with a proposed Quasi-Fully Supervised Learning
framework. GXE (Li et al., 2019b) utilizes semantic attributes to train a visual
feature classifier and calibrates the classifier with unlabeled data. SABR (Paul
et al., 2019) learns two different GANs to generate the latent space features for
seen and unseen classes, respectively. Recently, SDGN (Wu et al., 2020) inte-
grates a self-supervised learning mechanism into the feature generating model
to effectively exploit the unlabeled data and uses the self-supervision lurking
in the data structure of different domains to conduct cross-domain mining.

Our method can be easily extended to adapt the TZSL setting. The latent
space we learned can effectively eliminate the possible noise in visual and
semantic features. We select unseen data with higher confidence and mark
these data with pseudo labels. Unlike training the seen classes, the labels of
the unseen classes are noisy, hence we introduce a robust loss for the label
noise problem during the unseen classes training.

3 Proposed Method

In this section, we first define the problem setting, notations and then present
the details of each module of our method. Finally, we extend our method to
adapt the TZSL setting with a robust loss for the noisy label.

3.1 Problem Setting and Notations

The GZSL problem is defined as follows. Let XS and XU denote the image
feature sets of seen classes and unseen classes respectively, X = XS ∪ XU .
S = {(x, y, c(y))|x ∈ XS , y ∈ YS , c(y) ∈ CS} denotes the training set, where
x ∈ RD are image features extracted by a plain CNN model. y are the seen class
labels which are available during training and c(y) ∈ RK are attribute features.
The auxiliary training set is U = {(u, c(u))|u ∈ YU , c(u) ∈ CU}, where u
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denote unseen class labels. The seen classes and unseen classes are disjoint, i.e.,
YS ∩YU = ∅. Here, C = CS ∪ CU is used to transfer information between seen
classes and unseen classes. C can be human-annotated attributes (Xian et al.,
2018b) or articles describing the classes (Zhu et al., 2018). In the conventional
ZSL, the task is to learn a classifier fZSL : XU → YU . However, in more
realistic and challenging setup of GZSL, the aim is to learn a classifier fGZSL :
X → YU ∪ YS .

The architecture of the proposed model is shown in Figure 2. It consists
of two sets of latent embedding VAEs with (Ev→l, Dl→a) and (Ea→l, Dl→v).
These two sets of VAEs share the same latent space l. Ev→l maps visual
space v to latent space l, and Dl→a maps latent space l to semantic space a.
Ea→l maps semantic space a to latent space l, and Dl→v maps latent space l
to visual space v. The visual-semantic distributions are aligned in the latent
space l by KL-Divergence and Center-Calibration. Information bottleneck loss
and uncertainty estimation are used to facilitate the distribution alignment. A
wake-sleep procedure is exploited to improve the quality of generated features
by VAE decoder. Following we give the detailed descriptions of each module.

3.2 Latent Bidirectional Embedding with Uncertainty Estimation

The goal of our model is to learn a latent space that can accurately align visual
and semantic distributions. We first learn a Visual to Semantic (VS) network
VS = Ev→l ◦Dl→a : RD → RK to project the visual features through latent
space into semantic space. The latent embedding model is shown in Figure 3.
Because there may be inherent noise in the visual features (Chang et al., 2020).
To reduce the impact of data uncertainty, we define the latent representation
z
(v)
i embedded from each visual sample xi as a Gaussian distribution:

p(z
(v)
i |xi) = N (z

(v)
i ;µ

(v)
i ,σ2

i I), (1)

where µ
(v)
i and σ2

i are the mean and variance of the Gaussian distribution
learned by the encoder Ev→l : µ

(v)
i = Ev→l,ϕ1

(xi), logσ
2
i = Ev→l,ϕ2

(xi),
where ϕ1 and ϕ2 refer to the model parameters. The re-parameterization
trick (Kingma and Welling, 2013) is used to keep gradients of the model as
usual. With this trick, we generate the latent sampling representation s

(v)
i as

s
(v)
i = µ

(v)
i + ϵσi, ϵ ∼ N (0, I), (2)

where ϵ is a random noise.
Then, c̃(yi) = Dl→a(s

(v)
i ) projects the latent feature s

(v)
i into semantic

space, i.e., the mapping of a visual sample xi is calculated as VS(xi):

VS(xi) = c̃(yi) = Dl→a(s
(v)
i ) = Ev→l ◦Dl→a(xi). (3)
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Fig. 3 Illustration of the latent bidirectional embedding and data uncertainty estimation.
Left: the visual to semantic network. Here we define the latent representation as a Gaussian
distribution to learn the data uncertainty. Right: the semantic to visual network.

The affinity between VS(xi) and the yi-th attribute feature c(yi) could
be measured by their inner product VS(xi)

T c(yi). Then the probability of xi

belong to the yi-th category in semantic space can be calculated as:

pA(yi|xi) =
exp(VS(xi)

T c(yi))∑
y∈YS exp(VS(xi)T c(y))

. (4)

Then the Semantic Cross-Entropy (SCE) loss can be written as:

LSCE = −
∑
i

log pA(yi|xi). (5)

Similarly, we learn a Semantic to Visual (SV) network SV = Ea→l ◦Dl→v :
RK → RD, which first projects the semantic feature c(yi) to latent space as
µ

(a)
i , then projects µ(a)

i to visual space as the generated visual prototype x̃(yi)
for the yi-th category:

SV(c(yi)) = x̃(yi) = Dl→v(µ
(a)
i ) = Ea→l ◦Dl→v(c(yi)). (6)

The probability of xi belong to the yi-th category in visual space is calcu-
lated as:

pV (yi|xi) =
exp(xT

i SV(c(yi)))∑
y∈YS exp(xT

i SV(c(y)))
. (7)

Then the Visual Cross-Entropy (VCE) loss is:

LV CE = −
∑
i

log pV (yi|xi). (8)

The total Cross-Entropy (CE) loss is as follow:

LCE = LSCE + LV CE . (9)

In order to learn an accurate latent bidirectional embedding, we perform
center calibration for each category. Such a structured objective requires the
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center embedding of xi being closer to the latent embedding of its groundtruth
c(yi) than other classes, the Center Calibration (CC) is defined as:

LCC =
∑
i,y

[∆+ d(Ev→l,ϕ1
(xi), Ea→l(c(y)))− d(Ev→l,ϕ1

(xi), Ea→l(c(yi)))]+,

(10)

where d(·, ·) denotes a certain distance metric. Here, we utilize the Euclidean
distance in the experiments. ∆ > 0 is a margin to make LCC more robust.

3.3 Feature Generation with Noise Supervision

For each category y, there could be many visual samples x, but the semantic
description c of each category is unique. Thus, this unique semantic attribute
c is insufficient to fully describe the variety of visual samples. Therefore, we
assume the latent semantic distribution similar to the Gaussian distribution of
latent visual features in Equation (1). To adapt to this task, we use two sets of
encoder-decoder structures. Ev→l encodes the visual features xi to a Gaussian
distribution N (µ

(v)
i ,σ2

i ) in the latent space, and Ea→l encodes the seman-
tic feature c(yi) to the center µ

(a)
i of category yi. Since the latent semantic

Gaussian distribution N (µ
(a)
i ,σ2

i ) should be consistent with the latent visual
distribution, we design a bias passing mechanism to share the noise (bias) from
the visual diversity for the latent semantic distribution. Then we use the de-
coders Dl→a to decode µ

(v)
i or µ(a)

i to semantic feature c̃(yi), and use Dl→v to
decode s

(v)
i ∼ N (µ

(v)
i ,σ2

i ) or s
(a)
i ∼ N (µ

(a)
i ,σ2

i ) to visual feature x̃i. Finally,
the loss with noise supervision for the modified VAE can be written as:

LV AE = Eqϕ(s(v)|x)[log pθ1(c|s(v))] + Eqϕ(s(a)|c)[log pθ1(c|s(a))]

+Eqϕ(s(v)|x)[log pθ2(c|s(v))] + Eqϕ(s(a)|c)[log pθ2(c|s(a))]

−βDKL(qϕ(s
(v)|x)||N (µ(a), I)),

(11)

where, ϕ refers to the parameters of Ev→l and Ea→l, θ1 and θ2 refer to
the parameters of Dl→a and Dl→v, respectively. The hyperparameter β is set
following CADA-VAE (Schonfeld et al., 2019).

3.4 Information Bottleneck Constraint

In our method, information is gradually disentangled from the visual space
through the latent space to the semantic space. The semantic feature c is
related disentangled attribute information while the visual feature x has high-
dimensional entangled non-semantic information. Therefore, we hope that the
latent feature s should contain as much semantic information of c as possible
while discarding the redundant non-semantic information of x. In information
theory, the dependence between two random variables could be measured by
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Fig. 4 The wake-sleep procedure. The features represented as dotted lines are generated. In
the wake phase, we use real visual data x to train the model representation capability. In the
sleep phase, the generated visual data x̃ is used to train the model abstraction capability.

mutual information I(·; ·). As illustrated in Figure 1, we maximize the mutual
information between the semantic space and the latent space (I(s; c)) and
minimize the mutual information between the visual space and the latent space
(I(s;x)). We define the information bottleneck (IB) (Tishby et al., 2000) to
constrain the information relationship between spaces:

max I(s; c)− ηI(s;x). (12)

Since s may be sampled from different distributions like N (µ(v),σ2) or
N (µ(a),σ2) in our model, we resample s∗ ∼ N (µ∗,σ2), where µ∗ = αµ(v) +
(1− α)µ(a) with a uniform distribution α ∼ U(0, 1).

Since the VAE model does not utilize the generated samples for training,
the latent features generated are largely randomized and uncontrollable. In-
spired by the work of Hu et al. (Hu et al., 2018), we train the modified VAE
model in a wake-sleep procedure, using real data and generated data for joint
training. The extended wake-sleep procedure is shown in Figure 4. In the wake
phase, we use real visual data x to train the feature representation capability of
the model. In the sleep phase, we use generated data x̃ to train the abstraction
capability of the model. So that the model can generate disentangled latent
features. The wake-sleep information bottleneck constraint is as follow:

max[I(s∗; c)− ηI(s∗;x)] + λ[I(s̃∗; c)− ηI(s̃∗; x̃)], (13)

where s̃∗ is the latent embedding representation of x̃. The weighting factor λ
is obtained by grid search on the validation set.

Since the information bottleneck with high dimension is intractable to cal-
culate, we follow the strategy proposed by Alemi et al. (Alemi et al., 2016).
The Information Bottleneck (IB) loss is shown as follow:

LIB =
1

N

N∑
i=1

E[− log q(c(yi)|Dl→a(s
∗
i ))] + ηDKL[qϕ(s

∗|xi, c(yi))||r(z)], (14)

where r(z) is a standard normal distribution in the experiments. η is initialized
to 10−5 and changed with the IB loss.
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Finally, the overall loss of the proposed model is defined as:

L = LV AE + γLCE + δLCC + τLIB , (15)

where γ, δ, and τ are the weighting factors of the cross entropy loss, center cal-
ibration, and information bottleneck loss, respectively. We empirically choose
their values to balance the effect of different loss terms in the experiments.

For more intuitive understanding, we summarize our proposed method in
Algorithm 1. When the encoder Ev→l is finished training, we utilize this en-
coder to learn latent representations of both the seen and unseen image fea-
tures. Then the latent representations are used for classification.

Algorithm 1: The proposed zero-shot learning method.
Input: The image features x, class labels y and attribute features c(y) of seen

classes; The attribute features c(u) of unseen classes.
Output: The parameters of encoder Ev→l.
Steps:
1. Learn the Visual to Semantic (VS) VAE VS = Ev→l ◦Dl→a to project the visual
features through latent space into semantic space by the LSCE Loss (5).

2. Learn the Semantic to Visual (SV) VAE SV = Ea→l ◦Dl→v to project the
semantic features through latent space into visual space by the LV CE Loss (8).

3. A Center-Calibration LCC Loss (10) is used to align the visual and semantic
distributions in the latent space.

4. Generate features with noise supervision by bias passing, the VAE loss with
noise supervision is LV AE Loss (11).

5. An information bottleneck constraint LIB Loss (14) is utilized to discard the
redundant non-semantic information of visual features while preserving more
essential information of semantic features.

3.5 Transductive ZSL

Our proposed model can be easily extended to the TZSL setting. We adopt the
self-training manner to exploit the unseen images. We first generate the pseudo
labels ỸU for unseen image features XU through calculating classification score
O of the learned classifier in the IZSL stage. There will inevitably be noise
in ỸU . We use classification score peakiness based filtering strategy (Li et al.,
2019b) to mitigate the influence of noisy labels. The classification score of
xu
i ∈ XU is oi ∈ RNU according to all the NU classes. The sum of each

dimension of oi is 1. Let oi be the soft label of xu
i . We assume the maximum

and second maximum score of oi are oi
um

and oi
un

. The pseudo label of xu
i

should be um. If an unseen sample satisfies
oi
um

oi
un

> r, we assign soft label

and pseudo label to it. r is the threshold, we set r = 1.4 in our experiment.
Then we have a high confident training set Ũ = {(xu, ũ, c(ũ),o)|xu ∈ XU , ũ ∈
YU , c(ũ) ∈ CU ,o ∈ O}.
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For the seen classes, we still utilize the proposed method for the IZSL to
train the model with training set S. The difference is that we use the cross
entropy loss to replace center calibration of Equation (10). Simultaneously, we
exploit the training set Ũ to calibrate the model with unseen classes. Unlike
Equation (5) and Equation (8), we use the soft label and soft cross-entropy
loss to replace hard label and cross-entropy loss in the visual and semantic
space. In the latent space, the probability xu

i belong to the ũi-th category is
calculated as:

p(ũi|xu
i ) =

exp(Ev→l,ϕ1
(xu

i )
TEa→l(c(ũi)))∑

u∈YU exp(Ev→l,ϕ1(xu
i )

TEa→l(c(u)))
. (16)

Then, we introduce the Generalized Cross-Entropy (GCE) loss (Zhang and
Sabuncu, 2018) to alleviate the influence of noisy pseudo labels:

LGCE =
∑
i

1− p(ũi|xu
i )

q

q
, (17)

where q ∈ (0, 1] is a hyper-parameter of which a higher value is preferred
when the noise level is high. The GCE loss is a generalization of the Cate-
gorical Cross-Entropy (CCE) loss and the Mean Absolute Error (MAE). It is
equivalent to the CCE loss when q infinitely approaches 0 and turns to MAE
loss when q = 1. We set q = 0.4 in our experiment. The CCE loss is powerful
for classification tasks but will be overfitting on the label noise dataset. The
MAE loss is worse for label clean classification task but is robust to noisy
labels. The hyper-parameter q can be tuned between 0 and 1 to fit different
noise levels. In the TZSL experiments, we have also tried the other label-noise
learning methods T-Revision (Xia et al., 2019) and SIGUA (Han et al., 2020a)
to combat noisy labels. Results show that these different label-noise learning
methods achieve similar performance. This may be because that the soft label
assignment procedure is more important for the transductive ZSL. Therefore,
we choose the compact GCE loss to handle the label-noise problem in our
method.

4 Experiments

In this section, we first give the experimental settings. Then the comparison
with state-of-the-art methods and ablation studies are conducted to demon-
strate the effectiveness of our method. Finally, more analyzing experiments
show the superiority of our method.

4.1 Experimental Settings

Datasets. We evaluated our framework on four widely used benchmark datasets
including CUB-200-2011 (CUB) (Welinder et al., 2010), SUN attribute (SUN) (Pat-
terson and Hays, 2012), attributes Pascal and Yahoo (aPY) (Farhadi et al.,
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Table 1 The details for SUN, CUB, AwA2 and APY. YS and YU are seen class number
and unseen class number. Tr, Val, Ts are the number of images at training, validation and
test time.

Datasets Attributes |YS | |YU | Tr Val Ts
SUN 102 645 72 10320 2580 1440
CUB 312 150 50 7057 1764 2967
AwA2 85 40 10 23527 5882 7913
aPY 64 20 12 5932 1483 7924

2009) and Animals with Attributes 2 (AwA2) (Xian et al., 2018a) for the
GZSL. We extracted a 2,048-dimensional CNN features for images using ResNet-
101 (He et al., 2016) as the visual features. The pre-defined attributes on each
dataset were used as the semantic descriptors. Moreover, we adopted the Pro-
posed Split (PS) (Xian et al., 2018a) to divide all classes into seen and unseen
classes on each dataset. The dataset details are listed in Table 1.

Implementation details. In our modified VAE model, we utilized mul-
tilayer perceptrons to implement the encoders (Ev→l and Ea→l) and decoders
(Dl→a and Dl→v). The encoders Ev→l and Ea→l had 1560 and 1450 hidden
units, respectively. The hidden units of Dl→a and Dl→v were 665 and 1660,
respectively. The latent embedding dimensions were 64 for AwA2 and aPY
and 256 for CUB and SUN. β, λ, γ, δ and τ were set to 0.5, 0.1, 1.0, 0.1
and 1.0. The margin ∆ was set to 10−3. Adam optimizer (Kingma and Ba,
2014) was used for training, the epoch size was 120 and the batch size was 64.
After the model training, the encoders Ev→l and Ea→l transformed the visual
features of seen classes and attribute features of unseen classes into the unified
latent space. Finally, we trained a softmax classifier to classify latent features.

Evaluation metrics. The performance of our method is evaluated by per-
class Top-1 accuracy. In conventional ZSL, the Top-1 accuracy is evaluated
on seen classes, denoted as T1. In GZSL, since the test set is composed of
seen and unseen images, the Top-1 accuracy is evaluated respectively on seen
classes, denoted as S, and unseen classes, denoted as U. Their harmonic mean
(H) (Xian et al., 2018a) is used to evaluate the performance of GZSL, which
is defined as:

H =
2× S × U

S + U . (18)

4.2 Comparison with Baseline Methods

Inductive ZSL. We selected several state-of-the-art GZSL methods for com-
parison, which include non-feature generation methods ALE (Akata et al.,
2013), DeViSE (Frome et al., 2013), ESZSL (Romera-Paredes and Torr, 2015),
SJE (Akata et al., 2015b), LATEM (Xian et al., 2016), SYNC (Changpinyo
et al., 2016), SAE (Kodirov et al., 2017), SP-AEN (Chen et al., 2018), TCN (Jiang
et al., 2019), TripletLoss (Cacheux et al., 2019) and feature generation based
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Table 2 Results of the state-of-the-arts generalized zero-shot learning for inductive setting.
The best and the second-best results are respectively marked by red and blue.

Methods CUB AwA2 SUN aPY
U S H U S H U S H U S H

ALE 23.7 62.8 34.3 14.0 81.8 23.9 21.8 33.1 26.3 4.6 73.3 8.7
DeViSE 23.8 53.0 32.8 17.1 74.7 27.8 16.9 27.4 20.9 4.9 76.9 9.2
ESZSL 12.6 63.8 21.0 5.9 77.8 11.0 11.0 27.9 15.8 2.4 70.1 4.6

SJE 23.5 59.2 33.6 8.0 73.9 14.4 14.7 30.5 19.8 3.7 55.7 6.9
LATEM 15.2 57.3 24.0 11.5 77.3 20.0 14.7 28.8 19.5 0.1 73.0 0.2
SYNC 11.5 70.9 19.8 10.0 90.5 18.0 7.9 43.3 13.4 7.4 66.3 13.3
SAE 7.8 54.0 13.6 1.1 82.2 2.2 8.8 18.0 11.8 0.4 80.9 0.9

SP-AEN 34.7 70.6 46.6 23.3 90.0 37.1 24.9 38.6 30.0 13.7 63.4 22.6
TCN 52.6 52.0 52.3 61.2 65.8 63.4 31.2 37.3 34.0 24.1 64.0 35.1

TripletLoss 55.8 52.3 53.0 48.5 83.2 61.3 47.9 30.4 36.8 - - -
SE-GZSL 41.5 53.3 46.7 58.3 68.1 62.8 40.9 30.5 34.9 - - -

CVAE-ZSL - - 34.5 - - 51.2 - - 26.7 - - -
f-CLSWGAN 43.7 57.7 49.7 53.8 68.2 60.2 42.6 36.6 39.4 - - -

LisGAN 46.5 57.9 51.6 54.3 68.5 60.6 42.9 37.8 40.2 34.3 68.2 45.7
GDAN 39.3 66.7 49.5 32.1 67.5 43.5 38.1 89.9 53.4 30.4 75.0 43.4

CADA-VAE 51.6 53.5 52.4 55.8 75.0 63.9 47.2 35.7 40.6 - - -
ABP 47.0 54.8 50.6 55.3 72.6 62.6 45.3 36.8 40.6 - - -

OCD-CVAE 44.8 55.9 51.3 59.5 73.4 65.7 44.8 42.9 43.8 - - -
LsrGAN 48.1 59.1 53.0 - - - 44.8 47.7 40.9 - - -

Ours 52.2 56.2 54.1 56.0 80.0 65.9 43.8 37.8 40.6 34.2 69.8 45.9

methods SE-GZSL (Kumar Verma et al., 2018), CVAE-ZSL (Mishra et al.,
2018), f-CLSWGAN (Xian et al., 2018b), LisGAN (Li et al., 2019a), GDAN (Huang
et al., 2019) CADA-VAE (Schonfeld et al., 2019), ABP (Zhu et al., 2019),
OCD-CVAE (Keshari et al., 2020), LsrGAN (Vyas et al., 2020). Table 2 shows
the results of different methods on four datasets. It can be seen that our pro-
posed method outperforms all the ten compared non-feature generation meth-
ods with a large margin for the harmonic mean results. Moreover, our method
significantly improves the Top-1 accuracy on unseen classes benefited from the
generated unseen class samples. Compared with the feature generation based
methods, our method can also achieve the best harmonic mean results on CUB,
AwA2, and aPY. Since the IB constrained bidirectional embedding between
the visual space and the semantic space can preserve essential attribute in-
formation and discard the non-semantic information. To further demonstrate
the effectiveness of our method. We also compared our method under the con-
ventional ZSL setting that the test image only belongs to unseen classes. As
shown in Table 3, our proposed method achieves the best for three out of the
four datasets.

Transductive ZSL. Under the TZSL setting, we mitigated the deviation
of the model on seen classes by utilizing the data of unseen classes during
training. We compared our method with recent state-of-the-art TZSL methods,
which include ALE-trans (Akata et al., 2015b), GFZSL-trans (Verma and Rai,
2017), QFSL (Song et al., 2018), GXE (Li et al., 2019b), GMN (Sariyildiz
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Table 3 Results of conventional zero-shot learning for inductive setting. The best and the
second-best results are respectively marked by red and blue.

Methods CUB AwA2 SUN aPY
ALE 54.9 62.5 58.1 39.7

DeViSE 52.0 59.7 56.5 39.8
ESZSL 53.9 58.6 54.5 38.3
SJE 53.9 61.9 53.7 32.9

LATEM 49.3 55.8 55.3 35.2
SYNC 55.6 46.6 56.3 23.9
SAE 33.3 54.1 40.3 8.3
TCN 59.5 71.2 61.5 38.9

SE-GZSL 59.6 69.2 63.4 -
CVAE-ZSL 52.1 65.8 61.7 -
f-CLSWGAN 57.3 - 60.8 -

LisGAN 58.8 - 61.7 43.1
ABP 58.5 70.4 61.5 -

OCD-CVAE 60.3 71.3 63.5 -
LsrGAN 60.3 - 62.5 -

Ours 62.2 70.1 64.2 43.5

Table 4 Results of the generalized zero-shot learning for transductive setting. The best and
the second-best results are respectively marked by red and blue.

Methods CUB AwA2 SUN
U S H U S H U S H

ALE-trans 23.5 45.1 30.9 12.6 73.0 21.5 19.9 22.6 21.2
GFZSL-trans 24.9 45.8 32.2 31.7 67.2 43.1 0.0 41.6 0.0

QFSL 17.3 39.0 24.0 20.8 74.7 32.6 17.7 25.0 20.7
GXE 57.0 68.7 62.3 80.2 90.0 84.8 45.4 58.1 51.0
GMN 60.2 70.6 65.0 - - - 57.1 40.7 47.5

f-VAEGAN 61.4 65.1 63.2 84.8 88.6 86.7 60.6 41.9 49.6
WDVSc 43.3 85.4 57.5 76.4 88.1 81.8 - - -

Ours-trans 65.3 66.5 65.9 82.7 89.2 85.8 57.5 44.6 50.2

and Cinbis, 2019), f-VAEGAN (Xian et al., 2019), WDVSc (Wan et al., 2019).
Table 4 and Table 5 show the results of different methods on CUB, AwA2, and
SUN for GZSL and conventional ZSL, respectively. We can see that our method
outperforms all the compared methods for both GZSL and conventional ZSL
on the CUB dataset. For AwA2 and SUN datasets, our method achieves the
second highest performance. This validates that our method can be readily
adapted to the TZSL setting.

4.3 Further Analyses for Inductive Setting

Ablation study. We conducted ablation experiments to verify the effective-
ness of the proposed modules. Table 6 shows the influence of different losses.
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Table 5 Results of conventional zero-shot learning for transductive setting. The best and
the second-best results are respectively marked by red and blue.

Methods CUB AwA2 SUN
ALE-trans 54.5 70.7 55.7

GFZSL-trans 49.3 78.6 64.0
QFSL 72.1 79.7 58.3
GXE 61.3 83.2 63.5
GMN 64.6 - 64.3

f-VAEGAN 71.7 89.8 70.1
WDVSc 73.4 87.3 63.4

Ours-trans 73.5 88.1 67.6

Table 6 Ablation study of the proposed modules.

Loss CUB AwA2 SUN aPY
LV AE LCE LCC LIB U S H U S H U S H U S H
" " 46.6 56.9 51.2 52.8 77.9 62.9 40.1 35.7 37.7 32.7 61.8 42.8
" " " 50.8 56.6 53.5 54.2 77.0 63.6 43.8 36.9 40.1 32.1 66.7 43.3
" " " 51.0 56.3 53.5 53.2 80.7 64.1 41.8 37.8 39.7 34.7 65.4 45.3
" " " " 52.2 56.2 54.1 56.0 80.0 65.9 43.8 37.8 40.6 34.2 69.8 45.9

Table 7 Ablation study of wake-sleep IB constraint on CUB dataset. Wake phase only
uses real data for training. Sleep(S/U) phase uses generated seen/unseen classes data for
training.

Wake Sleep(S) Sleep(U) T1 U S H
" 60.5 50.0 55.4 52.5
" " 61.9 48.7 58.5 53.1
" " 60.9 51.6 54.8 53.2
" " " 62.2 52.2 56.2 54.1

We can see that our proposed method achieves the best harmonic mean re-
sults with all the losses. Specifically, the proposed IB loss can significantly
improve the performance. For the proposed wake-sleep IB constraint, we also
performed ablation study with different conditions on CUB, as shown in Ta-
ble 7. It can be seen that the IB loss constrained on the generated seen classes
features (Sleep(S)) has significantly improved the classification accuracy of
the seen classes and conventional ZSL. Accordingly, the IB loss constrained
on the generated unseen classes features (Sleep(U)) also improves the result of
unseen classes. Our method achieves the highest harmonic mean result under
the wake-sleep IB constraint. In addition, we use N (µ(a), I) to replace the
latent semantic distribution N (µ(a),σ2) to verify the effectiveness of the pro-
posed bias passing mechanism. The results on four datasets are CUB(H=53.6),
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Fig. 5 The influence of the dimension of latent features generated by our model. We mea-
sured the Top-1 accuracy on seen classes and unseen classes and the harmonic mean accuracy
on CUB, AwA2, SUN, and aPY datasets.
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Fig. 6 The influence of different numbers of generated features per seen and unseen classes.
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Fig. 7 Visualization of the latent feature distributions. The top is the latent visual embed-
ding features and the bottom is the latent semantic embedding features.

AwA2(H=64.3), SUN(H=39.5) and aPY(H=45.5). It shows that the bias
passing mechanism can alleviate the visual and semantic noises problem.

The influence of latent dimensions. We first evaluated our method
with different dimensions of latent features, as shown in Figure 5. The har-
monic mean results have less fluctuation with different latent feature dimen-
sions on four datasets. Our method achieves the best performance on CUB
and SUN with the latent feature dimensions equal to 256. The best results
are reached for AwA2 and aPY when the latent feature dimension is 64. We
speculate the reason is that on the one hand the CUB and SUN are fine-
grained datasets which need more information to distinguish. On the other
hand, excessive dimensions lead to redundant information.
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Fig. 8 The influence of q and r on GZSL (H) and conventional ZSL (T1) results (%) for
transductive setting.

The influence of latent features. We show the influence of different
numbers of generated features per seen and unseen classes on CUB. Figure 6
reports the harmonic mean results (H) of GZSL (a) and T1 results of con-
ventional ZSL (b). We can see that the GZSL performance of our method
increases with more generated unseen features in most cases and when the
number of generated unseen features is twice the generated seen features, our
method achieves the best result. The results of conventional ZSL show a sim-
ilar conclusion with GZSL, which validates the soundness of our method.

Visualization Result. We use the t-SNE (Maaten and Hinton, 2008)
to visualize our latent features used for the final GZSL classification. Figure 7
shows the distributions of the latent features of 50 classes on the CUB dataset.
The top is the latent visual embedding features and the bottom is the latent
semantic embedding features. From the almost consistent distribution, we can
see our latent features can well align visual and semantic distributions.

4.4 Further Analyses for Transductive Setting

The influence of q and r. Figure 8(a) shows the results of H and T1 for CUB
dataset when varying hyper-parameter q of generalized cross-entropy loss from
0.1 to 0.9. Our method achieves the best performance when q = 0.4. GCE loss
combines the advantages of CCE loss and MAE loss, which makes our model
more robust in the classification task with noisy labels. The influence of r on
the results of H and T1 for CUB dataset is shown in Figure 8(b). We varied
the value of r from 1.0 to 3.0 in steps of 0.2. At the first, the accuracy of H
and T1 increases with the change of r. Our model achieves the best result
when r = 1.4. Then the performance of the model declines with the change of
r. Since the quality of the noisy unseen data used for training becomes higher,
the performance of the model is increasing. While the higher the quality of the
unseen data, the less noise in the label, and the smaller the amount of training
data. Therefore the performance of the model decreases.

Quality analysis of noisy data. We further analyzed the influence of
the threshold r on the generated pseudo labels for CUB, AwA2, and SUN.
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Table 8 Quality analysis of noisy data. Acc is the accuracy of the pseudo label. Num is
the number of noise data for training. Max, Min and Avg respectively show the maximum,
minimum and average number of training samples for different categories.

r 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

CUB

Acc 0.61 0.66 0.70 0.75 0.78 0.81 0.83 0.84 0.85 0.87 0.88
Num 2967 2420 2065 1786 1573 1404 1276 1162 1077 994 928
Max 60 59 59 59 59 59 59 58 58 57 56
Min 50 29 19 15 7 5 3 3 1 0 0
Avg 59 48 41 35 31 28 25 23 21 19 18

AwA2

Acc 0.61 0.66 0.7 0.72 0.74 0.75 0.77 0.78 0.79 0.8 0.82
Num 7913 6080 4741 3736 2976 2341 1844 1481 1193 979 832
Max 1645 1354 1106 893 699 515 427 389 345 309 281
Min 174 151 100 71 49 30 19 12 10 9 9
Avg 791 608 474 373 297 234 184 148 119 97 83

SUN

Acc 0.63 0.67 0.70 0.73 0.75 0.76 0.78 0.79 0.81 0.82 0.83
Num 1440 1267 1136 1040 964 900 837 792 752 720 688
Max 20 20 20 20 20 20 20 20 20 19 19
Min 20 12 9 6 5 4 4 4 2 2 1
Avg 20 17 15 14 13 12 11 11 10 10 9

As shown in Table 8, Acc is the accuracy of the generated pseudo label with
different thresholds r. It shows that a larger threshold r can make the confi-
dence of the pseudo label higher. Num illustrates the relationship between the
number of noisy data for training and threshold r. Although the confidence
of pseudo labels has become higher, the number of samples used for training
is decreasing. Max, Min and Avg respectively show the maximum, minimum
and average number of training samples for different categories with different
r. We can see that when r is large, the sample numbers for different cate-
gories will be unbalanced, especially the number of training samples in some
categories will even become 0. Therefore, we set r = 1.4 to achieve a good
tradeoff in sample quality, sample training number, and sample balance in the
experiment.

5 Conclusion

In this paper, we introduced a novel bidirectional embedding based generative
model for zero-shot learning. This method learns a unified latent space to align
the feature distributions of both visual domain and semantic domain. A novel
information bottleneck (IB) constrained latent bidirectional embedding allows
the latent features to contain more essential attributes related information
while discarding non-semantic information flowed from the visual features.
In addition, data uncertainty estimation and wake-sleep procedure are intro-
duced to facilitate latent distributions alignment. The proposed method has
outperformed several state-of-the-art methods in different ZSL settings in ex-
perimental comparison, showing the advantages of our approach. Furthermore,
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our method can be lightly extended to adapt the transductive ZSL task and
also achieves competitive performance.

For the future works, further investigation on information bottleneck and
uncertainty estimation theories for the cross-domain alignment problem is sig-
nificant. For example, the other feature generation based ZSL models, such
as GANs and generative flows, can also utilize information bottleneck and
uncertainty estimation methods to generate more reliable unseen samples.
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