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Abstract 

Background The use of menopausal hormone therapy (MHT) may interact 

with genetic variants to influence colorectal cancer (CRC) risk. Methods We 

conducted a genome-wide gene-environment interaction between single 

nucleotide polymorphisms and the use of any MHT, estrogen-only, and 

combined estrogen-progestogen therapy with CRC risk, among 28,486 

postmenopausal women (11,519 cases and 16,967 controls) from 38 studies, 

using logistic regression, two-step method, and 2- or 3-degree-of-freedom 

(d.f.) joint test. A set-based score test was applied for rare genetic variants. 

Results The use of any MHT, estrogen-only and estrogen-progestogen were 

associated with a reduced CRC risk [odds ratio (OR) with 95% confidence 

interval (95% CI) of 0.71 (0.64-0.78), 0.65 (0.53-0.79), and 0.73 (0.59-0.90), 

respectively]. The two-step method identified a statistically significant 

interaction between a GRIN2B variant rs117868593 and MHT use, whereby 

MHT-associated CRC risk was significantly reduced in women with the GG 

genotype [0.68 (0.64-0.72)] but not within strata of GC or CC genotypes. A 

statistically significant interaction between a DCBLD1 intronic variant at 

6q22.1 (rs10782186) and MHT use was identified by the 2-d.f. joint test. The 

MHT-associated CRC risk was reduced with increasing number of 

rs10782186-C alleles, showing ORs of 0.78 (0.70-0.87) for TT, 0.68 (0.63-

0.73) for TC, and 0.66 (0.60-0.74) for CC genotypes. In addition, five genes in 

rare variant analysis showed suggestive interactions with MHT (two-sided 
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P<1.2x10-4). Conclusion Genetic variants that modify the association 

between MHT and CRC risk were identified, offering new insights into 

pathways of CRC carcinogenesis and potential mechanisms involved. 

  

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jn
c
i/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/jn

c
i/d

ja
c
0
9
4
/6

5
8
1
0
8
5
 b

y
 U

n
iv

e
rs

ity
 o

f L
e
e
d
s
 u

s
e
r o

n
 1

0
 M

a
y
 2

0
2
2



9 

 

Background 

The use of menopausal hormone therapy (MHT) has been identified to 

be associated with a reduced risk of colorectal cancer (CRC) (1-4). In a meta-

analysis including 20 studies, both ever use of estrogen-only MHT (RR 0.79, 

95% CI 0.69-0.91) and ever use of combined estrogen-progestogen MHT (RR 

0.74, 95% CI 0.68-0.81) were associated with a reduced CRC risk (1).  

Previous gene-environment (GxE) interaction studies that investigated 

the association of MHT use with CRC risk according to genetic variants (5-10) 

have reported a few potential genetic modifiers of CRC risk associated with 

the use of MHT, however, these studies were based on limited candidate 

genes/pathways or limited sample size. We conducted a comprehensive 

genome-wide GxE analysis of both common and rare genetic variants, using 

the largest known study sample to date, on the one hand, to identify novel 

genetic variants that may modify the beneficial influence of MHT on CRC risk 

in order to obtain insight into potential mechanisms behind the association 

between MHT and CRC risk. On the other hand, the analysis can yield novel 

genetic susceptibility alleles for CRC risk, which may not be identified without 

accounting for the GxE component. 

Methods 

Study participants 

We included 38 studies from North America, Australia, and Europe 

participating in the multi-centered Colon Cancer Family Registry (CCFR), the 
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Colorectal Transdisciplinary Study (CORECT), the Genetics and 

Epidemiology of Colorectal Cancer Consortium (GECCO), and the United 

Kingdom Biobank (UKBiobank), which were included in genome-wide 

association studies as described previously (11-13). Study details and 

descriptions can be found in the Supplementary Materials (available online). 

All studies were approved by their respective Institutional Review Boards, and 

study participants provided informed consent. 

Exposure assessment 

Information on demographics and environmental risk factors were 

collected by interviews and/or structured questionnaires. We carried out a 

multi-step data-harmonization procedure at the GECCO coordinating center 

(Fred Hutchinson Cancer Research Center) as described previously (10, 14, 

15).  

Postmenopausal status was defined by using (I) menopausal status 

derived from studies, if available; or (II) self-reported menopausal status, if 

study-derived was not available; or (III) age>55, if neither study derived nor 

self-report were available (Supplementary table 1). MHT use was considered 

as any MHT use (i.e., either use of estrogen-only or estrogen-progestogen) or 

estrogen-only use or estrogen-progestogen use at or up to the reference time. 

Non-users of any MHT at or up to reference time were used as the reference 

group.  

Genotyping, quality control, and imputation 
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Details on genotyping, imputation and quality control have been 

reported previously (16). In brief, genotyped single nucleotide polymorphisms 

(SNPs) were excluded on the basis of call rate (<98%), evidence of departure 

from Hardy-Weinberg equilibrium (HWE) in controls (P<1x10-4). All autosomal 

SNPs in all studies were imputed to the Haplotype Reference Consortium r1.1 

(2016) reference panel via the Michigan Imputation Server (17) and converted 

into a binary format for data management and analyses using R package 

BinaryDosage (18). Imputed common SNPs were restricted based on a 

pooled MAF≥1% and imputation accuracy (R2>0.8). After imputation and 

quality control analyses, a total of over 7.2 million common SNPs were 

included. All analyses were restricted to samples clustering with the Utah 

residents of Northern and Western European ancestry from the CEU 

population in principal component analysis. 

Statistical Methods 

Statistical analyses of all data were conducted centrally on individual-

level data. All tests of statistical significance were two-sided. Unless otherwise 

indicated, we adjusted for age at the reference time, study center, and the first 

three principal components (Plink2) to account for potential population 

substructure. SNPs were treated as continuous variables (i.e., log-additive 

effects). To evaluate MHT main effects, each study was analyzed separately 

using logistic regression models, and study-specific results were combined 

using fixed- and random-effects meta-analysis methods to obtain summary 
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odds ratios (ORs) and 95% confidence intervals (CIs) across studies. We 

calculated the heterogeneity p-values using Cochran’s Q statistics (19). 

Quantile-quantile (Q-Q) plots were used to assess whether the distribution of 

the p-values was consistent with the null distribution (except for the extreme 

tail). 

Genome-wide interaction scans of common markers were conducted 

using R package GxEScanR (20), which implements several interaction 

testing methods. To test for multiplicative statistical interactions between each 

SNP and environmental risk factors (MHT / estrogen-only / estrogen-

progestogen), we primarily used conventional case-control logistic regression 

analysis, and two-step methods (21-23) to test the GxE interaction term. 

Additionally, we also used a 2-degree of freedom (2-d.f.) joint test (24) and 3-

degree of freedom (3-d.f.) joint test (25) to test GxE interaction in the context 

of simultaneously testing for SNP-CRC and SNP-E (MHT / estrogen-only / 

estrogen-progestogen) associations. For the 2- and 3-d.f. test we do not 

report on known loci (16). For all novel findings we examined the ORs of MHT 

/ estrogen-only / estrogen-progestogen stratified by genotypes of significant 

SNPs. More details in these testing methods can be found in the 

Supplementary Methods (available online). 

For interaction analysis of rare genetic risk variants (MAF<1%) and 

MHT, we conducted the Mixed effects Score Tests for interaction (MiSTi) (26), 

a set-based statistical framework providing mixed effects score tests for GxE 
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interaction and addressing issues of power and low effect sizes, to discover 

genes that interact with MHT in relation to CRC risk (see the Supplementary 

Methods, available online). Since more than 20,000 genes were tested 

(22,476 genes for any MHT use, 20,609 for estrogen-only, and 20,360 for 

estrogen-progestogen), interactions with P<2.5x10-6 were considered 

statistically significant, while those with P<1.2x10-4 were considered as 

suggestive.  

Functional annotation 

We performed bioinformatic follow-up for genome-wide interaction 

study (GWIS) variants that were deemed statistically significant for 

downstream analysis (for more details, see the Supplementary Methods, 

available online). Relevant regional plots were generated using the command 

line version (Standalone) of LocusZoom v1.3 (27). Measures of linkage 

disequilibrium (LD) were estimated using study population controls. 

Results 

Detailed descriptive characteristics of the cases and controls are 

shown in Table 1. MHT use was associated with reduced CRC risk both in 

cohort studies and case-control studies (Figure 1-3).  

Genome-wide MHT-interaction scans for CRC risk 

Statistical interaction results for genetic variants are summarized in 

Table 2. While conventional case-control logistic regression models with a 

Bonferroni correction for multiple testing did not identify any statistically 
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significant interactions between the use of any MHT / estrogen-only / 

estrogen-progestogen and genetic variants (data not shown), we identified 

two interactions with common genetic variants reaching statistical significance 

for the two-step method and 2-d.f. joint test. The two-step method (with G|E in 

step1) identified a statistically significant interaction for any MHT use with 

SNP rs117868593 located 20kb downstream of GRIN2B variant at 12p13.1 

(p-observed: 3.42x10-3, p-threshold: 5x10-3, Supplementary Figure 1, 2). The 

2-d.f. joint test identified a further statistically significant interaction for any 

MHT use with a DCBLD1 intronic variant at 6q22.1 (rs10782186; joint p-

observed: 4.23x10-8, p-threshold: 5x10-8, Supplementary Figure 3, 4). Several 

DCBLD1 intronic variants at 6q22.1 (rs4945586, rs9320604, rs4946260), 

which were in LD with rs10782186, also yielded low p-values using the 2-d.f. 

joint test although not genome-wide significant (5.28x10-8, 5.60x10-8 and 

5.70x10-8; Supplementary Figure 3, 4). We did not identify any genome-wide 

statistically significant interactions between estrogen-only use or estrogen-

progestogen use and common genetic variants for CRC risk. Common 

variants that reached the suggestive interaction level (P<5x10-6) with MHT 

use for CRC risk are shown in Supplementary table 2, 3, and 4, which 

included 87 SNPs with any MHT use, 80 with estrogen-only use and 137 with 

estrogen-progestogen use. We also performed GWIS stratified by colon and 

rectal cancer, but the common variant analysis did not yield any statistically 

significant interactions for the MHT variables, respectively (data not shown).  
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Table 3 presents associations of MHT use with CRC risk by the 

genotype of the two SNPs that were found to be significant. For rs117868593, 

there was a significant protective effect of any MHT use only among women 

with the GG homozygotes (OR: 0.68; 95%CI: 0.64-0.72; P=4.3x10-37), but not 

in women with the GC genotype (OR: 0.91; 95%CI: 0.77-1.09; P=0.31), or 

with the CC genotype (OR: 0.64; 95%CI: 0.22-1.85; P=0.41). When stratified 

by MTH use, there was a significant per-minor allele association with CRC 

risk in users of any MHT (OR: 1.20; 95%CI: 1.05-1.37), but not in non-users 

(OR: 0.93; 95%CI: 0.83-1.03). For rs10782186, the protective effect of any 

MHT use compared with women not using any MHT was increasingly stronger 

for women with an increasing number of C alleles: TT (OR: 0.78; 95%CI: 

0.70-0.87; P=4.3x10-6), TC (OR: 0.68; 95%CI: 0.63-0.73; P=1.4x10-22) and CC 

(OR: 0.66; 95%CI: 0.60-0.74; P=5.7x10-14). When rs10782186 was 

investigated in relation to CRC risk among strata of MTH use, the per-minor 

allele OR for CRC risk was attenuated in users of any MHT (OR: 1.05; 95%CI: 

0.99-1.11) compared to non-users (OR:1.14; 95%CI: 1.09-1.19).  

The GxE interactions between rs117868593 or rs10782186 and any 

MHT were not heterogeneous across studies overall (P=0.98, 0.56, 

respectively) or stratified by study regions (North America, Australia, and 

Europe). The corresponding forest plots are shown in Supplementary Figures 

5 and 6.  

Rare variants for CRC risk 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jn
c
i/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/jn

c
i/d

ja
c
0
9
4
/6

5
8
1
0
8
5
 b

y
 U

n
iv

e
rs

ity
 o

f L
e
e
d
s
 u

s
e
r o

n
 1

0
 M

a
y
 2

0
2
2



16 

 

The rare variant analysis did not yield any statistically significant 

interactions (P<2.5x10-6) for the MHT variables. However, several genes were 

found to reach the suggestive level for interaction (P<1.2x10-4) for CRC risk, 

i.e., PREX1 with any MHT use (P=5.02x10-5), SOS2 with estrogen-only 

therapy (P=9.23x10-5), as well as TMEM189-UBE2V1 (P=2.46x10-5), 

FAM149A (P=9.67x10-5), and RPS13 (P=1.02x10-5) with estrogen-

progestogen therapy (Table 4, QQ-plots shown in Supplementary Figures 7-

9).  

Functional annotations of genetic loci 

We performed bioinformatic analysis of the two loci showing significant 

interactions with MHT use (rs117868593 located 20kb downstream of 

GRIN2B variant at 12p13.1 and a DCBLD1 intronic variant rs10782186 at 

6q22.1). Annotation was performed for all variants tagged by the most 

significant SNPs (r2>0.5) using our novel functional annotation analyses. The 

GRIN2B rs117868593 locus is in LD with rs17822202 (D’=0.93 and r2=0.85 in 

1000 Genomes Project CEU), which is downstream of the GRIN2B gene. We 

noted that this SNP was associated with more pronounced enhancer activity 

in colon tumor and cancer cell lines than in normal colon tissues 

(Supplementary Figure 10). The DCBLD1 rs10782186 is in high LD with 

rs9320604 (D’=0.99 and r2=0.98 in 1000 Genomes Project CEU), a SNP 

overlapping histone methylation patterns with enhancer activity in normal 

colon tissues, colon tumor, and cancer cell lines, and associated with strong 
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DNase hypersensitivity in tumor tissues (Supplementary Figure 11). 

Based on BarcUVa-Seq eQTL analysis (Supplementary Methods 

available online), we identified four genes i.e., EMP1, RPL13AP20, FAM234B 

and CDKN1B, whose expression in normal colon tissue was significantly 

associated with the SNP rs117868593 or the SNPs in LD (R2>0.5) (P<0.05) 

(Supplementary Table 5, Supplementary Figure 12), as well as two genes, 

i.e., ROS1 and GOPC, with the SNP rs10782186 or the SNPs in LD (P<0.05) 

(Supplementary Table 6, Supplementary Figure 13). These eQTL effects 

persisted when restricting the sample to postmenopausal women although 

significant for rs10782186_ROS1, rs117868593_RPL13AP20 and 

rs1806217_FAM234B. 

Discussion 

We identified novel GxE interactions between the use of any MHT and 

common variants at two loci for CRC risk among postmenopausal women. 

The putative target genes underlying these interactions include EMP1, 

RPL13AP20, FAM234B, CDKN1B, ROS1 and GOPC. In addition, we found 

suggestive interactions between the use of MHT and rare variants in PREX1, 

SOS2, TMEM189-UBE2V1, FAM149A and RPS13. Using independent 

samples in the current study, the previously found SNPs for GxE interactions 

(Supplementary Table 7) (7, 10) did not show statistically significant 

interaction with MHT with respect to CRC risk. These earlier studies used a 

candidate gene approach, different covariable adjustment, or different 
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exposure/non-exposure definitions compared with our GWAS study. 

Additionally, power could be further reduced by variations in the underlying 

distribution of MHT as new studies were introduced to the larger cohort. 

Currently, the underlying etiologic mechanisms by which MHT affects 

CRC are not yet well understood. It is likely that protective cellular effects of 

estrogen and progesterone in the development of CRC are mediated through 

ESR1 (estrogen receptor α), ESR2 (estrogen receptor β), and PGR 

(progesterone receptor) (28-30). Estrogen and progestin may play a role in 

the pathway leading to DNA hyper-methylation (31, 32), which regulates gene 

expression including that of tumor suppressor genes and thereby play a 

crucial role in tumorigenesis of CRC. Estrogen has also been found to have 

an impact on a large number of serum proteome which plays a role in 

mucosal protection and repair in the gastrointestinal tract (33) as well as colon 

transcriptome (34). In addition, estrogen may contribute to maintaining the 

genomic stability in colonic epithelial cells by upregulation of mismatch repair 

genes (35). MHT use has also been reported to have growth inhibiting effects 

on colon cancer cells through upregulating cell cycle regulators, e.g., TP53 

(36).  Consortium efforts that are powered to explore the relationships of MHT 

with specific subtypes of CRC may yield further insights to GxE interactions 

with respect to hormonal contributions to the pathogenesis of CRC (37). 

The SNP rs117868593 located about 20kb downstream from GRIN2B 

(glutamate receptor, ionotropic, N-methyl D-aspartate 2B) was not found to be 
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associated with expression of the nearest gene GRIN2B but with EMP1, 

RPL13AP20, FAM234B and CDKN1B. Expression of EMP1 (epithelial 

membrane protein 1) has been found to be lower in human CRC than normal 

adjacent colorectal tissues (38) and overexpression of EMP1 was observed to 

reduce proliferation and induce apoptosis of CRC cells (39), which are 

consistent with our findings, i.e., lower expression of EMP1 and higher risk of 

CRC associated with G allele of rs117868593. We found the MHT users with 

GG have a stronger significant reduction of CRC risk, suggesting that EMP1 

may function as an oncogene in hormone-dependent epithelium, which has 

been observed for EMP2, a paralog of EMP1 (40). Downregulation of 

CDKN1B (cyclin-dependent kinase inhibitor-1B, p27, kip1), which mainly 

results from increased ubiquitin-mediated proteasomal degradation, has been 

associated with tumor progression in CRC (41), and CDKN1B could be 

induced through ESR2 (estrogen receptor β)-mediated repression of the F-

box protein p45 (SKP2) which has been identified as the substrate recognition 

component that targets and binds CDKN1B for ubiquitination and subsequent 

degradation (41-43). The link between CDKN1B and ESR2 might explain the 

observed interaction of CDKN1B with MHT. Potential mechanisms through 

which RPL13AP20 and FAM234B act in modifying MHT associated CRC risk 

are unknown.  

The region in which DCBLD1 (encoding the discoidin, CUB, and LCCL 

domain-containing 1 protein) is located, chromosome 6q22.1, has been 
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reported as one of the suggestive susceptibility regions (P=3.20x10-6) in a 

GWAS meta-analysis on CRC risk (12). Association estimates for the index 

SNP rs10782186 and correlated SNPs (rs4945586, rs9320604, and 

rs4946260) were reported in the supplementary tables of that above-

mentioned GWAS paper. The significance (P=4.23x10-8) of the interaction in 

our GWIS using the 2-d.f. joint test was mainly driven by the genetic 

association (P=6.79x10-8) and was further strengthened by the GxE product 

term (P=2.79x10-2). Thus, incorporating the GxE component helped to 

uncover genetic susceptibility variants for CRC risk, which did not reach 

genome-wide significance level in GWAS. Analyses of associated gene 

expression indicated the involvement of ROS1 and GOPC. ROS1 (c-ros 

oncogene 1) is a transmembrane receptor tyrosine kinase that often shows 

genetic rearrangements in colorectal tumor tissue, such as intrachromosomal 

fusion with GOPC due to microdeletions at 6q22.1, which is highly prevalent 

in CRC (44, 45). GOPC-ROS fusion proteins have been shown to activate the 

downstream signaling pathway, signal transducers and activators of 

transcription-3 (STAT3) that play a significant role in progression of CRC (45, 

46). The transcription factor of STAT3 in epithelial cells is activated by IL6, 

promoting CRC tumorigenesis (29, 47), whereas ESR2 mediates the 

downregulation of the inflammatory cytokine IL6 network (48), which may 

explain the observed interaction with MHT.  

There are still considerable challenges in investigating GxE interaction 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jn
c
i/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/jn

c
i/d

ja
c
0
9
4
/6

5
8
1
0
8
5
 b

y
 U

n
iv

e
rs

ity
 o

f L
e
e
d
s
 u

s
e
r o

n
 1

0
 M

a
y
 2

0
2
2



21 

 

of rare genetic variants because of the scarcity of subjects with data on both 

these variants and the relevant environmental / lifestyle exposures. Therefore, 

the role that rare predisposition alleles play in modifying the association 

between environmental factors and CRC risk remains poorly understood. Our 

study used the set-based test (MiSTi) to tackle the challenge for GxE 

interaction analysis of rare variants, which strengthened statistical power to 

robustly uncover potential rare variant GxE association signals. Through this 

method, we found suggestive interaction for MHT use with rare variants in five 

genes for CRC risk. Despite their as yet unknown mechanisms in modifying 

CRC risk associated with MHT use, our application of GxE interaction analysis 

for CRC risk to rare variants alongside common variants represents a novel 

and rigorous approach. GxE interaction studies of rare genetic variants that 

incorporate functional genomic information ideally accounting for MHT effects 

and studies with larger sample sizes and hence with greater statistical power 

may contribute to understanding any missing heritability of cancer that 

remains unexplained by common variants. 

Our study has several strengths. First, our large sample size, including 

more than 28,000 case and control participants, facilitated the most powerful 

scan for gene-MHT interaction to date. Second, we used recently developed 

statistical approaches that can provide greater statistical power than 

conventional case-control logistic regression (49). Since no single approach 

provides the best power across all possible patterns of GxE interaction, we 
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utilized a combination of approaches to maximize the chance of identifying 

novel loci in this discovery analysis. A novel statistical set-based score test for 

interaction, MiSTi, used for rare variant analysis, helped identify suggestive 

associations with CRC risk through interaction with MHT for five genes that 

warrant further follow-up. Third, we carefully harmonized environmental data 

on MHT use and other covariates across studies to minimize between-study 

heterogeneity bias as previously described (11). We acknowledge, however, 

that our analysis was limited to populations of European ancestry thus the 

results might not be generalizable to other race/ethnicity groups. 

Measurement error of the primarily self-reported exposure assessment might 

also have contributed to reduced power, however, previous studies have 

found the high validity for self-reported MHT use when compared with 

population-based prescription databases as references (50) and a high 

concordance between self-reported MHT use and that of physicians’ reports 

(51). Despite our sizable sample size and use of advanced statistical methods 

we acknowledge that statistical power remains limited to detect small-to-

modest sized interaction effects in a genome-wide scan setting. This might 

explain the relatively small number of novel findings. To overcome these 

issues, it will be critical to expand sample sizes of well characterized studies 

as well as incorporating functional genomic data relevant to CRC and MHT 

use, such as multi-omics data of normal and tumor colon tissue exposed and 

unexposed to MHT. 
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From a comprehensive genome-wide GxE interaction investigation, we 

identified two common loci, which were significantly associated with CRC risk 

in conjunction with MHT use, as well as five genes, which showed suggestive 

evidence of GxE interaction through rare variant set analysis. The putative 

target genes of the two identified loci, EMP1, RPL13AP20, FAM234B, 

CDKN1B, ROS1 and GOPC, may explain the GxE interactions with MHT and 

offer new insights into CRC etiological mechanisms and pathways of CRC 

carcinogenesis. Further downstream follow-up studies for exploring potential 

genetic functions are warranted to confirm the involvement of these genetic 

variants or genes in CRC risk associated with MHT use. 
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Table 1. Descriptive characteristics of study participants included in the genome-wide interaction analysis between common variants and 
menopausal hormone therapy for risk of colorectal cancer 

Study 

Case participants   Control participants 

N 
No use of 
MHT n (%) 

Any MHT 
n (%) 

E-only 
n  

E+P 
n  

Age at 
diagnosis 

 mean (SD)   
N 

No use of MHT 
n (%) 

Any MHT 
n (%) 

E-only 
n  

E+P 
n  

Age at 
enrollment 
 mean (SD) 

CCFR Set 1 259 183 (70.7) 76 (29.3) 35 34 58.5 (9.9)  372 206 (55.4) 166 (44.6) 93 65 61.7 (7.9) 

CCFR Set 3 427 292 (68.4) 135 (31.6) 68 42 61.8 (7.6)  250 155 (62.0) 95 (38.0) 54 27 62.7 (7.4) 

CCFR Set 4 383 259 (67.6) 124 (32.4) 78 41 62.1 (9.3)  118 77 (65.3) 41 (34.7) 16 18 61.7 (9.3) 

CLUEII 114 98 (86) 16 (14.0) - - 74.9 (9.5)  108 97 (89.8) 11 (10.2) - - 65.0 (9.4) 

Colo 2&3 37 18 (48.6) 19 (51.4) - - 66.5 (11.4)  44 17 (38.6) 27 (61.4) - - 67.3 (9.2) 

CPSII_1 263 176 (66.9) 87 (33.1) 50 37 74.8 (5.9)  255 142 (55.7) 113 (44.3) 83 30 74.3 (5.8) 

CPSII_2 172 116 (67.4) 56 (32.6) 35 21 79.4 (6.1)  177 101 (57.1) 76 (42.9) 46 30 79.0 (6.0) 

CRCGEN 274 266 (97.1) 8 (2.9) - - 68.8 (9.9)  394 377 (95.7) 17 (4.3) - - 65.9 (9.2) 

DACHS_1 630 416 (66.0) 214 (34.0) - - 71.1 (9.5)  630 294 (46.7) 336 (53.3) - - 70.4 (8.7) 

DACHS_2 229 161 (70.3) 68 (29.7) - - 72.2 (9.8)  162 88 (54.3) 74 (45.7) - - 72.3 (9.0) 

DACHS_3 420 297 (70.7) 123 (29.3) - - 71.4 (9.5)  195 113 (57.9) 82 (42.1) - - 70.3 (10.1) 

DALS_1 267 204 (76.4) 63 (23.6) - - 68.0 (7.7)  270 189 (70.0) 81 (30.0) - - 67.7 (7.9) 

DALS_2 159 127 (79.9) 32 (20.1) - - 67.5 (7.5)  194 137 (70.6) 57 (29.4) - - 67.5 (8.2) 

EPIC 771 544 (70.6) 227 (29.4) - - 67.2 (6.6)  865 619 (71.6) 246 (28.4) - - 72.5 (5.9) 

ESTHER_VERDI 70 52 (74.3) 18 (25.7) - - 68.4 (6.8)  70 49 (70.0) 21 (30.0) - - 65.8 (6.7) 

Kentucky 397 184 (46.3) 213 (53.7) 100 56 64.4 (8.9)  525 150 (28.6) 375 (71.4) 166 86 66.7 (6.6) 

LCCS 116 90 (77.6) 26 (22.4) - - 66.1 (6.9)  108 88 (81.5) 20 (18.5) - - 65.7 (5.5) 

MCCS_1 211 159 (75.4) 52 (24.6) - - 72.0 (7.1)  184 132 (71.7) 52 (28.3) - - 71.1 (7.2) 

MCCS_2 85 65 (76.5) 20 (23.5) - - 74.3 (8.4)  86 65 (75.6) 21 (24.4) - - 73.8 (8.0) 

MEC_1 99 55 (55.6) 44 (44.4) 27 - 70.3 (7.9)  115 42 (36.5) 73 (63.5) 37 - 70.3 (7.6) 

MEC_2 15 2 (13.3) 13 (86.7) 5 - 80.1 (6.2)  30 4 (13.3) 26 (86.7) 12 - 74.6 (6.1) 

MECC_3 309 260 (84.1) 49 (15.9) - - 69.5 (10.3)  367 290 (79.0) 77 (21.0) - - 73.0 (10.0) 

NCCCSII 219 128 (58.4) 91 (41.6) - - 63.8 (9.8)  221 89 (40.3) 132 (59.7) - - 65.4 (9.4) 

NFCCR_2 60 51 (85.0) 9 (15.0) - - 61.1 (7.9)  130 104 (80.0) 26 (20.0) - - 60.2 (7.2) 

NHS_1_2 328 174 (53.0) 154 (47.0) 23 7 68.0 (7.4)  673 321 (47.7) 352 (52.3) 42 7 68.5 (6.9) 

NHS_3_AD 410 187 (45.6) 223 (54.4) 21 10 68.1 (6.7)  335 133 (39.7) 202 (60.3) 15 7 67.9 (6.7) 
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PLCO_1_Rematch 216 125 (57.9) 91 (42.1) - - 68.8 (6.0)  123 61 (49.6) 62 (50.4) - - 67.5 (6.2) 

PLCO_2 196 110 (56.1) 86 (43.9) - - 70.6 (6.6)  163 90 (55.2) 73 (44.8) - - 70.6 (6.3) 

PLCO_3 295 157 (53.2) 138 (46.8) - - 67.0 (7.2)  1964 900 (45.8) 1064 (54.2) - - 62.1 (5.3) 

PLCO_4_AD 434 241 (55.5) 193 (44.5) - - 64.0 (5.9)  587 274 (46.7) 313 (53.3) - - 61.9 (5.3) 

REACH_AD 9 7 (77.8) 2 (22.2) - - 62.9 (4.0)  75 47 (62.7) 28 (37.3) - - 62.3 (5.6) 

SMC_COSM 179 90 (50.3) 89 (49.7) - - 69.7 (9.7)  330 145 (43.9) 185 (56.1) - - 64.6 (7.8) 

UKB_1 1073 996 (92.8) 77 (7.2) - - 65.4 (5.3)  4254 3928 (92.3) 326 (7.7) - - 65.4 (5.3) 

USC_HRT_CRC 296 127 (42.9) 169 (57.1) 75 67 66.3 (5.5)  400 150 (37.5) 250 (62.5) 116 82 65.0 (6.8) 

VITAL 114 61 (53.5) 53 (46.5) - - 70.5 (6.4)  126 60 (47.6) 66 (52.4) - - 71.5 (6.6) 

WHI_1 450 297 (66.0) 153 (34.0) 95 58 71.0 (7.1)  519 282 (54.3) 237 (45.7) 137 100 71.2 (7.0) 

WHI_2 977 576 (59.0) 401 (41.0) 202 199 72.2 (7.4)  990 512 (51.7) 478 (48.3) 260 217 72.0 (7.2) 

WHI_3 556 313 (56.3) 243 (43.7) 117 126 78.6 (6.9)  558 267 (47.8) 291 (52.2) 148 142 78.5 (6.9) 

Total 11519 7664 (66.5) 3855 (33.5) 931 698 -  16967 10795 (63.6) 6172 (36.4) 1225 811 - 

N, number; MHT, menopausal hormone therapy; E-only, estrogen only; E+P, combined estrogen-progestogen; SD, standard deviation; CCFR, Colon Cancer Family 
Registry; CLUEII, Campaign against Cancer and Heart Disease II; Colo 2&3, Hawaii Colorectal Cancer Studies 2 & 3; CPSII, Cancer Prevention Study-II; CRCGEN, 
Colorectal Cancer Genetics & Genomics; DACHS, Darmkrebs: Chancen der Verhütung durch Screening; DALS, Diet, Activity, and Lifestyle Study; EPIC, European 
Prospective Investigation into Cancer; ESTHER_VERDI, Epidemiologische Studie zu Chancen der Verhütung, Früherkennung und optimierten THerapie chronischer 
ERkrankungen in der älteren Bevölkerung; Kentucky, Kentucky Case-Control Study; LCCS, Leeds Colorectal Cancer Study; MCCS, Melbourne Collaborative Cohort 
Study; MEC, Multiethnic Cohort Study; MECC, Molecular Epidemiology of Colorectal Cancer Study; NCCCSII, The North Carolina Colon Cancer Study II; NFCCR, 
Newfoundland Case-Control Study; NHS, Nurses’ Health Study; PLCO, Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; REACH, Colon Cancer 
Pathways: Hyperplastic Polyps and Adenomas; SMC_COSM, Swedish Mammography Cohort and Swedish Men Cohort; UKB, UK Biobank; USC_HRT_CRC, 
University of Southern California Hormone Replacement Therapy Colorectal Cancer Study; VITAL, Cancer Screening Trial VITamins And Lifestyle cohort; WHI, The 
Women's Health Initiative 
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Table 2. Results of genome-wide interaction analyses with menopausal hormone therapy for colorectal cancer risk among postmenopausal women 

MHT Type SNP Chr 
BP 

Position 
Locus Gene 

Count  
Allele 

Count 
Allele 

frequency 

Statistical method 
used to detect 

the GxMHT 
interaction 

P-value 
threshold 

for GxMHT 
interaction 

P-value 
observed 

for GxMHT 
interaction 

P-value for 
heterogeneity 

No. of 
studies 

included 

Any MHT rs117868593 12 13670508 12p13.1 GRIN2B C 0.05 
Two-step method 
(by G|E in step 1)  

5x10-3 3.42x10-3 0.98 38 

Any MHT rs10782186 6 117823508 6q22.1 DCBLD1 C 0.50 2-d.f. joint test 5x10-8 4.23x10-8 0.56 38 

MHT, menopausal hormone therapy; SNP, single nucleotide polymorphism; Chr, chromosome; BP Position, base pair position based on NCBI Build37; G|E, 
associations between G and E in the combined case-control population; 2-d.f., 2-degree of freedom. Notes: Directly genotyped SNPs were coded as 0, 1, or 2 
copies of the count allele. Imputed SNPs were coded as expected gene dosage. Multiplicative interaction terms were modelled as the product of MHT and 
each SNP of interest. All statistical tests were two-sided. 
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Table 3. Associations with colorectal cancer risk stratified by use of any menopausal hormone therapy and genotypes of SNPs of interest 

SNP MHT use 

 Genotype of SNP 

 Homozygous non-carriers  Heterozygous  Homozygous carries of the minor allele  Per minor allele within strata of MHT use 

 N Ca/Co OR (95% CI) P  N Ca/Co OR (95% CI) P  N Ca/Co OR (95% CI) P  OR (95% CI) P 

                 

rs117868593 

  GG  GC  CC  per C allele within strata of MHT use 

No  6991.4/9745.2 1.00 (Ref.) -  652.6/1026.1 0.91 (0.81-1.03) 0.13  20/23.7 1.09 (0.53-2.22) 0.81  0.93 (0.83-1.03) 0.17 

Yes  3390.5/5537.1 0.68 (0.64-0.72) 4.3x10-37  450.7/614.9 0.83 (0.72-0.96) 0.011  13.8/20.1 0.69 (0.31-1.54) 0.37  1.20 (1.05-1.37) 7.7x10-3 

OR (95% CI)   - 0.68 (0.64-0.72) 4.3x10-37  - 0.91 (0.77-1.09) 0.31  - 0.64 (0.22-1.85) 0.41    

                 

rs10782186 

  TT  TC  CC  per C allele within strata of MHT use 

No  1861.2/2936.4 1.00 (Ref.) -  3806.9/5361.8 1.15 (1.07-1.24) 3.5x10-4  1995.9/2496.9 1.29 (1.18-1.41) 1.9x10-8  1.14 (1.09-1.19) 1.8x10-8 

Yes  993/1624.8 0.78 (0.70-0.87) 4.3x10-6  1861.9/3068.3 0.78 (0.71-0.85) 3.8x10-8  1000/1478.9 0.85 (0.77-0.95) 3.8x10-3  1.05 (0.99-1.11) 0.14 

OR (95% CI)   - 0.78 (0.70-0.87) 4.3x10-6  - 0.68 (0.63-0.73) 1.4x10-22  - 0.66 (0.60-0.74) 5.7x10-14    

                 

SNP, single nucleotide polymorphism; MHT, menopausal hormone therapy; N, number; Ca/Co, case/control; OR, odds ratio; CI, confidence interval; P, 
probability value. Case/control counts were calculated by imputed genotype probabilities. 
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Table 4. Suggestive association (P<1.2x10-4) of genes from rare variants analyses of GxE with 
menopausal hormone therapy for colorectal cancer risk among postmenopausal women 

MHT type Gene Gene name Chr 
N of 

SNPs 
P value 

Any MHT ENSG00000124126 PREX1 20 45 5.02x10-5 

E-only ENSG00000100485 SOS2 14 15 9.23 x10-5 

E+P ENSG00000124208 TMEM189-UBE2V1 20 57 2.46x10-5 

E+P ENSG00000109794 FAM149A 4 8 9.67x10-5 

E+P ENSG00000110700 RPS13 11 5 1.02x10-4 

MHT, menopausal hormone therapy; E-only, estrogen only; E+P, combined estrogen-progestogen; 
Chr, chromosome; N of SNPs, number of SNPs in gene; P value, Fisher’s P value by the set-
based score (MiSTi) test. 
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Figure legends 

Figure 1. Association of any menopausal hormone therapy use with the risk of colorectal 

cancer. N, number; OR, odds ratio; CI, confidence interval; P, probability value. 

Figure 2. Association of use of estrogen only with the risk of colorectal cancer. N, number; 

OR, odds ratio; CI, confidence interval; P, probability value. 

Figure 3. Association of use of combined estrogen-progestogen with the risk of colorectal 

cancer. N, number; OR, odds ratio; CI, confidence interval; P, probability value. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jn
c
i/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/jn

c
i/d

ja
c
0
9
4
/6

5
8
1
0
8
5
 b

y
 U

n
iv

e
rs

ity
 o

f L
e
e
d
s
 u

s
e
r o

n
 1

0
 M

a
y
 2

0
2
2



 

 

Figure 1 

Figure 1--FINAL Click here to access/download;Figure;JNCI-21-1322R2 Tian
Figure 1_042622.docx

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jn
c
i/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/jn

c
i/d

ja
c
0
9
4
/6

5
8
1
0
8
5
 b

y
 U

n
iv

e
rs

ity
 o

f L
e
e
d
s
 u

s
e
r o

n
 1

0
 M

a
y
 2

0
2
2



 

 

Figure 2 

Figure 2--FINAL Click here to access/download;Figure;JNCI-21-1322R2 Tian
Figure 2_042622.docx
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Figure 3 

Figure 3--FINAL Click here to access/download;Figure;JNCI-21-1322R2 Tian
Figure 3_042622.docx
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