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A B S T R A C T   

This work shows an analysis of several models of multiaxial fatigue for notches: Navarro-Rios’ model, which 
analyses the interaction between the crack and its associated plastic zone with the material microstructural 
barriers, and three models that combine a critical volume method for notches with a critical plane model for 
multiaxial fatigue in unnotched solids. Specifically, the application of these models for the prediction of the 
fatigue limit for a plate with a circular hole subjected to axial, shear and in-phase biaxial cyclic loading is studied. 
The effects of two parameters are analysed: the radius of the hole and the relationship between the torsional and 
axial fatigue limits. For all the analysed models, cases are observed in which an increase in the hole radius 
produces an increase in the predicted fatigue limit, that is, the evolution of the fatigue limit with an increasing 
hole radius is not always monotonically decreasing, as would be expected. These effects, which we have called 
“humps” because of their appearance on the prediction graphs, mainly occur in shear loading. No humps were 
observed in the studied experimental results, but the number of available experimental results is too small to 
assure this tendency. The results shown in the work indicate that a greater knowledge of the physics of multiaxial 
fatigue in notches is necessary to achieve models that are capable of providing increasingly accurate predictions.   

1. Introduction 

It is well known that fatigue failure occurs very frequently from stress 
concentrations or notches. Various models for predicting fatigue failure 
in the presence of notches have been published since the 1950s, with the 
so-called critical volume models being probably most widely used. 
These models include the classic Neuber [1] and Peterson models [2], 
and, more recently, the Theory of Critical Distances (TCD) [3]. They are 
based on assessing the stress in a certain volume of material ahead of the 
notch root. Fatigue failure occurs if the average stress in this volume 
reaches a certain critical value. The size of the critical volume is material 
dependent. Within the Critical Distance Methods of Taylor, the point 
method (PM) stands out for its simplicity and good predictions. In the 
PM, fatigue failure is predicted from the elastic stress at a single point, 
located at a distance L/2 from the notch edge, where L is El Haddad’s 
short crack parameter of the material. Failure will occur if the maximum 
principal stress at the distance L/2 equals the material endurance limit 
or fatigue limit. From a different point of view, some short-crack growth 
models, such as Navarro-Rios’ model, have been developed to predict 
fatigue failure at notches [4,5,6]. Navarro-Rios’ model analyses the 

capability of the crack, which is formed at the notch root, and its asso-
ciated plastic zone, to overcome successive microstructural barriers such 
as grain boundaries. It is assumed that the plastic displacement takes 
place in rectilinear slip bands across grains in the solid. The microcrack 
nucleates in the most favourable grain and within this grain the plastic 
zone spreads from the crack tip to the grain boundary, where it is 
arrested. The crack, the plastic zone and the barrier are modelled by 
means of a continuous distribution of dislocations. This allows a correct 
representation of these three zones and the obtaining of the local stress 
at the barrier as a function of the applied stress. If the applied stress is 
high enough, plastic slip will be promoted into the next grain. Crack 
propagation and blocking at the grain boundary would occur in each 
successive grain. Fatigue failure occurs if the crack spreads through the 
successive grains. 

All the presented models were developed to study cases of axial cy-
clic loading. However, components are frequently subject to multiaxial 
cyclic loading. The study of plain specimens under multiaxial cyclic 
loading has received the attention of many researchers for quite some 
time, and several failure prediction models have been proposed, 
including the so-called “critical plane” models, such as the model of 

* Corresponding author. 
E-mail address: chavesrv@us.es (V. Chaves).  

Contents lists available at ScienceDirect 

International Journal of Fatigue 
journal homepage: www.elsevier.com/locate/ijfatigue 

https://doi.org/10.1016/j.ijfatigue.2022.106981 
Received 18 March 2022; Received in revised form 29 April 2022; Accepted 2 May 2022   

mailto:chavesrv@us.es
www.sciencedirect.com/science/journal/01421123
https://www.elsevier.com/locate/ijfatigue
https://doi.org/10.1016/j.ijfatigue.2022.106981
https://doi.org/10.1016/j.ijfatigue.2022.106981


International Journal of Fatigue 162 (2022) 106981

2

Findley [7] and the model of Brown and Miller [8]. These models are 
based on the evidence that the fatigue crack grows on a certain plane 
and correlate fatigue failure with reaching a certain value of stresses or 
strains in the critical plane. Despite the long time devoted by the sci-
entific community to the prediction of failure in multiaxial fatigue, the 
results provided by the most widespread models are very different from 
one another even for relatively simple cases such as the case of a pro-
portional biaxial stress [9], which indicates that it is necessary to 
continue improving the multiaxial fatigue models. 

The combination of the presence of a notch and the application of 
multiaxial cyclic loading implies a problem of even greater complexity. 
Experimental studies in this combined field are not so extensive and 
existing models are not so consolidated. Focusing on high-cycle fatigue, 
in the experimental field, the extensive classical work of Gough et al. in 
specimens containing complex stress raisers made of various materials 
and subjected to in-phase bending-torsion loading is remarkable [10]. 
More recently, Endo and Murakami tested cylindrical specimens with 
small superficial circular holes under bending and torsion [11], Susmel 
and Taylor tested notched cylindrical samples under in- and out-of- 
phase biaxial situations, including non-zero mean values and different 
frequencies [12], and plates with an inclined V-notch subject to in-phase 
mixed Mode I/II loadings [13]. Fatemi et al. [14] and Chaves et al. 
[15,16] tested cylindrical specimens with a circular hole under biaxial 
loading. Regarding the models in this field, most are relatively recent. 
Proposals that combine a critical volume model for notches with a 
critical plane model for multiaxial fatigue stand out, such as the com-
bined model proposed by Taylor and Susmel [17]. With a different 
philosophy, there is a version for notched solids under multiaxial 
loading of Navarro-Rios’ short-crack model [18]. 

Comparing the predictions obtained with various notch multiaxial 
fatigue models for simple geometry and load cases can provide great 
insight into the degree of accuracy and reliability of the model pre-
dictions. This information can be supplemented by comparing some of 
these model predictions with some experimental cases. As for smooth 
specimens, this type of study can help to determine the current models’ 

degree of maturity for notches in multiaxial fatigue and if an evolution, 
or certain modifications, are necessary to obtain more accurate pre-
dictions. It could also indicate the need for a specific test campaign to 
verify whether or not certain trends in the model predictions are correct. 

This paper shows an analysis of various multiaxial fatigue models for 
notches. The study is focused on high cycle fatigue and the study of the 
endurance limit, or the fatigue limit, for axial, torsional and in-phase 
biaxial cyclic loading in specimens with a circular notch. The analysis 
is conducted based on two parameters: the radius of the circular hole R 
and the ratio between the torsional and axial endurance limits, or fatigue 
limits, τFL/σFL, which is an indicator of the ductile or brittle behaviour of 
the material in fatigue (for simplicity, only the term “fatigue limit” will 
be used from now on). Finally, a comparison between the experimental 
results from the literature and predictions with the models is presented. 

2. Description of the models 

In this section a brief description of several models of multiaxial 
notch fatigue is presented. The models are as follows: the model 
resulting from the combination of Taylor’s Theory of Critical Distances 
and Susmel’s Critical Plane Method (TCD + MWCM) [17], the multiaxial 
critical plane criterion combined with the PM proposed by Carpinteri 
et al. [19] and the microstructural model of Navarro and de los Rios for 
biaxial loading in notches (Biaxial N-R model) [18]. 

2.1. The combined model of Taylor and Susmel (TCD + MWCM) 

Taylor and Susmel proposed using a combination of one of Taylor’s 
methods of critical distance for notches under axial loading (TCD) with 
the critical plane method proposed by Susmel for multiaxial fatigue in 
unnotched components, the Modified Whöler Curve Method (MWCM) 

[3,17], to study the effect of notches under multiaxial fatigue loading. If 
the PM is chosen as the critical distance method, then the combined 
method for calculating the fatigue limit in a notched component consists 
of locating the point of maximum stress at the edge of the notch (the hot- 
spot) and determining the critical plane at a point located at a distance of 
L/2, where L is the critical distance of the material for TCD and is 
defined as L = (1/π)(ΔKth/ΔσFL)2, where ΔKth is the threshold value of 
ΔK for fatigue crack growth and ΔσFL is the fatigue limit range of the 
material, at Rσ = −1. Then, L is equal to the material length a0 used by 
El Haddad et al. [20]. The direction along which this distance is 
measured gives rise to two variants discussed below. The critical plane is 
chosen as that plane passing through the point located at L/2 from the 
hot-spot which has the largest value of the amplitude of the shear stress 
τa. The stress normal to this critical plane is denoted as σn,max. Once both 
stresses are known, the fatigue limit is reached if the following criterion 
is met: 

τa +
(

τFL −
σFL

2

) σn,max

τa

= τFL (1)  

Where τFL is the torsional fatigue limit. There are two variants of the 
method, depending on where the point at L/2 is located, which we will 
call Mode I variant and Mode II variant. 

Mode I variant 

In the Mode I variant, the point at a distance L/2 from the hot-spot is 
located on a straight line emanating from the assumed crack initiation 
location and perpendicular to the component surface at the hot spot 
itself [21,17]. The direction of the line can be considered as the direction 
corresponding to a crack formed by normal stresses, i.e. growing in 
Mode I. A scheme of the crack line for this variant for a plate with a 

Fig. 1. Crack lines for the MWCM + PM and Carpinteri et al. models.  
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circular notch subjected to biaxial loading, σ∞y and τ∞, is shown in Fig. 1. 
It is worth remembering here also that the focus path is suggested as 
being taken coincident with the notch bisector when stress concentra-
tors are modelled by imposing that the notch root radius equals zero 
[17]. 

Mode II variant 

In the Mode II variant, the point at a distance L/2 from the hot-spot is 
on a line forming 45◦ to the line normal to the notch surface at the hot- 
spot; that is, in the direction of the maximum shear stress at the hot-spot 
[22,3]. This would be the direction corresponding to a crack formed by 
shear stresses; that is, a crack growing in Mode II (see Fig. 1). 

2.2. The combined model of Carpinteri et al. 

This model is qualitatively similar to the previous one, since it is 
based on extending a multiaxial fatigue critical plane model to the case 
of notches by incorporating a critical distance method, specifically the 
PM [19]. As in the previous model, the stresses are analysed at a point 
located at L/2 from the maximum stress point or hot spot, which is 
considered the crack initiation point. The direction of the line where the 
point is located depends on the material and is defined by the angle δ 

with respect to the line normal to the surface at the hot spot: 

δ = 3π

8

[

1−
(

τFL

σFL

)2
]

(2) 

The crack line for this model lies between the crack lines for the two 
MWCM + PM variants, as sketched in Fig. 1. For a material completely 
brittle in fatigue, with τFL/σFL = 1, the value of δ is 0; therefore, the line 
chosen is that of the Mode I variant, while for a material with τFL/σFL =
1/ ̅̅̅3√ the line is at 45◦, i.e. Mode II variant. For intermediate values of 
the relation τFL/σFL intermediate directions are also obtained. Once the 
direction of the crack line and the position of the point are defined, the 
maximum normal stress Nmax and the shear stress C in the critical plane 
at the critical point are evaluated, with the normal to the critical plane 
defined as the line perpendicular to the crack line. An equivalent stress 
and the fatigue limit criterion are defined by the following equation: 

σeq,a =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

N2
max +

(

σFL

τFL

)2

C2
a

√

= σFL (3) 

Please note that a different notation for normal and shear stress has 
been used in Eqs. (1) and (3). This has been done to facilitate as much as 
possible the comparisons with the original works. 

2.3. Biaxial Navarro-Rios’ model (biaxial N-R model) 

The Navarro and de los Rios microstructural model (N-R model) 
[4,5] studies the interaction of the crack and its associated plastic zone 
with microstructural barriers, such as grain boundaries. The authors 
modelled the crack as a straight line. Mathematically, the crack, its 
associated plastic zone and the microstructural barrier are modelled by a 
distribution of dislocations. The remote stress required for the crack to 
overcome each successive barrier is then calculated. The maximum of 
that succession of calculated remote stresses will be the fatigue limit of 
the component. According to [23], this maximum value corresponds to 
the first local maximum. The model has been applied to predict the fa-
tigue limit of notched components subject to fatigue axial loading 
[6,23]. The model has also been extended to in-phase biaxial loading 
[24]. For the case of a notched component under in-phase biaxial 
loading, two sets of dislocations are employed to account for the climb 
and glide components of displacements. The conditions for activation of 
dislocations sources in the neighbouring grain are established and this 
leads to a biaxial criterion, which is as follows (for a detailed description 

see [18]): 
σi

3

m*
σi⋅τc

+ τi
3

m*
τi⋅τc

= 1 (4) 

The parameters σi
3 and τi

3 represent the stresses at the i-th barrier, 
obtained from the equilibrium of dislocations in the crack line for the 
specific geometry and applied loads. This equilibrium involves the 
forces between dislocations, which depend on the geometry of the notch, 
and the normal and shear linear elastic stresses at the crack line, ob-
tained from an analysis of the un-cracked solid, as in the Bueckner’s 
superposition technique. Mathematically it gives rise to singular integral 
equations, which are transformed into a system of algebraic equations 
by means of quadratures. The parameters m*

σi and m*
τi are orientation 

factors that project the stresses at the i-th barrier onto the sliding plane 
and the sliding direction of the source of dislocations, and τc is the 
critical stress needed to activate the dislocation sources in the (i + 1)-th 
grain. Their values are adjusted for the specific material from its axial 
and torsional fatigue limits, τFL and σFL, respectively, from the average 
grain size d and from the Kitagawa-Takahashi diagram of the plain 
material. The values of m*

σ1⋅τc and m*
τ1⋅τc, which are the constants of the 

criterion for the first grain, are as follows (the values for the following 
grains are based on the values for the first grain and the Kitagawa- 
Takahashi diagram): 

m*
σ1⋅τc =

π

2⋅cos−1n
• σFL
(

2 − σFL

τFL

) (5)  

m*
τ1⋅τc =

π

2⋅cos−1n
• σFL

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σFL

τFL
− 1

√ (6)  

where n is the ratio between the crack length and the crack + barrier 
length. For a plate with a circular notch subjected to in-phase biaxial 
cyclic loading, σ∞y and τ∞, the calculation of the biaxial loading neces-
sary to overcome the successive barriers along the crack line is repeated 
for all possible directions, defined by the crack initiation point (angle θ) 
and the angle of the direction of the crack (angle θ1) (see Fig. 2). The 
direction for which overcoming successive barriers requires the least 
remote biaxial applied stress will provide the sought biaxial fatigue 
limit. In this direction, the barrier that requires the highest applied stress 
to be overcome will be the so-called “decisive barrier”, which defines the 
value of the notch fatigue limit. 

3. Predictions using the models 

Fatigue limit predictions in the case of an infinite plate with a cir-
cular hole subject to in-phase biaxial cyclic loading were made with the 
previously presented models. The material properties of a specific 
stainless steel (AISI 304L) tested in our laboratory were used for the 
predictions with the models in the parametric study of this section: 
average grain size d = 0.08 mm, El Haddad length a0 = L = 0.18 mm, 
and axial fatigue limit σFL = 316 MPa (Rσ = −1) [15]. For calculating 
the linear elastic stresses in the torsional and axial fatigue limits, the 
analytical expression of Kirsch, available in elasticity books [25], was 
used. For the radius R, a wide range of values, from very small to very 
large, was studied. To analyze the influence of the parameter τFL/σFL in 
the models’ predictions, virtual materials with the properties stated 
above and ratios of τFL/σFL that varied between 0.58 and 1 were studied. 
Specifically, three values were considered: 1/ ̅̅̅3√

≅ 0.58 (von Mises- 
type material), 0.75 and 1, which allowed us to analyse behaviour 
ranging from a ductile material in fatigue (τFL/σFL = 0.58) to a brittle 
behaviour in fatigue (τFL/σFL = 1), as well as an intermediate value. 
Predictions of the fatigue limit of the notched component σNFL were ob-
tained. For the biaxial N-R model, the number of algebraic equations 
was set to 200, the maximum crack length studied was set at 30 grains in 
length and the step of the θ and θ1 angles for the study of the various 
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directions was set at 1◦, all with the aim of achieving a high precision in 
the numerical solution without an excessive computational cost. The 
Kitawaga-Takahashi diagram was approximated with the equation 
proposed in [26], using f = 2.5. For the models of Taylor and Susmel, 
and Carpinteri et al., plane strain was assumed. 

Three load cases were studied: pure axial, pure torsional and in- 
phase axial–torsional (σ∞y = τ∞), all of them fully reversed. The hot- 
spot for the three cases was located at the maximum principal stress 
points, i.e., θ = 0◦, θ = 45◦ and θ = 32◦, respectively. The positions of the 
hot-spots agree with the crack initiation points observed experimentally 
for this type of notched specimen and loading [15,16]. 

The predictions obtained with the different models for axial cyclic 
loading are shown in Fig. 3. Model predictions converge to approxi-
mately σFL for very small radii and to σFL/Kt = σFL/3 for large radii, 
which are the expected results. However, for intermediate radii the 
differences between the model predictions are quite noticeable, which is 
surprising for a case as simple as that of pure axial loading. The “type” of 
material, as per the τFL/σFL ratio, has an important influence, especially 
in the MWCM + PM model (Mode I variant), where the differences in the 
material-dependent predictions are quite large for R/a0 values of 
approximately 1 (Fig. 3(a)). For the MWCM + PM model (Mode I 
variant) and brittle material in fatigue (τFL/σFL = 1), it is observed that 
the curve is not monotonically decreasing, but that there is a small up-
ward zone near R/a0 = 2. 

This material influence result contrasts with the predictions that 
would be obtained with an axial fatigue notch model, such as Taylor’s 
PM [3] or the axial N-R model [6], which would give a single curve 
regardless of the value of the torsional fatigue limit τFL. Fig. 4 shows the 
predictions of the four models for a material with von Mises-type fatigue 
behaviour (τFL/σFL = 0.58) which is a representative behaviour of 

ductile materials such as carbon steels, subjected to axial cyclic loading. 
Predictions with the PM and monoaxial N-R model have been added. 
There are considerable differences between the methods, especially in 
the vicinity of R/a0 = 0.3, with differences greater than 20%. 

The predictions of the four biaxial models for shear loading are 
shown in Fig. 5. For radii tending to zero, the model predictions 
approximately converge to the torsional fatigue limit, which is correct. 
For radii tending to infinity, the models approximately converge to 
τNFL = σFL/Kt = σFL/4, which is the expected result. It can be seen again 
that not all curves are monotonically decreasing, but that some of them 
have a rising and falling area, which we have called humps. These humps 
are particularly noticeable in the MWCM + PM model (Mode I). 
Furthermore, for the MWCM + PM model (Mode I) and a material with 
τFL/σFL = 1, the curve shows values above 1 (for the case of R/a0 = 0.28, 
it is predicted that τNFL/σFL = 1.06), that is, the fatigue limit of the 
notched component τNFL is predicted to be above the fatigue limit of the 
plain component σFL, which is quite an unexpected result. 

Fig. 6 shows the predictions of the four biaxial models for cyclic 
shear loading for a material with von Mises-type behaviour (τFL/σFL =
0.58). The biaxial N-R and MWCM + PM (mode II) models give fairly 
close predictions, while the MWCM + PM (mode I) model shows more 
distant predictions. The differences between the model’s predictions are 
greater than 20% in the vicinity of R/a0 = 0.5. Furthermore, for all four 
models, the so-called humps are observed near R/a0 = 0.5, the largest 
being that of the MWCM + PM model (Mode I). 

For in-phase cyclic biaxial loading, the predictions of the models 
present an intermediate trend with respect to those shown previously for 
axial loading and shear loading. Fig. 7 shows the predictions of each of 
the four models for a biaxial in-phase load of the type σ∞y = τ∞. 
For radii tending to infinity, the models converge to approximately 
σFL/Kt = σFL/5.47 = 0.18, as expected, while for radii tending to zero 
the models give slightly more varied predictions, due to the different 
influences of the shear and normal stresses in each of the four fatigue 
limit criteria. The humps are clearly smaller than those in the case of 
shear loading, and, as shown in Fig. 8 for a von Mises material, the 
differences between the predictions of the four models are also smaller 
than in the case of shear loading. 

4. Analysis of the humps by an elastic stress study near a 
circular hole 

In some of the graphs in the previous section, primarily in the shear 
cases (Fig. 5), it has been shown that the evolution of the notched fatigue 
limit prediction curves is not monotonically decreasing, but has a rising 
and falling area that we call a hump. The reason for the existence of 
these humps may be related to the evolution along the crack line of some 
of the elastic stresses used in the criteria, which also present rises and 
falls. The effect of the elastic stresses evolution on the fatigue predictions 
evolution with the root radius for each of the four models is analysed 
next. 

4.1. Elastic stress analysis for the MWCM + PM (Mode I) model 

Fig. 9 shows the evolution of the elastic stresses in the line θ = θ1 =
45◦ as a function of the distance r to the centre of the hole divided by the 
hole radius R for an infinite plate with a circular hole subject to a remote 
applied stress of τ∞ = −1 MPa, i.e. shear loading. This line is the crack 
path used for predictions with the MWCM + PM (mode I variant) model 
for this type of applied load. Note that with the stress sign criterion 
adopted in this research, it is required to apply a stress τ∞ =−1 MPa to 
have the hot spot and the focus path in the first quadrant. It can be seen 
that the stress σθθ starts from a value of 4 MPa and monotonically de-
creases to a value of 1 MPa at far distances. The shear stress τrθ is 0 for 
any distance r. The stress σrr starts from a value of 0 MPa to meet the 
boundary condition in the hole contour, rises to a maximum value of 

Fig. 2. Scheme of the crack initiation point and crack direction for the biaxial 
N-R model. 
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0.33 for r/R = 1.22, and then decreases to a value of −1 away from the 
hole. For this particular case, since the shear stress τrθ is zero, the two 
stresses σθθ and σrr are principal stresses. For plane strain, the third 
principal stress is σzz = ν(σθθ + σrr), which has an intermediate evolution 
between the other two principal stresses for a considered value of υ =
0.3, as shown in Fig. 9. Therefore, the stresses σθθ and σrr are the 

principal stresses I and III, respectively. 
The particular case of the prediction with the MWCM + PM model 

(Mode I variant) for a material withτFL/σFL = 0.5 subjected to cyclic 
shear loading will now be studied, a case that allows a relatively simple 
analytical study. In the case τFL/σFL = 0.5, the fatigue limit criterion, 
defined with Eq. (1), is greatly simplified, since τFL −σFL/2 = 0, leaving 
the following expression: 
τa = τFL (7) 

Therefore, in this particular case, the stress σn,max is not used in the 
criterion, only the maximum shear stress τa, and the criterion is fulfilled 
when the stress τa reaches the value of the torsional fatigue limit τFL. As 
seen previously, since the stresses σθθ and σrr are the principal stresses I 
and III respectively, the maximum shear stress τa is: 

τa = σθθ−σrr

2
(8) 

The analytical expression for the shear stress τa, for θ = θ1 = 45◦, is 
taken directly from the expressions for σθθ and σrr for the shear case [27]: 

τa = σθθ − σrr

2
= − τ∞

2

(

2+ 6
R4

r4
− 4

R2

r2

)

(9) 

Fig. 9 shows its evolution (for τ∞ =−1 MPa) as a function of r/R. It is 
not monotonically decreasing. Instead, it has an initial downward part 
and a later upward part. It begins with a value of 2 for r/R = 1, continues 
downward, reaches a minimum, and then continues upward, tending to 
1 as r/R tends to infinity. This non-monotonic evolution of τa clearly 

(a) MWCM+PM (Mode I)            (b) MWCM+PM (Mode II) 

(c) Carpinteri et al. model            (d) Biaxial N-R model 

Fig. 3. Fatigue limit predictions for an infinite plate with a circular hole subjected to axial cyclic loading with several models: (a) MWCM + PM (Mode I) model, (b) 
MWCM + PM (Mode II) model, (c) Carpinteri et al. model and (d) Biaxial N-R model. 

Fig. 4. Fatigue limit predictions of various models for a material with τFL/σFL 
= 0.58 for an infinite plate with a circular hole subjected to axial cyclic loading. 
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arises from the non-monotonic evolution of the stress σrr. Deriving the 
expression of τa in Eq.Eqn 9 and setting it to zero, the minimum of τa is 
obtained, which is located at r/R = 1.73 and has a value of τa = 0.67. 

From the value of τa at the critical distance a0/2 from the hot spot for 
a unitary applied load, which we call τa(a0/2), the notch fatigue limit in 
torsion τNFL will be the value that multiplied by τa(a0/2) gives a value 
equal to the plain fatigue limit in torsion τFL: 

τa(
a0

2
)⋅τN

FL = τFL→τN
FL = τFL

τa(a0

2
)→

τN
FL

σFL

= 0.5

τa(a0

2
) (10) 

According to this equation, the evolution of the dimensionless notch 
fatigue limit τN

FL/σFL is inverse to the evolution of τa(a0/2). The evolution 
of τN

FL/σFL with respect to the dimensionless hole radius R/a0 is shown in 
Fig. 10 for the case of shear and τFL/σFL = 0.5. The curve begins from a 
value of 0.5 as R/a0 tends to zero. For a typical value of a0 of a few 
hundred microns, R/a0 tending to zero implies that R also tends to zero, 
and a0/2R tends to infinity. Therefore, the prediction of τN

FL/σFL as R/a0 
tends to zero is made with the value of τa corresponding to r/R tending 
to infinity, which, according to Fig. 9, is τa = 1. Applying Eq. Eqn 10, 
τN

FL/σFL is equal to 0.5/1 = 0.5, which is precisely the value of τN
FL/σFL 

indicated above. Continuing with the analysis of the evolution of τN
FL/σFL, 

the curve rises from 0.5 to a maximum value of 0.75 for R/a0 = 0.68; 
that is, for a0/2 = 0.73R. This maximum value is obtained using the 
value of τa corresponding to r/R = 1.73, i.e. 0.67, which is precisely the 
minimum of the evolution of τa, as seen in Fig. 9. Again, if Eq. Eqn 10 is 
used, τN

FL/σFL is equal to 0.5/0.67 = 0.75, as shown in Fig. 10. Therefore, 
the ascending evolution of τN

FL/σFL from 0.5 to 0.75, for R/a0 from 0 to 
0.68 corresponds to the descending evolution of τa, for r/R from infinity 
to 1.73. The increase in the variable R/a0 used in the graph of Fig. 10 
implies a decrease in the variable r/R used in the graph of Fig. 9. Finally, 
the curve of τN

FL/σFL decreases from the maximum value of 0.75, tending 
to 0.25 as R/a0 tends to infinity. This descending part of the τN

FL/σFL curve 
up to a value of 0.25 corresponds to the part of the τa curve from r/R =
1.73 to r/R = 1, where it reaches a value of τa = 2. Again, if Eq. Eqn 10 is 

(a) MWCM+PM (Mode I)              (b) MWCM+PM (Mode II) 

(c) Carpinteri et al. model           (d) Biaxial N-R model

Fig. 5. Fatigue limit predictions for an infinite plate with a circular hole subjected to shear cyclic loading with several models: (a) MWCM + PM (Mode I) model, (b) 
MWCM + PM (Mode II) model, (c) Carpinteri et al. model and (d) Biaxial N-R model. 

Fig. 6. Fatigue limit predictions of several models for a material with τFL/σFL =
0.58 for an infinite plate with a circular hole subjected to shear cyclic loading. 
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used, a value of τN
FL/σFL = 0.5/2 = 0.25 is obtained, as expected. In 

summary, it is the rise and fall on the evolution of the stress σrr along the 
line θ = θ1 = 45◦ that produces the fall and rise of the stress τa along the 
same line, which causes the rise and fall, i.e. the hump, in the evolution 
of the MWCM + PM (Mode I) predictions for the case of shear and a 

material with τFL/σFL = 0.5, as shown in Fig. 10. 
For the same model and the same loading (shear), but for materials 

with τFL/σFL ∕= 0.5, the situation changes since the second term, which 
we call term2, on the left side of the fatigue criterion (Eq. (1)), i.e. 
(τFL −σFL/2) • (σn,max/τa), is no longer zero. Again, if we know the values 
of τa and σn,max at the critical distance a0/2 from the hot-spot for a 

(a) MWCM+PM (Mode I)            (b) MWCM+PM (Mode )I) 

(c) Carpinteri et al. model       (d) Biaxial N-R model

Fig. 7. Fatigue limit predictions for an infinite plate with a circular hole subjected to in-phase biaxial cyclic loading (σ∞y = τ∞). with several models: (a) MWCM +
PM (Mode I) model, (b) MWCM + PM (Mode II) model, (c) Carpinteri et al. model and (d) Biaxial N-R model. 

Fig. 8. Fatigue limit predictions of several models for a material with τFL/σFL =
0.58 for an infinite plate with a circular hole subjected to in-phase biaxial cyclic 
loading (σ∞y = τ∞). 

Fig. 9. Stresses evolution over the line θ = θ1 = 45◦, for shear loading 
τ∞ =−1 MPa. 
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unitary applied load, which we call τa(a0/2) and σn,max(a0/2), and the 
term2 formed with these two stresses, which we call term2(a0/2), then 
the notch fatigue limit will be the value that multiplied by τa(a0/2) and 
σn,max(a0/2) fulfills the criterion of Eq. Eqn 1, that is: 

τa(
a0

2
)⋅τN

FL +(τFL −
σFL

2
) σn,max(a0

2
)⋅τN

FL

τa(a0

2
)⋅τN

FL

= τFL⇒  

⇒τN
FL =

τFL − (τFL − σFL

2
) σn,max(

a0
2
)

τa(
a0
2
)

τa(a0

2
) ⇒

τN
FL

σFL

= τFL − term2(a0

2
)

τa(a0

2
)⋅σFL

(11) 

The combined stress term τa(a0
2 )•σFL

τFL−term2(a0
2 ) of Eq. Eqn 11 is called τcomb (a0/ 

2). According to Eq. Eqn 11, the evolution of the dimensionless notch 
fatigue limit τN

FL/σFL for materials with τFL/σFL ∕= 0.5 is inverse to the 
evolution of τcomb, which is similar to the relationship between the notch 
fatigue limit τN

FL/σFL and τa for the materials with τFL/σFL = 0.5 shown in 
Eq. Eqn 10. Fig. 11 shows the evolution of τcomb (for τFL/σFL = 0.5, 0.58,
0.75, 1), τa and σn,max for an applied stress τ∞ = −1 MPa on the line θ =
θ1 = 45◦ as a function of r/R. The 4 curves of τcomb begin with a value of 
4 for r/R = 1; they then decrease to a minimum, and finally tend towards 
constant values of 1/0.5, 1/0.58, 1/0.75 and 1/1, respectively, i.e. 

1/(τFL/σFL), as r/R tends to infinity. According to Eq. Eqn 11, and 
repeating the previous reasoning used for Eq. Eqn 10, the value of τcomb 
= 4 as r/R = 1, implies that τN

FL/σFL = 1/4 = 0.25 as R/a0 tends to in-
finity, as shown in Fig. 5(a). The value of τcomb = 1/τFL as r/R tends to 
infinity, implies that τN

FL/σFL = τFL as R/a0 tends to 0, as shown in Fig. 5 
(a). As explained above for τa, the falling and rising of these τcomb curves 
correspond to the rising and falling in the curves of the model pre-
dictions, as shown in Fig. 5(a). The deepest trough of τcomb occurs for a 
material with τFL/σFL = 0.5, and becomes smoother as the τFL/σFL value 
increases. The explanation must be sought in the evolution of τa and 
σn,max shown in Fig. 11, the first having a well-defined minimum while 
the second is monotonically decreasing. As the value of τFL/σFL in-
creases, the weight of σn,max increases with respect to τa in the combined 
stress τcomb, which causes the valley of τcomb to become shallower and 
almost disappear for materials with τFL/σFL = 1. For this type of material 
the hump in the model predictions is very small, as shown in Fig. 5(a). In 
summary, the non-monotonic evolution of τa causes the humps of the 
MWCM + PM model (Mode I) prediction curves for shear loading. For 
higher values of τFL/σFL, the weight of τa versus σn,max decreases in the 
prediction, causing the size of the hump to decrease. 

Fig. 12 shows the evolution of the stresses σθθ, σrr,τa, σn,max and τcomb 
in the line θ = θ1 = 0◦ as a function of r/R, for the case of axial loading 
(σ∞

y = 1 MPa). This line is the crack path used for predictions with the 
MWCM + PM model (mode I) for this loading. The evolution of σθθ is 
similar to the case of shear (Fig. 9), which is monotonically decreasing. 
The great difference with respect to shear is in σrr: it increases from 0 
MPa to 0.37 MPa, similar to the case of shear, which increases from 0 
MPa to 0.33 MPa. However, the descent from this maximum is much 
smoother in the axial case than in the shear case, tending to 0 MPa as r/R 
tends to infinity, instead of to −1 MPa as it occurs in the shear case. Due 
to the gentler evolution of σrr, τa is almost a monotonically decreasing 
function, with a very smooth valley. For this reason, the hump for τFL/

σFL = 0.58 is much smaller for axial loading (3(a)) than for shear loading 
(5(a)). For higher values of τFL/σFL, such as τFL/σFL = 0.75, the hump 
disappears completely due to the influence of σn,max, which makes the 
τcomb monotonically decrease. For very high τFL/σFL, such as τFL/σFL =
1, a greater influence of σn,max even produces a hump in the evolution of 
τcomb. The τcomb hump produces the valley observed in the evolution of 
the model prediction for τFL/σFL = 1, as shown in Fig. 3(a). In summary, 
the smoother evolution of the stress σrr along the line θ = θ1 = 0◦, for 
axial loading, as compared to its evolution along the line θ = θ1 = 45◦ for 
shear loading, essentially to fulfill the boundary conditions of the 
problem at infinity, produces a smoother evolution of the stress τa, 
which causes less pronounced humps in the evolution of the predictions 

Fig 10. Notch fatigue limit evolution for a plate with a circular hole subjected 
to cyclic shear loading and a material with τFL/σFL = 0.5 with the MWCM + PM 
(Mode I) model. 

Fig. 11. Combined stresses evolution used in the MWCM + PM (Mode I) model 
for several materials over the line θ = θ1 = 45◦, for shear loading (τ∞ =
−1 MPa). 

Fig. 12. Stresses evolution used in the MWCM + PM (Mode I) model criterion 
for several materials over the line θ = θ1 = 0◦, for axial loading (σ∞y = 1 MPa). 
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with the MWCM + PM (Mode I) model, as compared to the shear case. 
For in-phase biaxial cyclic loading (σ∞

y = τ∞), the evolution of the 
predictions of the MWCM + PM (Mode I) model (Fig. 7(a)) is interme-
diate between the evolution shown for axial loading (Fig. 3(a)) and shear 
loading (Fig. 5(a)), with small humps for τFL/σFL = 0.58, 0.75 and no 
valley for τFL/σFL = 1. Again the explanation of this evolution lies in the 
stresses along the path used for the predictions, in this case the line θ =
θ1 = 32◦, as shown in Fig. 13, for σ∞

y = −τ∞ = 1. σrr presents an in-
termediate evolution with respect to the axial and shear case. As an 
example, observe its trend as r/R tends to infinity, tending to −0.62 
MPa, which is an intermediate value between 0 MPa (value for the axial 
case) and −1 MPa (value for the shear case). This generates an inter-
mediate evolution of τa, between the axial and shear evolution, with a 
smooth valley that is less pronounced than in shear, and very smooth 
valleys in the evolution of τcomb, without having any humps as in the 
axial case and τFL/σFL = 1. 

4.2. Elastic stress analysis for the MWCM + PM (Mode II) model 

The evolution of the MWCM + PM (Mode II) model predictions, 
shown in Figs. 3(b), 5(b) and 7(b), presents fewer humps and is smaller 
than that of the previously analysed MWCM + PM (Mode I). The curves 
in Figs. 3(b), 5(b) and 7(b) monotonically decrease, except for the ma-
terial τFL/σFL = 0.58 and the cases of shear loading (Fig. 5(b)) and in- 
phase biaxial loading (σ∞

y = τ∞) (Fig. 7(b)), with the rise and fall 
being almost imperceptible in this second case. The explanation for the 
evolution of the predictions is found, again, in the evolution of the 
elastic stresses used in the predictions. In the Mode II variant, the point 
at L/2 is on the line that forms 45◦ with the line normal to the surface at 
the hot-spot. Fig. 14 shows the prediction point using the Mode II variant 
for the case of shear, defined with polar coordinates (r, β). The stresses at 
this prediction point calculated with the Kirsch expressions include a 
nonzero shear stress term, except for a hole radius R tending to infinity, 
for which the prediction point has polar coordinates r = R and β = 45◦. 
This is an important difference with respect to the Mode I variant, 
which, as we saw previously, has the prediction point at the line β = 45◦

for any hole radius R, and always has a zero value of the shear stress. 
Fig. 15(a) shows the evolution of the elastic stresses used for the pre-
dictions with Mode II variant versus the position of the prediction point. 
For hole radii R between 0 and infinity, a shear load τ∞ = −1 MPa and 
the same value of a0 used previously (a0 = 0.18 mm). For each value of 
R, the polar coordinates (r, β) of the prediction point were calculated and 
its stresses were obtained from the Kirsch expressions. To facilitate a 

comparison with Mode I variant, the position of the prediction point was 
expressed by the dimensionless variable r/R. Please note that the r value 
of the prediction point will be different for the Mode I variant and the 
Mode II variant, since the prediction point of each variant lies on 
different lines. For values of R/a0 tending to zero the prediction point is 
at r/R tending to infinity and for values of R/a0 tending to infinity the 
prediction point is at r/R tending to 1. As seen in the graph, σθθ has a 
decreasing evolution, from 4 MPa to 0 MPa, instead of to 1 MPa, as was 
the case for Mode I variant. σrr has a non-monotonic evolution, with a 
maximum of 0.31 MPa and tends to 0 at both ends, not to 0 and 1 at the 
ends, as was the case for Mode I variant. Finally, τrθ is different from zero 
and progresses from 0 to 1 MPa. Despite the clear difference in the 
evolution of these stresses, the evolutions of the stresses used in the 
criterion, τa and σn,max, are quite similar in both variants, with τa going 
from 2 MPa to 1 MPa with a valley in between, and σn,max monotonically 
decreasing from 2 to 0 MPa. As seen in Fig. 5(a) and (b), the predictions 
with the two variants tend to the same values at the extremes; however, 
they present differences in the central part, in the vicinity of R/a0 = 1, 
with larger humps for Mode I variant. This difference in the central part 
is essentially due to the difference in the τa valley, which is smoother for 
Mode II variant. As seen previously, a smooth valley in τa causes little 
hump for materials with τFL/σFL close to 0.5 and no humps for materials 
with τFL/σFL close to 1. 

Fig. 15(b) shows the evolution of the elastic stresses used for pre-
dictions with Mode II variant for axial load σ∞

y = 1 MPa. Again, there are 
differences in the evolution of the elastic stresses with respect to the 
evolution for Mode I variant: σθθ goes from 3 to 0.5 MPa instead of from 
3 to 1 MPa, σrr goes from 0 to 0.5 MPa instead of from 0 to 0 MPa and τrθ 

is different from 0. Despite this, the stresses used for the criterion, τa and 
σn,max, have the same values at the extremes for the two variants, 1.5 and 
0.5 MPa, so the predictions of the two models converge to the same 
values at the extremes (Fig. 3(a) and (b)). Again, there is a certain dif-
ference in the predictions in the vicinity of R/a0 = 1: for Mode II variant, 
all the curves are monotonically decreasing and relatively close to one 
another, while for Mode I variant, one of the curves has a hump and 

Fig. 13. Stresses evolution used in the MWCM + PM (Mode I) model criterion 
for several materials over the line θ = θ1 = 32◦, for biaxial loading (σ∞y =
−τ∞ = 1 MPa). 

Fig. 14. Crack line for the the MWCM + PM (Mode II) model for shear cyclic 
loading (τ∞ =−1 MPa). 
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another has a valley, which are far apart. The monotonically decreasing 
evolution in Mode II variant’s predictions is related, as we have seen 
before, with the monotonically decreasing evolution of τa without any 
valley in the entire domain. The greater closeness of the prediction 
curves for the Mode II variant versus Mode I variant in axial loading is 
related to the greater closeness of the τa and σn,max curves. Focusing on 
the values of r/R close to 1.5, which correspond to values of R/a0 close to 
1, the greater the distance between σn,max and τa for Mode I variant, 
causes a slight increase in the σn,max/τa ratio. This causes for values of 
τFL/σFL close to 1, term2 to approach 1, and therefore, the denominator 
of τcomb, that is, τFL −term2, approaches 0, which makes the value of τcomb 

increase considerably with respect to their values for τFL/σFL close to 
0.5. For this reason, the prediction curves for Mode I variant are far from 
one another in the vicinity of R/a0 = 1 as compared to those for Mode II 
variant. 

Fig. 15(c) shows the evolution of the elastic stresses used for the 
predictions with Mode II variant for an in-phase biaxial load σ∞

y =
−τ∞ = 1 MPa, which allows us to explain the evolution of the pre-
dictions in Fig. 7(b). Again, although the elastic stresses σθθ, σrr and τa 

are different from those shown in Fig. 13 for Mode I variant, the stresses 
used in the criterion, τa and σn,max, are similar in both variants, tending to 
the same values at the extremes. Therefore, the prediction curves are 
similar for both variants, tending to the same values at the extremes. The 
very small hump observed in Fig. 7(b) for the material τFL/σFL = 0.58, 
where R/a0 is close to 1, is related to the very small valley in τa for r/R 
close to 1.5 in Fig. 15(c). The prediction curves in Fig. 7(b) have close 
values in the central zone, for values of R/a0 close to 1, the reason for 
which is that the values of τa and σn,max are very close for values of r/R 
close to 1.5, as seen in Fig. 15(c). 

4.3. Elastic stress analysis for the Carpinteri et al. model 

The evolution of the predictions with the Carpinteri et al. model 
monotonically decreases for axial and biaxial loading, while for 
shear loading it presents humps, a small one for a material with 
τFL/σFL = 0.58 and an almost imperceptible one for a material with 
τFL/σFL = 0.75. Let us analyse the evolution of the stresses used in this 
model’s criterion, Nmax and Ca, at the prediction point as a function of 
r/R, and the model criterion itself to explain the existence of these 
humps. The two stresses are calculated from the elastic stresses σθθ, σrr,

τrθ at a point at L/2 from the hot-spot. As explained for the MWCM 
model, using a fixed value of a0 (a0 = 0.18 mm), for values of R/a0 
tending to zero the prediction point is at r/R tending to infinity and for 
values of R/a0 tending to infinity the prediction point is at r/R tending to 
1. As already explained in the description of the model, the point is 
located on a line that depends on the material: the line of the Mode I 
direction for materials with τFL/σFL = 1, which is the line used in 
Mode I variant; the line of the Mode II direction for materials with 
τFL/σFL = 0.58, which is the line used in Mode II variant; and an in-
termediate line to the previous two for materials with intermediate 
values of τFL/σFL. Fig. 16 shows the evolution of the stresses σθθ, σrr, τrθ,

Nmax and Ca for shear loading at the prediction point as a function of r/R 
for each of the three studied materials (τFL/σFL = 1,0.75,0.58). Please 
note that the r value of the prediction point will depend on τFL/σFL, since 
the prediction line used in this model depends on τFL/σFL. For τFL/σFL =
1 (Fig. 16 (a)), the normal stress Nmax coincides with the stress σθθ, which 
monotonically decreases between 4 and 1 MPa. The shear stress Ca co-
incides with the stress τrθ, which in this case is 0 for the entire domain. 
Therefore, the equivalent stress used in the criterion (Eq. (3)) coincides 
with the stress σθθ. The monotonic evolution of this stress implies a 
monotonic evolution of the model’s prediction for this case, as shown in 
Fig. 5(c). For materials with τFL/σFL ∕= 1, the tension Nmax continues to 
monotonically decrease, but the tension Ca ceases to be 0, starting from a 
value Ca = (σθθ/2)sin(2δ) as r/R tends to 1, and approaching Ca = τrθ as 
r/R tends to infinity, to satisfy the boundary conditions at the edge of the 

(a) Shear

(b) Axial 

(c) Biaxial  

Fig. 15. Stresses evolution at the prediction point used in the MWCM + PM 
(Mode II) model for: (a) shear loading (τ∞ =−1 MPa), (b) axial loading (σ∞y =
1 MPa) and (c) biaxial loading (σ∞y =−τ∞ = 1 MPa). 
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hole and at infinity. The evolution of Ca does not monotonically decrease 
and has a valley with a minimum of 0 at approximately r/R = 1.5. The 
rise and fall are sharper for the material with τFL/σFL = 0.58 compared 
to the material with τFL/σFL = 0.75 since the values of the initial point 
and the horizontal asymptote are higher, i.e. 2 and 1 versus 1.71 and 
0.86. Furthermore, in the fatigue criterion, the stress Ca is multiplied by 
a greater factor for the material with τFL/σFL = 0.58 compared to the 
material with τFL/σFL = 0.75, 1.73 versus 1.33. For these reasons, the 
fall and rise of Ca generates a rise and fall in the predictions, that is, a 
hump, for the material with τFL/σFL = 0.58, this being almost negligible 
for the material with τFL/σFL = 0.75. 

For axial loading, the falls and rises of Ca are less acute than for shear 
loading in order to meet the boundary conditions at the ends so that no 
humps are generated. For an in-phase biaxial load σ∞

y = −τ∞ = 1 MPa, 
humps do not occur either, although the fall and rise of Ca are more 
acute than for shear loading. For this case, the Nmax values are also 
higher and monotonically decreasing, compensating for the higher Ca 
values and preventing humps from occurring. 

4.4. Elastic stress analysis for the biaxial N-R model 

The evolution of the biaxial N-R model predictions monotonically 
decreases except for shear loading and the material with τFL/σFL =
0.58(Fig. 5(d)), which has a hump near R/a0 = 1, and for an in-phase 
biaxial load (σ∞

y = τ∞) as well as the material with τFL/σFL = 0.58, 
which has an almost imperceptible hump near R/a0 = 1 (Fig. 7(d)). 
Again, the non-monotonic evolution of the stresses as a function of r/R 
used in this model provides an explanation for the existence of these 
humps. Although the stress analysis is more complicated than for the 
other models, the direction and length of the crack line used for the 
prediction can change for different radii, even if the material is not 
changed. Let us first study the shear loading and the extreme case of a 
material withτFL/σFL = 0.5, for which the fatigue criterion is simplified, 
since the term m*

σ1 • τc tends to infinity (see Eq. (5)). The criterion adopts 
the following simplified expression: 

τi
3

m*
τi⋅τc

= 1 (12) 

Therefore, only the shear barrier stress τi
3, which is derived from the 

shear stress along the crack line, is used for the criterion. For shear 
loading and small holes, with R less than 0.15 mm and the usual prop-
erties of d = 0.08 mm and a0 = 0.18 mm, direction of the crack line 
obtained with the model is θ = θ1 = 0◦. Fig. 17(a) shows the evolution of 
the radial stresses with r/R for this direction and an applied shear load 
τ∞ = −1 MPa. The stresses σθθ, σrr are zero, while the stress τrθ is not. For 
this case, the stress τrθ is the shear stress in the crack line, which is used 
in the model to calculate the shear barrier stress τi

3. The analytical 
expression of τrθ in this direction is the following: 

τrθ = τ∞

(

1− 3
R4

r4
+ 2

R2

r2

)

(13) 

Starting from zero, it reaches a maximum value of 1.33 for 
r/R = 1.73 and finally tends to 1 as r/R tends to infinity. Its evolution is 
not monotonic and it is responsible for the non-monotonic evolution of 
the predictions. To verify this, the cases of two radii, R = 0.05 mm and 
R = 0.1 mm, are analysed. For both cases, the model predictions are 
made with the barrier stress in the first grain; that is, the first barrier 
requires a higher applied stress for the crack to overcome it, and thus it is 
the decisive barrier. According to previous works, for the first barrier a 
crack length of half a grain is used, that is, 0.04 mm, assuming that the 
average distance from the notch root to the first grain boundary is d/2. 
Fig. 17(b) shows the evolution of τrθ in this first half of the grain for the 
two radii. The stress τrθ for the radius R = 0.05 mm is above that of 
the radius R = 0.1 mm for the entire domain under study. For the radius 
R = 0.05 mm the stress reaches a maximum value of 1.33 MPa, while for 

Fig. 16. Stresses evolution at the prediction point used in the Carpinteri et al. 
model for shear loading (τ∞ =−1 MPa): (a) line θ = θ1 = 45◦ for a material 
with τFL/σFL = 1, (b) line θ = 45◦, θ1 = 15.47◦ for a material with τFL/σFL =
0.75, (c) line θ = 45◦, θ1 = 0◦ for a material with τFL/σFL = 0.58. 
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R = 0.1 mm this value is not reached. In fact, to reach this maximum, R 
must be greater than 0.055 mm. The shear stress in the barrier, which is 
proportional to the stress in the crack line, is also higher for R = 0.05 mm 
than for R = 0.1 mm, with τ1

3 = 5.30 MPa versusτ1
3 = 4.55 MPa. 

Therefore, the fatigue limit calculated with Eq. (12) is lower for 
R = 0.05 mm (R/a0 = 0.28) than for R = 0.1 mm (R/a0 = 0.56), with 
τN

FL/σFL = 0.42 MPa versus τN
FL/σFL = 0.49 MPa. Therefore, an increase in 

the size of the hole implies an increase in the notch fatigue limit, leading 
to a hump in the prediction curve. 

For a material withτFL/σFL = 1 the fatigue criterion is also simplified, 
since the term m*

τ1 • τc tends to infinity (see Eq. (6)). The simplified 
criterion is: 

σi
3

m*
σi⋅τc

= 1 (14) 

In this case, only the normal barrier stress σi
3, calculated from the 

normal stress to the crack line, is used for the criterion. For shear loading 

and small holes, with R less than 0.035 mm and the usual properties d =
0.08 mm and a0 = 0.18 mm, the direction of the crack line according to 
the model is θ = θ1 = 45◦. The evolution of the radial stresses with r/R 
for this direction with an applied shear load τ∞ =−1 MPa was already 
shown in Fig. 9. The normal stresses to the crack line, used for the cri-
terion, coincide with σθθ, which has a monotonically decreasing evolu-
tion from 4 MPa to 1 MPa. Its analytical expression in this direction is: 

σθθ = −τ∞

(

1+ 3
R4

r4

)

(15) 

Its evolution is monotonic as is the evolution of the predictions. 
Again, the cases of two radii, R = 0.015 mm and R = 0.030 mm this time, 
are analysed to verify this model behaviour. For both radii, the model 
calculations indicate that the notch fatigue limits are calculated from the 
second barrier stress; that is, a crack length of 0.04 + 0.08 = 0.012 mm is 
used to calculate the barrier stress and the notch fatigue limit. Fig. 18 
shows the evolution of σθθ in the first one and a half grains for the two 
radii. In this case, the stress σθθ for the radius R = 0.015 mm is below that 
of the radius R = 0.030 mm for the entire domain, so it is the barrier 
stress, σ2

3 = 7.95 MPa versus σ2
3 = 8.44 MPa. The fatigue limit calculated 

with Eq. (14) is higher for R = 0.015 mm (R/a0 = 0.083) than for R =
0.030 mm (R/a0 = 0.17), τN

FL/σFL = 0.91 MPa versus τN
FL/σFL = 0.86 MPa. 

In this case, an increase in the hole radius implies a decrease in the notch 
fatigue limit; that is, a decreasing evolution, with no humps, as shown in 
Fig. 5(d) for this type of material. 

Fig. 19 shows the N-R criterion left terms σi
3

m*
σi ⋅τc

+ τi
3

m*
τi⋅τc 

corresponding 
to the decisive barrier, that is, those used for the fatigue limit pre-
dictions, versus the dimensionless hole size, for an applied shear load 
τ∞ =−1 MPa and four materials; i.e. the two materials previously 
analysed and two intermediate materials. The inverse of these displayed 
values is directly the predicted dimensionless notch fatigue limit τNFL/σFL. 
In this regards, “(d)” has been added to the barrier stresses σi3 and τi3, to 
indicate that they correspond to the decisive barrier, i.e. σi

3(d)
m*

σi⋅τc
+ τi

3(d)
m*

τi ⋅τc
. For 

the material with τFL/σFL = 0.5 the term σi
3(d)

m*
σi⋅τc 

is zero and for the material 
withτFL/σFL = 1 the term τi

3(d)
m*

τi ⋅τc 
is also zero, as explained before. 

The direction of the crack line and the position of the barrier cor-
responding to the decisive barrier, defined by θ, θ1 and i, change with the 
size of the hole and the material. Their values show certain trends, 
especially for very large or very small hole sizes and for materials with a 
single term in the criterion (τFL/σFL = 0.5,1), as shown in the previous 
explanations. However, in general it is very difficult to analyse their Fig 17. (a) Stresses evolution on the line θ = θ1 = 0◦ for shear loading (τ∞ =

−1 MPa), used in the biaxial N-R model for very small holes and a material 
with τFL/σFL = 0.5. (b) τrθ evolution along the crack line in the first grain for 
two different hole radii. 

Fig 18. σθθ evolution along the crack line θ = θ1 = 45◦ in the first two grains for 
two different hole radii, used in the biaxial N-R model for shear loading 
(τ∞ =−1 MPa), very small holes and a material with τFL/σFL = 1. 
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values for the decisive barrier, essentially because the number of com-
binations of these variables is very large, and the evolution of the shear 
and normal stresses in the crack line for non-radial directions from a 
circular hole is very complex. However, the evolution of the criterion 
terms shown in Fig. 19 does present a trend: all the curves have, in 
general, an increasing evolution, monotonically increasing for the ma-
terial with τFL/σFL = 1, with a large valley around R/a = 1 for the ma-
terial with τFL/σFL = 0.5, and with an intermediate behaviour between 
both for the materials with intermediate values of τFL/σFL. The 
increasing monotonic evolution for the material with τFL/σFL = 1 is 
related to the use of only the σi3 stress in the criterion, which depends on 
the normal stresses in the crack line. The direction with the highest 
values of the stresses normal to the crack line, which will be the direc-
tion related to the decisive barrier, will be a direction with high values of 
the stress σθθ, which has a monotonic evolution. On the other hand, for a 
material with τFL/σFL = 0.5, only the stress τi

3 is used in the criterion, 
which depends on the shear stresses in the crack line. In this case, the 
direction with the highest values of the shear stresses to the crack line 
will be a direction with high values of the stress τrθ , which has a non- 
monotonic evolution. Thus, the monotonic evolution of the stress σθθ 

and the non-monotonic evolution of the stress τrθ provide a reasonable 
explanation for the monotonic and non-monotonic evolution of the 
curves for τFL/σFL = 1 and τFL/σFL = 0.5, respectively. 

For materials with an intermediate value of τFL/σFL, the criterion 
includes the stresses σi3 and τi3, with an increase in the weight of the 
stress τi

3 with respect to the stress σi
3 in the criterion as the τFL/σFL value 

of the material decreases. The quantitative analysis of the evolution of 
these curves is very complicated, although it is possible to qualitatively 
analyse this evolution. The material with τFL/σFL = 0.58 has a higher 
weight for stress τi3 than the material with τFL/σFL = 0.75, and therefore 
has a higher weight for the shear stress versus the normal stress in the 
crack line. As we have already seen, the shear stress is related to the 
stress τrθ, which has a non-monotonic evolution. That is why the mate-
rial with τFL/σFL = 0.58 has a hump while that with τFL/σFL = 0.75 does 
not. However, the hump of the material with τFL/σFL = 0.58 is not as 
pronounced as that of the material with τFL/σFL = 0.5 due to the pres-
ence of the stress σi3 on the criterion. Similarly, the slope of the material 
with τFL/σFL = 0.75 is not as steep as that of the material with τFL/σFL =
1, due to the presence of the stress τi

3 on the criterion. All the previous 
explanations could also be applied to justify the almost imperceptible 
jump in the case of biaxial load (σ∞

y = τ∞) and the material with τFL/

σFL = 0.58, near R/a0 = 1 (Fig. 7(d)). The evolution of the N-R criterion 
terms corresponding to the decisive barrier, i.e. σi

3(d)
m*

σi ⋅τc
+ τi

3(d)
m*

τi⋅τc
, is, again, 

generally monotonically increasing, although with a less steep slope 
than for the shear case. For the material with τFL/σFL = 0.58, the evo-
lution presents a very smooth valley near R/a0 = 1, which corresponds 
to the small hump existing in the evolution of the fatigue limit predic-
tion, as shown in Fig. 7(d). 

5. Predictions of the experimental results from the literature 

Several experimental results from the literature and the predictions 
of the presented models are compared in this section, to analyse the 
accuracy of the models and check if the humps predicted by the models 
are observed in reality. Experimental tests by Endo and Murakami, re-
ported by Murakami in his book [11], by Endo [28,29] and by Chaves 
et al. [15,16] are analysed. The tests of Endo and Murakami dealt with 
10 mm outer diameter round bars with drilled transverse surface holes 
made of 0.46% C annealed steel subject to fully reversed bending or 
torsion. The radii of the holes ranged from 0.02 to 0.25 mm [30]. Endo 
performed fully reversed axial, torsion and in-phase axial-torsion 
loading tests of 0.37% C steel round bars with drilled transverse surface 
holes with radii ranging from 0.05 to 0.25 mm. The specimen’s outer 
diameter was 8.5 and 10 mm. The combined stress ratios of shear to 
normal applied stress τ∞/σ∞

y were chosen to be 0, 0.5, 1, 2, ∞. For both 
sets of tests the fatigue limit was defined for a lifetime of at least 107 

cycles. Chaves et al. tested cylindrical specimens with an outside 
diameter of 16 mm and a thickness of 1.5 mm with a pass-through 
transverse hole made of AISI 304L stainless steel and 7075-T6 
aluminium alloy. The radii of the holes were 0.5, 1 and 1.5 mm. The 
tests were fully reversed axial, torsional and in-phase axial–torsional. 
For stainless steel the fatigue limit was based on 3.5*106 cycles to failure 
and for the aluminium alloy the endurance limit at 106 cycles was used. 
The fatigue properties of the studied materials are shown in Table 1, 
with the fatigue limits σFL and τFL expressed in terms of stress amplitude. 
The predictions of the models in this section were made using the 
properties shown in Table 1. 

The elastic stress fields to make the predictions with the models were 
calculated with the analytical expression of Kirsch [25]. For the studied 
specimen’s geometries, the effect of the curvature of the cylinder makes 
the stress field in the vicinity of the hole different from that of a hole in 
an infinite plate. Although if the cylinder is large enough and the 
transverse circular hole is small enough, then the difference in stresses in 
both cases becomes very small. For the cylindrical specimens tested by 
Chaves et al. [15,16], with an outside diameter of 16 mm, elastic studies 
for axial, torsional and biaxial loads (σ∞

y = τ∞) indicated that for a 
circular hole with a radius not greater than 1.5 mm, the stress gradient 
ahead of the hole was very similar to the case of an infinite plate with a 
hole, being the difference in Kt less than 5% [32] The tested specimens 
had radii not greater than 1.5 mm, that is, fulfilling the conditions to 

Fig 19. Decisive barrier stresses evolution used in the biaxial N-R model for 
shear loading (τ∞ =−1) MPa and four types of materials. 

Table 1 
Fatigue properties of literature materials.  

Material σFL 
(MPa) 

τFL 
(MPa) 

τFL/σFL a0 
(mm) 

Grain 
size, 
d (mm) 

Reference 

0.46% C steel 240 142  0.59 0.15 
(a) 

0.031 (b) [11] 

0.37% C steel 230 145  0.63 0.34 
(a) 

0.071 (b) [28,29] 

AISI 304L 
stainless 
steel 

316 288  0.91 0.18 0.08 [15] 

7075-T6 
aluminium 
alloy 

258 149  0.58 0.072 
(c) 

0.015 [16] 

(a) [17]. 
(b) Estimated as d = 2a0/3.12 (see [31]). 
(c) Estimated as a0 = 3.12d/2 (see [31]). 
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have elastic fields close to the infinite case. In the case of the specimens 
tested by Murakami and Endo [11,28,29], the outer diameter of the 
specimen is smaller than 16 mm, between 8.5 and 10 mm, and therefore 
the curvature of the cylinder is greater. But the hole size is much smaller 
than 1.5 mm (with a maximum hole radius of 0.25 mm), more than 
compensating for the increase in curvature due to the specimen’s 
diameter. So, for these geometries there is even greater similarity with 
the infinite plate case. In summary, in the analysis presented in this 
section, the simplification of using the analytical stress field of an 
infinite plate with a circular hole (Kirsch’s equations) is reasonably 
justified. 

For the models of Taylor and Susmel, and Carpinteri et al., plane 
strain was assumed. For the biaxial N-R model, the number of algebraic 
equations was set to 200 and the Kitawaga-Takahashi diagram was 
approximated with the equation proposed in [26], using f = 2.5. The 
experimental results, 33 in total, and the predictions with the models are 
shown in the Appendix. The fatigue limit prediction error was calculated 
as follows:  
Error = 100*(Prediction-Experimental)/Experimental                          (16) 

Fig. 20 shows the fatigue limit predictions with the four models 
versus the experimental notch fatigue limits. Error bands of ±20% have 
been included. Predictions within these bands are considered to have an 
acceptable error, according to Taylor [3] and Susmel [17]. For the four 
models, most predictions fall within the 20% error bands. Table 2 shows 
the statistics of the results calculated using the 33 results. The minimum 
average error is 9.1% for Carpinteri et al., followed by the MWCM + PM 
(Mode II) model and the biaxial N-R model, with 9.8% and 11.7%, 
respectively, and finally the MWCM + PM (Mode I) model with 15.5%. 
The absolute value of the errors was used to calculate the average error 
in order to prevent the positive and negative errors from compensating 
for one another. Regarding the percentage falling within the 20% error 
bands, which is the generally accepted margin of error for this type of 
prediction, Carpinteri’s model is the best with 87.9%, followed by 
MWCM + PM (Mode II) model, with 84.8%, and finally MWCM + PM 
(Mode I) model and the biaxial N-R model, both with 75.8%. All the 
predictions with the MWCM + PM (Mode II) model have an error below 
the +20% band, which means that all these model predictions are 
acceptable or at least conservative. This percentage drops slightly for 

Carpinteri’s model to 97.0% and drops further, to 87.8% and 84.8%, for 
the MWCM + PM (Mode I) model and N-R biaxial model, respectively. 

The Murakami and Endo tests, for six hole radii between 0.02 and 
0.25 mm and a material with a τFL/σFL value very close to that of von 
Mises, allow us to check whether the predicted evolution with the 
models, monotonically decreasing for an axial load and with a hump for 

Fig. 20. Fatigue limit predictions with the models versus experimental fatigue limits for notched specimens.  

Table 2 
Statistics of the predictions with the four models.  

Model Average 
Error (%) 

Percentage falling 
within ±20% error 

Percentage with 
error < +20% 

MWCM + PM 
(Mode I)  

15.5  75.8 84.8 

MWCM + PM 
(Mode II)  

9.8  84.8 100 

Carpinteri et al.  9.1  87.9 97.0 
Biaxial N-R  11.7  75.8 87.9  

Fig 21. Experimental results obtained by Endo and Murakami [11] and model 
predictions for specimens with a circular hole subjected to cyclic axial loading. 
Material: 0.46% C annealed steel. 
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a torsional load, is close to the experimental evolution. Figs. 21 and 22 
show the evolution of the experimental and predicted fatigue limits 
versus the hole radius R for these tests for bending and torsional loading, 
respectively. In Fig. 21, predictions with the PM [3] and the axial N-R 
[6], which are axial models, are also included. In Fig. 21, the six 
experimental results have a decreasing monotonic evolution, as have the 
models. Certainly all the models capture the general tendency of the 
experimental results. For torsion (Fig. 22), the experimental results are 
the same for the four smallest radii, followed by a decreasing evolution, 
although not very marked, for the two largest radii. However, the hump 
predicted by the models, close to R = 0.1 mm, was not observed in the 
experimental results. The clearly different evolution of the results in 
torsion versus bending, with much less slope, may indicate that the non- 
monotonic evolution of the elastic stresses σrr and τrθ when moving 
away from the hole contour (which are the cause of the hump in the 
models predictions for torsion) has a real effect on the experimental 
results, decreasing the slope of the curve, although it is not so important 
as to generate a hump in its evolution. 

Fig. 23 shows the three experimental results of Endo [28,29] for the 
0.37% C steel, a material with τFL/σFL = 0.63, and biaxial loading τ∞/

σ∞
y = 2. The smooth decreasing monotonic evolution of the experi-

mental results is close to that of the models, with the exception of the 
small hump predicted by the MWCM + PM (mode I) model at approx-
imately R = 0.1 mm. However it is true that there are not enough 
experimental values close to R = 0.1 mm to fully confirm the nonexis-
tence of the small hump. 

For large hole radii, all the models give very similar predictions for 
any type of material, with an evolution very close to the horizontal. 
Chaves et al.’s experimental results for Al 7075 [16] allow an analysis of 
these predictions, although it would certainly be convenient to have had 
more experimental results, especially for biaxial loading, with just one 
result. Fig. 24 shows the results for this material and the load of the 
axial, torsional and biaxial τ∞ = σ∞

y types. The predictions of the models 
are close to the experimental results, and the evolution of the experi-
mental results for axial and torsional loads is close to the horizontal 
evolution, similar to the models. 

No experimental results were found for very small holes, i.e. an R 
smaller than 0.01 mm. The expected result would be convergence to the 
plain fatigue limit as R tends to zero. As the model predictions approx-
imately converge to the plain fatigue limit as R tends to zero (see 
Figs. 3–8), then it would be expected that their predictions for this range 
of radii would be approximately correct. 

6. Discussion 

In this work, the fatigue limit prediction of various biaxial models for 
a circular hole were analysed, studying its evolution with an increase in 
the hole radius and making a comparison with experimental results from 
the literature. In general, model predictions were close to the results of 
the literature, with relatively low errors. Regarding the evolution of the 
predictions with the variation in the hole radius, all the models 
approximately converged to the plain fatigue limit for radii tending to 
zero and to the plain fatigue limit divided by Kt for radii tending to in-
finity, as expected. However, for intermediate radii the differences be-
tween the models were great, with so-called humps appearing, 
especially for torsional loading and ductile materials. The existence of 
these humps is due to the use in the fatigue criteria of stresses other than 
the stress σθθ, such as σrr and τrθ , whose evolution with the increase in 
the variable r in the so-called crack line is non-monotonic. The larger or 
smaller size of the hump depends on the specific criteria of the model 
and the crack line used for the predictions, but in any case, it appears on 
all models. It seems that the only way to avoid the presence of these 
humps would be to substantially modify the criteria of the models. In the 
evolution of the experimental results for intermediate radii shown in the 
present work, which are the Endo and Murakami tests for axial and 
torsional loads, no humps were observed. However, a clearly different 
evolution was observed in these experimental results with respect to the 
hole radius for axial and torsional load, with much less of a slope for 
torsional load, which may indicate that the influence of the non- 
monotonic evolution of the elastic stresses σrr and τrθ exists. However, 
the tests only involve six different radii and a single material, so no 
definitive conclusions can be drawn. There is currently no comprehen-
sive set of experimental results in the literature for intermediate hole 
radii to ensure that humps do not occur. It seems clear that it would be 
necessary to perform a test campaign, sweeping a good number of in-
termediate radii for various materials to know if the humps actually 
occur or not. 

The parametric study shown in Section 3 indicates that the hump 
effect occurs for a value of R/a0 close to 1. Just to put this in context, 
according to a recent article [33], the average value of a0 for 67 steels 
reported by Susmel in Appendix A of his book [17] is 0.141 mm, the 
maximum and minimum being 0.782 and 0.005 mm, respectively. So 
the humps occur, for the most common steels, for quite small hole sizes, 
clearly less than 1 mm. This implies that this hump effect does not affect 
normal components used in industry, where holes are typically several 
millimeters wide. However, in much smaller components, such as con-
nectors employed in microelectronics chips or the stents used in coro-
nary angioplasty, the humps described in the paper may play an 

Fig 22. Experimental results by Endo and Murakami [11] and model pre-
dictions for specimens with a circular hole subjected to cyclic torsional loading. 
Material: 0.46% C annealed steel. 

Fig. 23. Experimental results by Endo [28,29] and model predictions for the 
0.37% C steel and the case of in-phase biaxial loading τ∞/σ∞

y = 2. 
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important role, adding uncertainty to the predictions for these cases. 
For the case of axial loading, predictions with specific models for this 

type of loading were included, such as the PM and the axial N-R model, 
providing different predictions with respect to those given by the biaxial 
models (see Fig. 4). A fundamental difference between these two types 
of models was that the predictions with the biaxial models depend on the 
torsional fatigue limit of the material, whereas this parameter does not 
affect the predictions with the axial models. A legitimate question is: 
which is more convenient to use for an axial load case, an axial model or 
a biaxial model? As seen in the prediction curves of the biaxial models in 
Fig. 4, the value of τFL clearly influences the predictions obtained with 
the MWCM + PM models, especially in the area of R/a0 = 1. The in-
fluence of τFL is much less for Carpinteri et al. and the biaxial N-R 
models, and is obviously zero for the axial models. Conceptually, the 
question arises as to whether the torsional fatigue limit has an effect on 
the fatigue behaviour of a notched solid subject to fatigue axial loading. 
In addition, humps are not predicted with the axial models, since only 
the stress σθθ is used for the predictions, which has a monotonically 
decreasing evolution with respect to the hole radius. The average errors 
of the models’ predictions for axial loading, with 13 cases studied, are 
shown in Table 3. The smallest average error occurs for an axial model, i. 
e. the PM (7.0%), but there is a biaxial model, that of Carpinteri et al., 
which also has a very low error (7.6%). The other studied axial model, 
the axial N-R, has the highest average error (13.1%). Thus, the analysed 
cases do not show a clear trend of the convenience of using an axial or 
biaxial model for axial loads. In any case, the number of hole radii and 
materials analysed are too few to be able to draw reliable conclusions. 

Again, it would be very convenient to conduct a campaign of fatigue 
axial tests in notched solids with several root radii made of materials 
with different τFL values. This would allow for the questions that have 
been raised to be answered, specifically, the effect (or lack thereof) of 
τFL and the existence (or lack thereof) of humps for the axial case. 

Additionally, the diversity of directions used by the various models 
to make predictions is striking, from the Mode I direction to the Mode II 
direction, passing through intermediate values. This does not prevent 
the models from giving similar results for small and large radii, since 
they are essentially adjusted with the same parameters, the plain fatigue 
limits of the material. Again, it would be necessary to perform a 
comprehensive experimental analysis for various hole radii and various 
materials of the crack initiation point and the crack direction in its initial 
part in order to establish a single crack line to make predictions with all 
the models. In recent years, work has been performed in this field 
[15,16] but much work remains. Current knowledge indicates that the 

Fig. 24. Experimental results by Chaves et al. [16] and model predictions for the Al 7075: (a) axial loading), (b) torsional loading, and (c) in-phase biaxial loading 
τ∞ = σ∞

y . 

Table 3 
Statistics of the predictions with the models for the axial loading 
cases.  

Model Average Error (%) 
MWCM + PM (Mode I)  12.7 
MWCM + PM (Mode II)  8.5 
Carpinteri et al.  7.6 
Biaxial N-R  12.0 
PM  7.0 
Axial N-R  13.1  
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experimental crack line is not straight, but instead zigzagged and 
changes direction when passing from Stage 1 to Stage 2. This implies 
that to improve the predictions, it would probably be necessary for 
current models to evolve towards the use of non-straight crack lines for 
prediction, which is closer to the experimental crack lines. 

Though it is not possible to confirm the existence of these humps by 
reference to experimental data, it is interesting to speculate whether 
their existence is reasonable, considering the physical mechanisms 
involved. As is well known, fatigue proceeds in two stages, Stage 1 and 
Stage 2, which are loosely described as crack initiation and crack 
propagation. Previously, Susmel [21] showed that the length of the 
Stage-1 crack is similar to the critical distance in steel, which justifies the 
use of the TCD (combined with a critical plane theory) as a way of 
capturing the stresses acting during the initiation stage. We show in the 
present work that the stresses in this region, and especially the shear 
stress on the critical plane, vary in a complex way with distance from the 
hole, implying the existence of a hump in the fatigue limit predictions. 
From this we conclude that the existence of the hump could be consis-
tent with the physical mechanisms of fatigue. 

It is perhaps also worth noting that a similar effect has already been 
established in relation to the variation of strength with notch radius. 
Considering the variation of fracture strength (or measured fracture 
toughness) with root radius for notches of constant length, TCD pre-
dictions using the PM show a small decrease in strength with increasing 
radius for radii similar in magnitude to L. This counter-intuitive result 
has been shown to occur also in the experimental data for brittle fracture 
of some steels [3] and, recently, carbon fibre composite material [34]. It 
arises, in a similar way to that shown in the present work, due to a 
complex variation of stress with distance near the notch. 

One striking thing the N-R model does not get right is the obvious 
difference it reports for pure axial loading between the biaxial formu-
lation and the monoaxial formulation for the larger notches, as depicted 
in Fig. 4. It is clear the predictions with the biaxial formulation are 
wrong since they converge to a value σN

FL/σFL of 0.4 rather than to the 
expected value around 1/3. The reason for this is the much simplified 
geometry the model uses for the slip band. In its present formulation, the 
crack growth direction is fixed from the initiation point onwards and 
does not change once it has been selected as the direction that maxi-
mizes the “pressure” upon the first microstructural barriers. The initia-
tion direction is therefore set and taken to be the same for propagation 
until failure. This is to say that at present the model does not have the 
capability of reproducing the switch between stage I, mode II growth 
typically observed at initiation and stage II, mode I displayed later on. 
Current work is being done to incorporate the possibility of changes of 
direction in the propagation path, but the mathematical and numerical 
difficulties are great and no satisfactory strategy to come around these 
difficulties has yet been found. 

Finally, the prediction curves of the N-R model are less smooth than 
those of the other models (see Figs. 3, 5 and 7). There are two reasons 
that can justify this behaviour of the N-R model. First, it is a model in 
which the equations are solved numerically; therefore there will always 
be a small numerical error when calculating the fatigue limit. Second, 
the N-R model is a discrete model, which bases its predictions on the 
analysis of a discrete set of crack directions and crack lengths. In this 
study an angular step of 1◦ was used for the crack directions. The 

discrete set of crack lengths corresponds to crack tips located at the 
successive grain boundaries. 

7. Summary and conclusions 

This work presented an analysis of the fatigue limit predictions for a 
plate with a circular hole subjected to cyclic axial, shear and in-phase 
biaxial loading through several biaxial models. There were clear dif-
ferences between the models in terms of the crack initiation point and 
the crack line used for making the predictions. For small and large radii 
all the models gave similar predictions, tending to the plain fatigue limit 
and the plain fatigue limit divided by Kt as the hole radii tended to zero 
and infinity, respectively. For intermediate radii, there were consider-
able differences in the values of the predictions obtained with the 
models, despite the fact that this was a simple geometry. In some cases, 
and for all the models, increases in the notch fatigue limit were predicted 
with an increasing hole radius, especially in torsion, which is something 
that has not been observed experimentally, nor does it seem logical from 
a physical point of view. This non-monotonic evolution of the pre-
dictions with an increasing hole radius, called a hump, is also due to the 
non-monotonic evolution of the σrr and τrθ stresses along the crack lines 
used in the models. 

It would be very interesting to perform an exhaustive experimental 
work involving the fatigue testing of specimens with circular holes 
under several types of loading and including several materials. The tests 
should be focused on hole radii for which the models predict a non- 
monotonic evolution with the hole size, the so-called humps. For the 
tests, it would be very interesting to experimentally obtain the crack 
initiation point and the crack path in the initial part of the crack. Later, it 
would be convenient to adapt the crack lines used for the prediction in 
the current models to fit them as closely as possible to the experimen-
tally observed crack paths. Additionally, the model criteria were 
adjusted to provide an evolution of the predictions with the hole radius 
close to that observed experimentally, either with or without humps. All 
this work would probably result in predictions of fatigue limits for 
notched specimens subjected to biaxial loading that are closer to the 
experimental values and, ultimately, provide the industry with better 
tools for predicting fatigue failure. 
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Appendix 

Experimental notch fatigue limits and predictions with the models.
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