
This is a repository copy of AIACC-Training: Optimizing Distributed Deep Learning
Training through Multi-streamed and Concurrent Gradient Communications.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/186564/

Version: Accepted Version

Proceedings Paper:
Lin, L, Qiu, S, Yu, Z et al. (5 more authors) (2022) AIACC-Training: Optimizing Distributed
Deep Learning Training through Multi-streamed and Concurrent Gradient
Communications. In: Proceedings of the 42nd IEEE International Conference on
Distributed Computing Systems (ICDCS). 42nd IEEE International Conference on
Distributed Computing Systems (ICDCS), 10-13 Jul 2022, Bologna, Italy. IEEE , pp. 853-
863. ISBN 978-1-6654-7178-7

https://doi.org/10.1109/ICDCS54860.2022.00087

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

AIACC-Training: Optimizing Distributed Deep Learning Training through
Multi-streamed and Concurrent Gradient Communications

Lixiang Lin†, Shenghao Qiu∗, Ziqi Yu†, Liang You†, Long Xin†, Xiaoyang Sun∗, Jie Xu∗, Zheng Wang∗
†Alibaba Group, ∗University of Leeds

Abstract—There is a growing interest in training deep neural
networks (DNNs) in a GPU cloud environment. This is typically
achieved by running parallel training workers on multiple GPUs
across computing nodes. Under such a setup, the communi-
cation overhead is often responsible for long training time
and poor scalability. This paper presents AIACC-Training, a
unified communication framework designed for the distributed
training of DNNs in a GPU cloud environment. AIACC-Training
permits a training worker to participate in multiple gradient
communication operations simultaneously to improve network
bandwidth utilization and reduce communication latency. It em-
ploys auto-tuning techniques to dynamically determine the right
communication parameters based on the input DNN workloads
and the underlying network infrastructure. AIACC-Training has
been deployed to production at Alibaba GPU Cloud with 3000+
GPUs executing AIACC-Training optimized code at any time.
Experiments performed on representative DNN workloads show
that AIACC-Training outperforms existing solutions, improving
the training throughput and scalability by a large margin.

Index Terms—Distributed deep learning, Model training, Com-
munication optimization

I. INTRODUCTION

Deep neural network (DNN) training is an important appli-

cation workload on GPU clouds. Because a DNN model is

often trained over a large number of samples, distributed deep

learning (DDL) is widely used to reduce the training time by

parallelizing the training workload across multiple GPUs.

Data parallelism1 is a common parallelization strategy for

DDL [1], [2]. This is achieved by partitioning the training

samples across parallel training workers, where each worker

processes a subset of the training data. During each training

iteration, all workers combine the results of their computation

(i.e., the local gradient) to produce an aggregated gradient to

update the model parameters stored on distributed computing

devices before the next training iteration. Aggregation of gra-

dients requires training workers to communicate and exchange

their local gradients via the communication network.

The volume of gradients to be exchanged among training

workers is proportional to the number of model parameters

and the tensor size of individual parameters. Because the size

of new DNN models is increasing at a much faster pace

than the increased hardware performance [1], [3], gradient

communication has become a major performance bottleneck in

DDL [4], [5]. Recently, efforts have been made to optimize

distributed gradient communications by exploiting heteroge-

neous communication links [6] or additional CPU servers [2].

Other works apply gradient compression methods to reduce

1Other DDL approaches include model, pipeline, and asynchronous-data
parallelism. While these are supported by AIACC-Training, they are not as
common as data parallelism and hence are not the focus of this paper.

data transfer size by using a lower precision representation

of gradients [7], [8]. Major deep learning frameworks like

PyTorch and DDL libraries like Horovod [9] also support the

decoupling of gradient communication from computation to

overlap the communication with computation.

While promising, exciting solutions all fail to capitalize on

the large network bandwidth in a modern cloud environment.

As we will show later in the paper, in real-life scenarios,

the state-of-the-art distributed communication framework for

DDL may utilize up to 30% of the available bandwidth of a

standard TCP/IP network in the GPU cloud. The poor network

bandwidth utilization, in turn, leads to increasingly poorer

scalability when more GPUs are used.

After running Alibaba’s public GPU cloud and internal

servers for several years, we have observed many examples

where DDL performance suffers from poor gradient commu-

nication efficiency. While reducing the training time is crucial

for many users, most data scientists and GPU cloud users are

not expert programmers and are unfamiliar with distributed

communication optimization. This motivates us to design

AIACC-Training, a unified distributed communication library

to support efficient gradient communications. AIACC-Training

supports mainstream deep learning frameworks like Tensor-

flow [10], PyTorch [11], and MXNet [12] with Horovod-

like API. It lowers the programming barrier by automatically

converting a sequential DNN code running on a single GPU

to an optimized DDL program with zero user involvement.

As a unified communication library, AIACC-Training provides

a single, highly-optimized framework to meet diverse DNN

workloads while simplifying the library maintenance cost.

A key innovation of AIACC-Training is adopting a multi-

streamed gradient communication strategy to improve network

bandwidth utilization. With prior work, the training worker

only participates in a gradient communication operation at a

time. Because a single communication process cannot fully

utilize the network bandwidth, existing solutions leave much

room for improvement. Our work is based on the observation

that gradients are often produced faster than their exchange

speed, but a single communication stream cannot fully utilize

the network bandwidth offered by modern cloud infrastruc-

tures. By allowing a training worker to participate in multiple

concurrent gradient communication operations, we can better

utilize the network bandwidth to reduce communication la-

tency to improve the training throughput and speed. AIACC-

Training achieves this by carefully packing the computed

gradients to multiple communication units – each is handled

by a concurrently running communication thread.

AIACC-Training develops an auto-tuning technique to find

the optimal number of concurrent communication threads and

the gradient communication granularity, depending on DNN

workload and network topology (that can vary during run-

time). Specifically, AIACC-Training formulates the parameter

selection problem as a multi-armed bandit problem [13]. It

then uses a carefully designed meta solver to automatically

determine the right parameter setting within a search time bud-

get during the initial warm-up phase. Crucially, the results of

parameter search also contribute to the final training outcome,

so no computation cycle is wasted.

AIACC-Training was the first unified communication library

that supports multiple deep learning frameworks in a single

infrastructure. It is compatible with the Horovod API for DDL

and provides a source-to-source tool to translate the sequential

model code for DDL automatically. It supports communication

optimization techniques like gradient compression and can be

used with data, model and pipeline parallelisms or a mixture

of these parallelization strategies. It provides a new parameter

optimizer to improve the training speed.

We evaluate AIACC-Training on representative DNN mod-

els and datasets, including a production DNN system. Experi-

mental results show that AIACC-Training consistently outper-

forms existing approaches, improving the training throughput

by up to 3.3x on public DNNs using 256 GPUs (and 13.4x

on an internal production DNN system). As a major online

service and cloud provider, we have deployed AIACC-Training

on Alibaba’s internal GPU servers and public GPU cloud, with

over 3000 GPUs executing a diverse set of AIACC-Training

optimized workloads at any time on the Alibaba GPU cloud.

This paper makes the following contributions:

• It presents a new gradient communication scheme for ac-

celerating DDL (Section V);

• We demonstrate how auto-tuning techniques can be em-

ployed to optimize hyperparameters for a DDL communi-

cation library (Section VI);

• We present a summary of the critical design decisions, and

quantitative analysis of observations learned from opera-

tional experience in production environments when devel-

oping a DDL communication library.

II. BACKGROUND

A. DNN Model Training
DNN training often consists of millions of iterations across

multiple training epochs. An iteration processes a small part of

the entire training data, known as minibatch. Each training iter-

ation contains three stages: forward, backward and parameter

update. During the forward stage, the training samples (e.g.,

images or sentences) are passed through the DNN layers to

compute a loss (or error) using an objective function (or loss

function). During the backward stage, the loss is backwards

propagated through the DNN layers to compute the gradients.

At the parameter update stage, an optimizer then updates

the model weights based on the gradients. Training a DNN

involved iteratively updating perform these three steps.

During backward propagation, gradients are computed along

the reversed direction of the network, starting from the output

A0 B0 C0

A2 B2 C2 A1 B1 C1

Worker 0

Worker 2 Worker 1

RA B0 C0

A2 B2 RC A1 RB C1

Worker 0

Worker 2 Worker 1

RA RB RC

RA RB RC RA RB RC

Worker 2 Worker 1

Worker 0

(a) reduce‐scatter (b) all‐gather (c) final results

Fig. 1: The ring all-reduce operation.

layer. A network layer can produce more than one gradient,

e.g., a linear layer - y = ax+ b - will produce two gradients:

one for the weight, a, and one for the bias, b, where each gra-

dient is a layer-dependent tensor (a multi-dimensional array).

Our work focuses on optimizing gradient communications at

backward propagation, which is well-known to be the major

performance bottleneck of DDL [1], [2], [4], [5].

B. Data Parallelism
Data parallelism is a mainstream paradigm for DDL [2].

This is achieved by partitioning and distributing the training

samples across different training workers running on different

GPUs, where each GPU holds a complete DNN model (and its

parameters). Since each training worker works on a subset of

the training data, the gradients generated by different training

workers will be different. At the parameter update stage of

a training iteration, gradients from different training works

need to be aggregated to update the model weights before the

next training iteration. This is achieved by either applying an

all-reduce2 operation across parallel processes or using

a parameter server [14] to aggregate the gradients from dif-

ferent processes. This procedure is network IO intensive as it

requires performing data communications and synchronization

across different GPUs and computing servers. Furthermore,

all-reduce is the most popular gradient communication scheme

due to its higher performance over parameter servers.

C. All-reduce
The ring all-reduce [15] is a dominant approach for im-

plementing all-reduce for DDL. Fig. 1 depicts the process

of applying ring all-reduce to three parallel workers. At

the reduce-scatter stage, the ready gradients are partitioned

into n chunks (where n is the number of parallel workers),

creating n rings with different starting and ending points (e.g.,

C0 → C1 → C2 in Fig. 1a). Each data chunk is sent along

a ring. When a worker receives the data from another worker,

it will apply a reduced operator and then proceed to send

the reduced data to the next worker in the ring. The reduce-

scatter phase finishes when each worker holds the complete

reduction of chunk i. In the all-gather step (Fig. 1b), each

worker broadcasts the completely reduced chunk (e.g., RA) to

all other workers. At the end of reduce-gather (Fig. 1c), all

workers will have the complete set of reduced data.

Most distributed training frameworks adopt the ring all-

reduced. However, as we will show in Section VIII, exist-

ing implementations give poor bandwidth utilization, leaving

much room for improvement in a GPU cloud environment.

2All-reduce performs a chosen reduction operator (e.g., sum, min, max) on
data across parallel workers and then sends the global result to all workers.

D. CUDA Streams
Although numerous neural network accelerators have been

developed [16], [17], the NVIDIA GPU remains the de-facto

platform for training DNNs due to its availability and matured

software ecosystem. For this reason, our work primarily targets

NVIDIA GPUs, but our techniques can also be transferred to

other architectures (e.g., the Alibaba NPU).

NVIDIA GPUs consist of a large number of process-

ing units, which are organized as streaming multiprocessors

(SMs). For example, the NVIDIA Tesla V100 GPU supports

80 SMs, where each SM has a fixed number of cores. In

the CUDA programming model, instructions placed within

a single CUDA stream are executed sequentially, following

their issued order. However, code offloaded to different CUDA

streams can be dispatched by the GPU instruction scheduler

to different hardware SMs to be executed concurrently on the

same GPU. As a departure from all distributed communication

libraries, AIACC-Training utilizes multiple CUDA streams

to perform concurrent gradient communications for a GPU

worker during backward propagation. The GPU hardware

scheduler automatically schedules a certain number of CUDA

streams to run on multiple SMs, depending on hardware

resource contention. AIACC-Training uses an auto-tuning

technique (Section VI) to determine the optimal number of

CUDA streams for gradient communications.

E. Distributed Communications in GPU Clouds

TCP/IP network. Like most cloud providers, Alibaba cloud

instances are organized as a virtual private cloud (VPC) to

provide a private communication tunnel for a user. VPC builds

upon the traditional TCP/IP network and tunnel technology

and is commonly available and low cost to both the cloud

provider and end-user. AIACC-Training is designed to op-

timize gradient communications over the TCP/IP network

because it remains the dominant communication infrastructure

in public GPU clouds.

RDMA. GPUs within a single computing host can commu-

nicate via NVIDIA’s Nvlink [18], [19] or PCIe. GPUs across

computing nodes can communicate via either remote direct

memory access (RDMA) or a TCP/IP network. However, GPU

RDMA requires deploying dedicated host bus adaptors and

network adaptors and switches, e.g., InfiniBand and NvSwitch

for NVIDIA GPUs [20]. While RDMA is generally faster

than a TCP/IP network, it incurs significant infrastructure and

operational costs over the TCP/IP solution. As a result, not

all Alibaba GPU cloud servers are equipped with RDMA

components (indeed, most cloud providers do not promise

RDMA). As we will show later, AIACC-Training can also

improve the use of RDMA when it is available.

III. MOTIVATION

The initial design of AIACC-Training was to utilize

Horovod [9], a popular DDL library, for distributed communi-

cations. However, we found that Horovod (and the underpin-

ning NVIDIA Collective Communications Library - NCCL)

gives poor scalability in a typical GPU cloud environment.

8 16 24 32

6E+3
8E+3
1E+4
1E+4
1E+4
2E+4
2E+4

#
 i
m

a
g

e
s
 /

 s
e

c
.

#GPUs

 Linear scalability

 Horovod

Fig. 2: The training throughput delivered by Horovod versus

the theoretical linear speedup.

As a motivation example, consider Fig. 2. This diagram

compares the throughput (i.e., the number of training images

processed per second) when applying Horovod to train the

ResNet-50 DNN [9] using multiple GPUs. In this example,

each GPU server has 8x 32GB NVLink-enabled NVIDIA

V100 GPUs, and servers are connected through a 30Gbps

TCP/IP network. We compare the Horovod achieved through-

put against a theoretically perfect linear improvement as we

increase the number of GPUs. While using more GPUs leads

to higher throughput, Horovod gives a scaling efficiency3 of

75% when using 32 GPUs, exhibiting poor scalability. We also

observe a similar scalability issue on the Pytorch and MXNet

distributed training engine, which gives a scaling efficiency of

less than 79% under the same setting. We stress that such a

poor scaling efficiency is not unique to a single DNN. For

example, for VGG-16 and BERT, another two popular DNN

architectures, Horovod gives a scaling efficiency of 40% under

the same setup. The scaling efficiency also further deteriorates

when using more GPUs.

After a close examination, we found that the poor scaling

efficiency is largely due to two fundamental drawbacks. First,

existing distributed training frameworks only utilize a single

communication link for gradient synchronization. Unfortu-

nately, a single communication stream can only utilize at most

30% of the bandwidth provided by the TCP/IP link (and can

be as low as 10% to 5% of RDMA). Such under-utilization

leads to long gradient communication latency, causing frequent

GPU stalls and wasting the expensive computation cycles.

This is a massive missed opportunity. Secondly, existing all-

reduce-based approaches require a single master node (i.e.,

a synchronization point) to ensure all parallel workers have

produced the required gradients. We observe from real-life use

cases that the master node can quickly become a bottleneck

as the number of GPUs increases (e.g., when using more than

128 GPUs), further deteriorating the scalability.

In light of these observations, AIACC-Training aims to

provide a fully decentralized gradient communication scheme

by utilizing multiple communication streams. As we will show

in Section VIII, AIACC-Training gives a scaling efficiency of

over 0.96, leading to 1.3x and 1.8x improvement over Horovod

on ResNet-50 and VGG-16 respectively with 32 GPUs, and

3.3x improvement with 256 GPUs.

3We use the definition in [4] where the scaling efficiency is computed as
TN/NT . Here, TN is the single GPU throughput and NT is the measured
throughput when using N training workers (GPUs).

TensorFlow PyTorch MXNet Caffe
Perseus Python API (Horovod compatible)

Perseus interface (C and C++)
Low‐level communication libraries (MPI and NCCL)

Perseus tensor operator implementation

Perseus context
TensorFlow
context

PyTorch
context

MXNet
context

Caffe
context

Fig. 3: The AIACC-Training software stack.

CUDA
Streams

MPI communication
service

GPU0

Distributed optimizer

CPU

CUDA
Streams

MPI communication
service

GPUk

Distributed optimizer

CPU

TCP

GPU RDMA

Fig. 4: AIACC-Training components. Communication of each

GPU is managed by an MPI process running on the CPU.

IV. OVERVIEW OF AIACC-TRAINING

Fig. 3 gives an overview of the AIACC-Training stack, a

DDL component of Alibaba’s AIACC framework4. It is de-

signed to optimize DDL in a cloud environment with TCP and

RDMA links. It supports multiple deep learning frameworks:

Tensorflow, Pytorch, MXNet and Caffe. AIACC-Training pro-

vides a unified communication API (named Perseus) to all

supported programming models.

The core idea of AIACC-Training is to implement a fully

decentralized and concurrent all-reduce based gradient com-

munication scheme. Communication concurrency is realized

by employing a fine-grained gradient partitioning strategy to

allow a training worker to participate in multiple all-reduce

communications at the same time. This is different from all

prior work, where a GPU can only participate in one gradient

communication at any time. Communication concurrency not

only improves the network bandwidth utilization but also leads

to higher training throughput and faster training time.

Programming interface. Porting model code to AIACC-

Training is straightforward and does not require user involve-

ment. For vanilla sequential DNN code written in Tensorflow,

Pytorch, MXNet and Caffe, AIACC-Training uses a compiler-

based source-to-source translator to automatically convert the

user program to AIACC-Training’s Perseus API for distributed

training, eliminating the need for manual code refactoring. As

the AIACC-Training API is fully compatible with the Horovod

API [9], porting Horvod distributed training programs to

AIACC-Training is also simple. In practice, this means just

changing one line of the code by replacing the import package

from Hrovod to Perseus. This is also automatically handled

by AIACC-Training. Porting MXNet’s parameter server-based

code to AIACC-Training can be realized using the MXNet key

value store interface for parameter synchronization.

4https://www.alibabacloud.com/help/en/doc-detail/198783.html

Gradient
computation

Gradient
computation

Gradient
comp.

Gradient
communication

Gradient
communication

Gradient
comm.

Time

Gradient
computation

Gradient
computation

Gradient
comp.

Gradient
communication

Gradient
communication

Gradient
comm.

AIACC‐Training
Prior w

ork

Performance
improvement

Fig. 5: AIACC-Training exploits asynchronous communication

concurrency to improve training throughput.

Main components. As shown in Fig. 4, AIACC-Training

has two main components, a communication servicing pro-

cess built upon the Message Passing Interface (MPI) and a

parameter optimizer chosen by the user code or the AIACC-

Training runtime. The MPI process runs on the host CPU,

and the optimizer runs together with each training worker on a

GPU. We have one MPI process for each GPU worker. We use

MPI to facilitate inter-node and intra-node communications.

We found that using OpenMP or Pthread for inter-process

communication with the same host offers little benefit for

DDL, but doing so will increase the complexity of code

development and maintenance.

Advantages. Compared to existing distributed communication

libraries, AIACC-Training offers several advantages that were

motivated by real-life use cases. AIACC-Training improves

network bandwidth utilization by allowing a GPU worker

to participate in multiple all-reduce operations at once using

asynchronous, parallel communications. Unlike Horovod that

uses a fixed-sized communication window, AIACC-Training

implements an adaptive scheme to find, during runtime, the

optimal granularity for gradient communication and aggrega-

tion, further enhancing the training throughput.

Other features and optimizations. As a production library,

AIACC-Training also provides fault-tolerance to restart the

training process from the last checkpoint upon node failure

and elastic deployment by propagating training parameters into

newly added computing nodes. It offers debugging support like

identifying NaN (not a number) values from individual gradi-

ents - a headache for many users during DDL. It implements

a new optimizer by combining Adaptive Moment Estimation

(Adam) [21] and Stochastic Gradient Descent (SGD) [22].

It uses linear decay to adjust the learning rate rather than

the commonly used step decay [23] because we found lin-

ear decay works better with the communication optimization

and gradient compression implemented in AIACC-Training.

Building upon the multi-streamed concurrent communication

optimization technique focused in this paper and the new

optimizer, we have demonstrated that it is possible to train

ResNet50 on ImageNet in 158 seconds using 128 NVIDIA

V100 GPUs. The was the state-of-the-art training speed on

the DAWNBench league table [24].

V. GRADIENT COMMUNICATIONS IN AIACC-TRAINING

As depicted in Fig. 5 and Fig. 6, AIACC-Training decouples

gradient computation and communication so that computation

GPU

worker
Gradient queue...

Gradient

Synchronization

Gradient

packing

Gradient all-

reduce

C
P

U

co
m

m
.

se
rv

ic
e

Fig. 6: Overview of the AIACC-Training gradient communi-

cation process. Distributed communications and local gradient

computation run concurrently in an asynchronous manner.

Worker 0

Worker 2 Worker 1

Stream 0
Stream N...

Stream 0
Stream N...

Stream 0
Stream N...

Worker 2 Worker 1

Worker 0

(a) existing approaches (b) AIACC‐Training

Fig. 7: Unlike prior work that only utilizes one communication

link for all-reduce (a), AIACC-Training performs N concur-

rent all-reduce operations on N communication links (over the

same physical link) through N CUDA streams (b).

runs concurrently with distributed data communications. Gra-

dient communication in AIACC-Training consists of multiple

stages that iterate over training steps, described as follows:

Gradient synchronization. As gradients can be produced in

arbitrary order for independent parameters (e.g., parameters 4

and 5 in Fig. 8) during backward propagation, all training

workers need to agree on what gradients to participate in

a single all-reduce operation. This is managed by an MPI

process that communicates with the GPU worker via a CUDA-

MPI aware message queue. Gradient synchronization will be

triggered when the size of the locally computed gradients

meets the communication granularity - AIACC-Training au-

tomatically chooses this parameter during runtime (see Sec-

tion VI). To this end, the MPI communication process uses

a ring all-reduce operation to check if gradient values of a

parameter, like like a linear layer’s weights (see Section II-A),

are ready among all training workers. If a gradient has been

produced (i.e., synchronized) by all workers, a follow-up all-

reduced operation can then be applied to this gradient without

needing to wait until other gradients to be computed across

the DNN layers. This strategy permits the use of multiple

concurrent gradient communications to speedup the training

process as shown in Fig. 5. This is detailed in Section V-A.

Gradient packing. A ring all-reduce operation can be per-

formed on a synchronized gradient after all workers have

computed their locally corresponding values. Because the

tensor size of gradients can vary, and the optimal commu-

nication granularity depends on the communication network,

the AIACC-Training runtime may choose to split the tensor

into multiple units or merge multiple tensors across multiple

synchronized gradients to form a suitable all-reduce unit.

Gradient all-reduce. Once an all-reduce unit is ready, it is

dispatched to a communication kernel executed by a CUDA

stream to perform an all-reduce operation among parallel

workers. As highlighted in Fig. 7, unlike prior work, AIACC-

Parameter 0

Para. 1 Para. 2 Para. 3

Para.4

Para.6

Para.5
...

Para. n

Gradient

Registration

Grad. 0

Grad. (n-1)

Grad. n

Grad. 1
...

Grad. 0

Grad. (n-1)

Grad. n

Grad. 1
...

Tensor Computation

Graph

Gradient

synchronization

vector

0

1

0

1

...

0

1

1

1

1

1

1

1

...

Worker 0 Worker 1 Worker k

0

1

0

1

...

Available

grad.s

(a) Gradient registration (b) Gradient synchronization

Ring all-reduce

0/1
0/1

0/1

0/1

Fig. 8: When loading a model, each training worker registers

the model parameters to participate in communication (a)

through a gradient synchronization vector. The MPI process

then uses a ring all-reduce to agree on the available gradient

values for gradient aggregation among training workers (b).

Training enables a worker to participate in more than one all-

reduced operation over the same network. This strategy utilizes

the hardware parallelism to multiplex the communication re-

sources. To support concurrent all-reduce operations, AIACC-

Training manages a communication thread pool, where each

thread runs within a CUDA stream. The AIACC-Training

runtime automatically dispatches an all-reduce unit to an

available thread, which then takes care of gradient commu-

nication by creating or participating in a new all-reduce ring.

To support multi-streamed communications, AIACC-Training

amends NCCL’s low-level communication primitives, but such

changes are transparent to the user’s code.

A. Gradient Registration and Synchronization

Fig. 8 summarizes the gradient registration and synchro-

nization processes of AIACC-Training.

1) Gradient registration: When loading a DNN model, the

training worker registers the parameters to participate in all-

reduced gradient aggregation. This will generate a n−element

gradient synchronization vector (where n is the number of

gradients generated during backward propagation) stored in the

CPU memory, as shown in Fig. 8a. Each vector element takes a

bit-wise value of 0 or 1, where a value of 1 indicates a gradient

value is computed locally and ready to be reduced. During

gradient registration, parameters are sorted and assigned a

unique index in the gradient synchronization vector. Before

each backward stage, elements of the gradient synchronization

vector are set to zeros.

2) Gradient synchronization: The GPU-based training

worker and the CPU-based MPI communication process talk

through a gradient queue implemented using CUDA-aware

MPI. The CUDA-aware MPI feature provides a virtual single

memory space, where the underlying CUDA runtime auto-

matically manages the data transfer between the GPU and

the CPU memory space. After a local gradient is computed,

a callback function then pushes the gradient tensor (i.e., a

multi-dimensional array) into the gradient message queue.

This callback function is automatically registered by AIACC-

Training through a customizable hook function similar to the

callback mechanism supported by Tensorflow and PyTorch.

A gradient push operation will wake up the CPU-based MPI

process to update the gradient synchronization vector, setting

the corresponding bit to 1 to indicate that a corresponding

local gradient value is ready. Meanwhile, the gradient tensor

will be removed from the gradient queue to be stored in a

gradient communication bucket. If GPU-directed RDMA is

available, the bucket will be allocated in the GPU memory for

GPU-directed RDMA. Otherwise, it will be stored in the CPU

memory. If the gradient bucket size meets the minimum com-

munication granularity, the MPI communication process then

triggers the gradient synchronization process. As illustrated

in Fig. 8b, this is achieved by performing a ring all-reduce

among MPI communication processes - where an MPI daemon

process links to a training worker. To check if a gradient

has been computed by all training workers, we apply a min

reduction operator to each element of the gradient synchro-

nization vector. Since a min operator is used, a gradient in the

all-reduced, synchronization vector will be marked as 0 (not

ready) if it has not been computed by any of the workers. Gra-

dient synchronization is asynchronously performed by another

process managed by the underlying collective primitive library

(i.e., the MPI process is not blocked on a synchronization

operation). Because gradient synchronization and computation

are performed on two computing devices (CPU and GPU), and

the multi-core CPU is mainly idle during the backward stage,

both processes run concurrently, incurring negligible overhead.

It also has a low network overhead because we only perform

all-reduce on a bit vector.

Unlike AIACC-Training, Horovod and other communication

frameworks require having a single master (or root) node to

determine what gradients are ready. However, the master node

can quickly become a communication bottleneck at large-scale

DDL as all workers need to communicate with it. In contrast,

AIACC-Training takes a fully distributed approach for gradient

synchronization, preventing a single node from becoming the

communication bottleneck.

B. Gradient Packing and All-reduce

After gradient synchronization, all training workers agree

on what gradients to participate in the follow-up gradient all-

reduce process. AIACC-Training then determines how to split

or pack tensors of ready gradients to form an optimal all-

reduce unit. This communication parameter is automatically

determined by AIACC-Training during the warm-up phase and

is used by all participating communication threads. Multiple

small tensors will be packed to form a large tensor in an

all-reduce unit, while a large tensor can be breakdown into

multiple all-reduce units. As the size of ready gradients is

often larger than the chosen all-reduce size, there are likely to

be multiple all-reduce units to be communicated. Furthermore,

because ready gradients are packed or sliced according to the

gradient id (given during parameter registration), all workers

also implicitly agree on gradient communication order.

AIACC-Training utilizes and extends the collective commu-

nication primitives (like all-reduce, broadcast, and scatter) of

NCCL and Gloo respectively for GPU- and CPU-based com-

munications. Unfortunately, NCCL only supports one com-

munication link, which can utilize up to 10Gbps bandwidth of

Algorithm 1: Multi-streamed gradient communication

Input: L: list of synchronized gradients;
N: number of threads in P
Data: la: list of available all-reduce units;
lr: list of received all-reduced units;
P: communication thread pool

1 P ← initCUDAStreams(N);
2 while !empty(L) do
3 la← GradientPacking(L);
4 foreach u ∈ la do
5 p← getAvailThread(P);
6 if p == null then

// no more free thread

7 break from while loop;
8 end
9 p− > all reduce(u);

10 end
11 end
12 if all gradients have been communicated then
13 gradients[]← gradient unpack(lr);
14 gradient callback func();
15 end

a TCP/IP network, leading to poor bandwidth utilization in a

GPU cloud environment. AIACC-Training addresses this issue

by issuing multiply communication links over the network by

extending the low-level NCCL implementations.

As described in Algorithm 1, multi-streamed gradient com-

munication is achieved by first creating a thread pool with

multiple CUDA stream contexts (line 1). Each CUDA stream

corresponds to an underlying communication buffer used for

an RDMA or TCP/IP network. The MPI communication pro-

cess automatically dispatches an all-reduce unit to an available

CUDA stream (line 2) which then applies an all-reduce oper-

ation to perform gradient aggregation among training workers

(line 9). AIACC-Training currently supports two all-reduce

algorithms, a ring all-reduce and tree all-reduce. The latter first

performs a ring all-reduce operation among GPUs of the same

computing node and then uses ring all-reduce to communicate

across computing nodes. It is useful when some of the physical

network links become congested due to burst communications

from other shared cloud users. AIACC-Training automatically

determines which all-reduce algorithm to use during the auto-

tuning phase without user intervention.

Within a ring, a CUDA stream of training worker p sends

data to worker id: (p + 1)%p, forming a ring as depicted

in Fig. 1. Unlike traditional ring all-reduce, a worker can

participate in multiple all-reduce rings as shown in Fig. 8b. We

stress that gradient synchronization and communications are

asynchronous operations, and the MPI process is not blocked

on the operation. This allows gradient synchronization and

multi-streamed communication operations to run concurrently

on a multi-core CPU (see also Fig. 5).

Once the all-reduce operation has been performed on every

gradient, AIACC-Training will unpack and regroup the data

back to individual gradient tensors, which are passed to an

optimizer (for parameter update) via a call back function.

Using multiple CUDA streams (and communication buffers)

improves bandwidth utilization by multiplexing the commu-

nication network. By issuing multiple concurrently GPU-

CPU memory transfers (because TCP/IP communications go

through the CPU), multiple CUDA streams can also hide the

GPU-CPU communication overhead.

VI. AUTO-TUNING COMMUNICATION PARAMETERS

Hyperparameters like the all-reduce unit size, the number

of CUDA streams used and the all-reduce algorithm can have

an impact on the communication efficiency. The combination

of possible parameter values results in a large optimization

space, where the optimal setting depends on the cloud in-

stances, the network topology and bandwidth, and the DNN

workload characteristics. AIACC-Training automatically finds

the suitable parameters at runtime using an ensemble of search

techniques. We use an ensemble approach because it allows

us to plug in a new search technique easily. Using a collection

of search algorithms also improves the robustness parameter

search when the network bandwidth, topology, and DNN

workload change. We formulate the parameter search problem

as a multi-armed bandit (MAB) problem [13] and use a meta

solver to find the best parameters under a predefined number

of training iterations during the warm-up phase. Note that

the results of the warm-up phase also contribute to the final

outcome, so no computation cycle is wasted.

Our current search ensemble considers four established

search techniques: grid-search, population based training

(PBT) [25], Bayesian optimization [26], and Hyberband [27],

but other search techniques can be added. Our meta solver is a

MAB with a sliding window, area under the curve (AUC) credit

assignment algorithm. A similar technique was used in prior

work [28]–[30] for compiler optimization. Given a budget of

n training iterations and k search techniques (k = 4 and

n = 100 by default in our current implementation), the meta

solver allocates the training iterations among search techniques

to test their effectiveness. After n iterations, we choose the

best performing parameters to use for the remaining training

iterations. Like [28], our meta solver aims to maximize term:

argmaxt(AUCt +C

√

2lg|H|
Ht

), where t is a search technique

used for the current iteration, |H| is the length of a sliding

history window, Ht is how often the technique has been used

in that history window, C (set to 0.2 by default) is a constant

controlling the exploration/exploitation trade-off, and AUCt

is the credit assignment term quantifying the performance of

the technique in the sliding window. The second term in the

formula is the exploration ratio which becomes smaller the

more often a technique is used. We compute the AUC curve by

looking at the history of a technique. If the technique delivered

a new global best, we draw an upward line on the AUC curve.

Otherwise, we draw a flat line. We then compute the area size

under the AUC curve – the larger the area is, the more efficient

a technique is likely to be.

When used in a GPU cloud, AIACC-Training also stores

the previously-found best parameter setting for a given DNN

computation graph, cloud instance and network topology. It

then uses this setting as a starting point for a similar cloud

instance deployment to boost the search. To quantify the

TABLE I: DNN model characteristics

Model #Param.s #FLOPs Model #Param.s #FLOPs

VGG-16 138.3M 31G ResNet-50 25.6M 4G
ResNet-101 29.4M 8G Transformer 66.5M 145G
BERT-Large 302.2M 232G

similarity of a DDL deployment and a previously seen one,

we measure the similarity of the DNN computation graph and

the network topology. The latter is an undirected graph where

graph nodes are GPU instances and edges are the network

bandwidth. We use the graph edit distance [31] to measure

graph similarities and choose a previously found setting that

is most similar to the input user code and cloud instance.

VII. EVALUATION SETUP

A. Evaluation Platform
We evaluate AIACC-Training on the ecs.gn6e-

c12g1.24xlarge instance of Alibaba GPU cloud. Each

instance is equipped with 4x 24-core vCPUs (2.5GHz Intel

Xeon Platinum 8163 CPU), 736GB of DDR4 RAM, and 8x

NVLink-enabled 32GB NVIDIA V100 GPUs. Unless stated

otherwise, computing nodes are connected via VPC with a

TCP/IP network bandwidth of 30Gbps, but in Section VIII-D,

we evaluate on RDMA connections. Each computing node

runs Linux kernel v3.10.0, and we use CUDA v11.4. All

our experiments run on isolated machines with no other job

running at the same time to ensure reproducibility.

B. DNN Workloads
Our main evaluation considers five representative DNN

architectures. These include three popular convolutional neural

networks (CNNs) for computer vision (CV): VGG-16 [32],

ResNet-50 [33], and ResNet-101 [33], and two state-of-the-art

architectures for natural language process (NLP): Transformer

[34] and BERT-Large [35]. We use the ImageNet dataset for

CV models and the Wikitext-en dataset for NLP models. Ta-

ble I summarizes the model size and computation requirement

- the number of floating-point operations (FLOPs) of these

models. In Section VIII-D, we also report performance on

GPT2-XL (with 1,558M parameters) and a warehouse-scale

click to recommendation (CTR) system that supports billion-

scale transactions in an Alibaba production environment, al-

though we cannot disclose the specific model structure used by

CTR. Unless stated otherwise, we use data parallelism when

using multiple GPUs.

C. Competing Methods
We compare AIACC-Training to the latest version of

two state-of-the-art distributed gradient communication li-

braries: Horovod (v0.23) and BytePS (v0.2) [2]. Like AIACC-

Training, BytePS supports Tensorflow, PyTorch, and MXNex

with a Horovod compatible API. We also compare AIACC-

Training with DDL implementation based on the latest Py-

Torch (V1.10) distributed data-parallel (DDP) API. We re-

fer this scheme to as PyTorch-DDP. Both PyTorch-DDP

and Horovod rely on all-reduce for gradient communication,

while BytePS uses parameter servers. We omit Caffe in our

evaluation because it has been merged to PyTorch. For a

fair comparison, we use the same training hyper-parameters

(optimizer, learning rate and batch size) for all DDL methods.

We turn off the optimizer optimization offered by AIACC-

Training to focus on evaluating gradient communications.

D. Performance Report

Like [2], we observed that training throughput (the number

of training samples processed per unit of time) stabilizes after

the first 100 iterations for all methods. Thus, we report per-

formance after the first 100 iterations for the subsequent 200

iterations. We run each experimental setup 5 times and report

the geometric mean performance for each test case. To provide

a fair comparison, we follow the DNN hypermeter setting used

by BytePS in [2], with a large training batch size. We stress

that smaller batch sizes mean less GPU computation5 but more

communication, where the improvement of AIACC-Training

will be more evident. Since the chosen batch size uses almost

full GPU memory, the improvement over competing methods

is the lower bound of AIACC-Training.

VIII. EXPERIMENTAL RESULTS

A. Overall Performance
Fig. 9 and Fig. 10 show the training throughput on PyTorch-

based CV and NLP models, respectively, when we vary the

number of GPUs (a computing node has 8 GPUs). AIACC-

Training gives consistently good results across evaluation

settings. It starts exhibiting stronger performance when using

more than 8 GPUs with more than one computation node.

This is because gradient communications quickly become the

performance bottleneck for DDL with multiple computing

nodes. BytePS gives poor performance because it requires

additional CPU servers to minimize the bottleneck overhead

of the parameter servers, which is in line with an independent

study [36]. To achieve improved performance for BytePS will

incur an extra financial cost for CPU machine subscription.

Horovod and PyTorch-DDP also deliver better scalability than

BytePS, showing the advantage of all-reduce for DDL in a

typical GPU cloud setup over parameter servers. AIACC-

Training further improves Horovod and PyTorch-DDP by

better utilizing the network bandwidth to reduce the communi-

cation overhead, leading to a higher throughput with multiple

computing nodes. Such performance advantage is more evident

with a large number of GPUs. For example, when using 256

GPUs, AIACC-Training improves Horovod and PyTorch-DDP

by up to 1.68x and 2.68x. We anticipate AIACC-Training to

have greater advantages with more computing nodes.

We also observe that different DNN models manifest differ-

ent scaling efficiency. This is not surprising because the model

scalability depends on the model’s size and communication

patterns. The most scalable model is ResNet-50 with 256

GPUs, where AIACC-Training achieves over 95% scaling

efficiency. This result is in line with prior studies [1], [2],

which show that ResNet-50 has better scalability than other

5Less GPU computation means that there will be a higher chance for the
GPU hardware scheduler to dispatch more CUDA streams to run concurrently
on the hardware for gradient communications.

models. Achieving higher scalability for other larger models is

challenging. This is because large models are typically more

computation-intensive, having more floating-point operations.

Computation-intensive models limit the number of CUDA

streams that can be executed concurrently for gradient com-

munications. Nonetheless, AIACC-Training gives the highest

throughput for all models. As future-generation GPUs are

likely to provide more parallel execution units, we expect

AIACC-Training will deliver better performance on future

high-end GPUs by leveraging the hardware parallelism.

B. Other DL Frameworks
We now apply the unified AIACC-Training library to DNN

models written with Tensorflow and MXNet. AIACC-Training

automatically converts the sequential model code for DDL.

Fig. 11 and Fig. 12 show that AIACC-Training also gives con-

sistently good performance on Tensorflow and MXNet, with

similar improvements seen on PyTorch. Once again, AIACC-

Training demonstrates greater performance as the number of

GPUs (and computing nodes) increases, with a speedup of 3.3x

over Horovod when using 256 GPUs. We can also see that

the parameter server approach used by MXNet gives a lower

throughput compared to the all-reduce used by Tensorflow

and PyTorch. The results suggest that AIACC-Training gives

portable performance across DL frameworks. As a unified

communication framework, AIACC-Training reduces the de-

velopment and maintenance cost, as the same optimization can

be applied to a range of DL frameworks to meet the needs of

different GPU cloud users.

C. Other DNN Workloads and Metrics
We also evaluated AIACC-Training in other evaluation

scenarios. When applying AIACC-Training to the hand-tuned

ResNet-50 of the InsightFace library [37] (with DDL enabled)

on face preconization datasets, AIACC-Training improves the

hand-tuned DDL code by 3.8x when using 128 GPUs. We also

evaluate AIACC-Training on the DAWNBench metrics [24].

The metrics include time and the total cost of public cloud in-

stances to train ResNet-50 to reach a top-5 validation accuracy

of 93% or greater on ImageNet. An earlier version of AIACC-

Training was top in the DAWNBench league board for both

training time and cost. Specifically, AIACC-Training achieved

the training goal within 158 seconds using 128 V100 GPUs

across 16 computing instances with a training cost of $7.43.

AIACC-Training has also been deployed to support a wide

range of internal machine learning systems within Alibaba.

One such example is a click-to-recommend (CTR) system.

On this industry e-commercial workload, AIACC-Training

improves the previously hand-tuned Horovod-DDL implemen-

tation by 13.4x when using 128 V100 GPUs, allowing the

learning system to process 100+ billion entries in 5 hours to

quickly update the model. For this workload, Horovod’s master

node strategy is a bottleneck during gradient synchronization.

By adopting a decentralized synchronization scheme, AIACC-

Training significantly improves the DDL scalability. These

additional use cases confirm the good generalization ability

of AIACC-Training.

240 324 202

1 8 16 32 64 128 256

0
1E4
2E4
3E4
4E4
5E4
6E4

#
im

a
g
e
s
/s

e
c
o
n
d BytePS

 PyTorchDDP

 Horovod

 AIACC-Training

VGG-16

1 8 16 32 64 128 256

#GPUs

ResNet-50

1 8 16 32 64 128 256

ResNet-101

Fig. 9: Performance on PyTorch based CV models.

1250 77.8

1 8 16 32 64 128 256
0

1E5

2E5

3E5

#
to

k
e

n
s
/s

e
c
o

n
d

#GPUs

 BytePS

 PyTorchDDP

 Horovod

 AIACC-Training

Transformer BERT-Large

#GPUs
1 8 16 32 64 128 256

0

3E3

6E3

9E3

1.2E4

1.5E4

Fig. 10: Performance on PyTorch based NLP models.

D. Further Analysis

Hybrid parallelism. So far, our evaluation has focused on

data parallelism for DDL. Fig. 13 shows the performance for

applying AIACC-Training to ResNet-50 using a hybrid data

and model parallelism. In this experiment, we use the MXNet

implementation of ResNet-50 by replacing the MXNet’s KVS-

tore interface with AIACC-Training. AIACC-Training consis-

tently improves the MXNet DDL implementation, improving

the throughput by 2.8x when using 64 GPUs.

Impact of batch size. Fig. 14 shows the throughput improve-

ment given by AIACC-Training over Horovod as we vary the

training batch size using 16 GPUs (2 computing nodes) on

BERT-large. Here, a batch contains an average of 128 tokens.

Because of the small number of computing nodes used, the

results represent a low-bound performance improvement of

AIACC-Training. AIACC-Training gives better performance

on small batch sizes due to the more frequent gradient com-

munications. We stress that using a large batch size increase

the GPU memory pressure and can slow down the model

convergence [38]. Therefore, it is common to use a modest

batch size for training and fine-tuning, for which AIACC-

Training will manifest better advantages.

Performance on RDMA. Fig. 15 shows the performance

improvement on 8 RDMA-enabled computing nodes (64

GPUs) over PyTorch-DDP. On the large GPT-2 DNN, AIACC-

Training gives a 9.8x speedup over PyTorch-DDP. We also

observe a similar performance trend on other deep learning

frameworks and when using a different number of GPUs,

where AIACC-Training gives around 10% extra improvement

on RDMA on top of the improvement seen on TCP/IP

networks (Section VIII-A). This experiment confirms that

AIACC-Training can effectively utilize the fast RDMA net-

work to deliver scalable performance.

Auto-tuning parameters. As we have discussed in Section

VI, AIACC-Training automatically chooses the gradient com-

munication hyperparameters during runtime. We observe that

the chosen parameters vary across DNN workloads and GPU

instances. In our evaluation, AIACC-Training chooses to use

ring all-reduce instead of tree-based all-reduce, but the number

of concurrent CUDA streams varies between 2 and 24, whereas

AIACC-Training tends to use a larger number of CUDA

streams when a higher number of GPUs is available. This

is expected because computation per GPU decreases with

more GPUs, leaving further room for concurrent gradient

communications. Similarly, the chosen gradient communica-

tion granularity also changes. The chosen communication

granularity is larger for the Transformer-based model over

VGG and ResNet because of the larger number of gradients

generated by Transformer-based DNNs. By employing auto-

tuning techniques, AIACC-Training automatically chooses the

right parameter setting without user intervention.

IX. DISCUSSIONS

Naturally, there is room for improvement and further work.

We discuss a few points here.

Collective communications. AIACC-Training builds upon

low-level collective communication primitives (all-scatter, all-

gather, etc.) for gradient synchronization and communications.

Techniques for improving these communication primitives [1],

[6] are thus orthogonal to AIACC-Training.

Tensor graph optimizaiton. An ongoing work of AIACC-

Training is to exploit compiler optimization to transform the

tensor operators to co-optimize computation with commu-

nications. By splitting or merging tensor operations, it is

possible to better overlap GPU computation with network IO

to improve the training throughput further [39].

Utilizing multi-core CPUs. An interesting future direction is

to better utilize the multi-core CPU for training. For example,

some operations of gradient reduction and parameter updates

can be performed on the CPU. Doing so can reduce the GPU

memory footprint and utilize the multi-core CPU computation

capability. However, care must be taken to make sure the CPU-

GPU data transfer does not become a bottleneck.

Exploiting DNN characteristics. New DNN workloads ex-

hibit new characteristics. For example, inputs to the graph

neural network are sparse matrices [40]. It would be interesting

to understand how to exploit the workload characteristics to

improve the training speed. For example, can we have a new

sparse matrix storage format designed for DDL?

X. RELATED WORK

Efforts have been made to accelerate DDL communication.

These include works on overlapping the computation and

communication through tensor partitioning and computation

622.63 996 646.2

1 8 16 32 64 128 256
0

1E4
2E4
3E4
4E4
5E4
6E4

#
im

a
g
e
s
/s

e
c
. BytePS

 Horovod

 AIACC-Training

1 8 16 32 64 128 256
#GPUs

VGG-16 ResNet-50 ResNet-101

1 8 16 32 64 128 256

(a) Tensorflow

750 1000 700

1 8 16 32 64 128 256
0

1E4

2E4

3E4

4E4

#
im

a
g
e
s
/s

e
c
. BytePS

 Horovod

 AIACC-Training

VGG-16 ResNet-50 ResNet-101

1 8 16 32 64 128 256
#GPUs

1 8 16 32 64 128 256

(b) MXNet

Fig. 11: Performance on Tensorflow (a) and MXNet (b) for CV models.

219.168k 13.698k

1 8 16 32 64 128 256
0

2E7

4E7

6E7

8E7

#
to

k
e

n
s
/s

e
c
o

n
d

#GPUs

 BytePS

 Horovod

 AIACC-Training

Transformer BERT-Large

1 8 16 32 64 128 256
0

1E6

2E6

3E6

4E6

5E6

#GPUs

(a) Tensorflow

5152 322

1 8 16 32 64 128 256
0

1E5

2E5

3E5

4E5

#
to

k
e

n
s
/s

e
c
o

n
d

#GPUs

 BytePS

 Horovod

 AIACC-Training

Transformer

1 8 16 32 64 128 256
0

6E3

1.2E4

1.8E4

2.4E4

#GPUs

BERT-Large

(b) MXNet

Fig. 12: Performance on Tensorflow (a) and MXNet (b) for NLP models.

16 32 64
1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
p

e
e

d
u

p
 o

v
e

r
M

x
N

e
t
D

D
L

#GPUS

Fig. 13: Throughput improvement over

MXNet (DDL) for ResNet-50 with data

and model parallelisms.

1 16 32 64

1.00

1.25

1.50

S
p
e
e
d
u
p

Batch size

Fig. 14: Speedup over Horovod on

BERT-Large with different batch sizes on

16 GPUs (two computing nodes).

VGG-16 BERT-Large GPT2-XL
0

2

4

6

8

10

S
p

e
e

d
u

p
 w

.r
.t

P
y
to

rc
h

-D
D

P Horovod

 AIACC-Training

Fig. 15: Throughput improvement over

Pytorch-DDP on 64 GPUs with RDMA

connections.

scheduling [39], [41], [42]. These approaches are comple-

mentary to AIACC-Training. Other techniques apply gradient

compression to reduce the amount of data to be communicated

among training workers [7], [8]. AIACC-Training adopts a

similar idea by using half-precision representation to accel-

erate gradient transmission, but this is not the focus of this

paper.

Our work is closely related to works on optimizing com-

munication frameworks for distributed training [43], [44].

Horovod [9] is a unified communication framework for

DDL, supporting TensorFlow, PyTorch, and MXNet. AIACC-

Training is compatible with the Horovod API, making it easy

to port existing Horvod code to AIACC-Training. However,

Horovod fails to capitalize on the abundant network bandwidth

and GPU parallelism in a distributed cloud environment.

AIACC-Training advances Horovod by developing a fully

decentralized gradient synchronization and communication

scheme by leveraging multiple CUDA streams across mul-

tiple gradient communications, leading to significantly higher

throughput and better scalability. Our work is also related to

prior studies on optimizing all-reduce operations by exploiting

the network topology [5]. AIACC-Training advances these

prior methods by leveraging multiple CUDA streams and auto-

tuning to accelerate gradient communications.

BytePS leverages additional CPU servers to improve

parameter-server-based DDL [2]. Blink optimizes communi-

cations within a single node by carefully utilizing NVLinks

and PCIe [6]. Unlike AIACC-Training, BytePS and Blink do

not leverage multiple communication streams for all-reduce.

Nonetheless, their techniques can be leveraged by AIACC-

Training to better utilize the CPU computing resources.

DeepSpeed [45] supports the training of large-scale DNNs

using data and model parallelism. Unlike AIACC-Training,

DeepSpeed requires heavy user involvement to change the

model training pipeline and implement a standard ring-based

all-reduced operation. In contrast, AIACC-Training requires

no change to the user code and offers a highly optimized all-

reduced algorithm. We are working on extending our code

translator to use DeepSpeed API for DDL automatically.

There is also a growing interest in designing specialized

hardware to accelerate DNN training. Examples of such neural

network accelerators like TPU [16], Habana [46] and Alibaba

Hanguang NPU [17], and programmable network switches

[47], [48]. While AIACC-Training primarily targets NVIDIA

GPUs for GPU clouds, the techniques can be applied to

specialized accelerators. For example, AIACC-Training has

been ported to the Alibaba Hanguang NPU.

XI. CONCLUSION

We have presented AIACC-Training, a unified communi-

cation library for distributed deep learning training. AIACC-

Training provides a single, unified communication interface for

mainstreamed deep learning programming frameworks. It aims

to improve network bandwidth utilization by exploiting GPU

hardware parallelism. It achieves this by decoupling gradient

computation from communications and carefully partitioning

the gradients to be sent through multi-streamed, concurrent

communications. As a departure from prior work, AIACC-

Training implements a fully decentralized approach for gra-

dient communication. It employs auto-tuning to dynamically

determine the suitable communication parameters to adapt to

changes in runtime deployment.

Our experiments on public and production DNN workloads

show that AIACC-Training achieves better scaling efficiency

than existing distributed training frameworks. AIACC-Training

has been deployed and extensively used by Alibaba’s internal

and external users. In the Alibaba public GPU cloud, there

are currently more than 3000 GPUs executing a diverse set

of AIACC-Training optimized models at any time, and we

expect this number to continuously grow as more advanced

optimizations are introduced to AIACC-Training.

ACKNOWLEDGMENT

This work was supported in part by an Alibaba Innovative

Research Programme between the University of Leeds and

Alibaba. For any correspondence, please get in touch with

Zheng Wang (Email: z.wang5@leeds.ac.uk).

REFERENCES

[1] J. Fei et al., “Efficient sparse collective communication and its applica-
tion to accelerate distributed deep learning,” in SIGCOMM, 2021.

[2] Y. Jiang et al., “A unified architecture for accelerating distributed
{DNN} training in heterogeneous gpu/cpu clusters,” in OSDI, 2020.

[3] Y. Huang et al., “Gpipe: Efficient training of giant neural networks
using pipeline parallelism,” Advances in neural information processing

systems, 2019.
[4] Z. Zhang et al., “Is network the bottleneck of distributed training?” in

NetAI, 2020.
[5] M. Cho et al., “Blueconnect: Novel hierarchical all-reduce on multi-tired

network for deep learning,” in MLSys, 2019.
[6] G. Wang et al., “Blink: Fast and generic collectives for distributed ml,”

Proceedings of Machine Learning and Systems, 2020.
[7] Y. Lin et al., “Deep gradient compression: Reducing the communication

bandwidth for distributed training,” in ICLR, 2018.
[8] C.-Y. Chen et al., “Adacomp: Adaptive residual gradient compression

for data-parallel distributed training,” in AAAI, 2018.
[9] A. Sergeev et al., “Horovod: fast and easy distributed deep learning in

tensorflow,” arXiv, 2018.
[10] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-

ing,” in OSDI, 2016.
[11] A. Paszke et al., “Pytorch: An imperative style, high-performance deep

learning library,” NIPS, 2019.
[12] T. Chen et al., “Mxnet: A flexible and efficient machine learning library

for heterogeneous distributed systems,” arXiv, 2015.
[13] A. Fialho et al., “Analyzing bandit-based adaptive operator selection

mechanisms,” Annals of Mathematics and Artificial Intelligence, 2010.

[14] M. Li et al., “Parameter server for distributed machine learning,” in Big

Learning NIPS Workshop, 2013.
[15] A. Gibiansky, 2017. [Online]. Available: https://andrew.gibiansky.com/

blog/machine-learning/baidu-allreduce/
[16] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor

processing unit,” in ISCA, 2017.
[17] Y. Jiao et al., “Hanguang 800 npu–the ultimate ai inference solution for

data centers,” in HCS, 2020.
[18] “Nvlink and nvswitch the building blocks of advanced multi-gpu

communication.” [Online]. Available: https://www.nvidia.com/en-us/
data-center/nvlink/

[19] A. Li et al., “Evaluating modern gpu interconnect: Pcie, nvlink, nv-sli,
nvswitch and gpudirect,” IEEE TPDS, 2019.

[20] T. Shanley, InfiniBand network architecture. Addison-Wesley Profes-
sional, 2003.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv, 2014.

[22] H. Robbins and S. Monro, “A stochastic approximation method,” The

annals of mathematical statistics.
[23] Y. Lin et al., “Deep gradient compression: Reducing the communication

bandwidth for distributed training,” arXiv, 2017.
[24] C. Coleman et al., “Dawnbench: An end-to-end deep learning bench-

mark and competition,” Training, 2017.
[25] M. Jaderberg et al., “Population based training of neural networks,”

arXiv, 2017.
[26] H. Ha et al., “Bayesian optimization with unknown search space,” NIPS,

2019.
[27] L. Li et al., “Hyperband: A novel bandit-based approach to hyperparam-

eter optimization,” The Journal of Machine Learning Research, 2017.
[28] J. Ansel et al., “Opentuner: An extensible framework for program

autotuning,” in PACT, 2014.
[29] Z. Wang and M. O’Boyle, “Machine learning in compiler optimization,”

Proceedings of the IEEE, 2018.
[30] H. Wang et al., “Automating reinforcement learning architecture design

for code optimization,” in CC, 2022.
[31] X. Gao et al., “A survey of graph edit distance,” Pattern Analysis and

applications, 2010.
[32] K. Simonyan et al., “Very deep convolutional networks for large-scale

image recognition,” arXiv, 2014.
[33] K. He et al., “Deep residual learning for image recognition,” in CVPR,

2016.
[34] A. Vaswani et al., “Attention is all you need,” in NIPS, 2017.
[35] J. Devlin et al., “Bert: Pre-training of deep bidirectional transformers

for language understanding,” arXiv, 2018.
[36] S. Gan et al., “Bagua: Scaling up distributed learning with system

relaxations,” arXiv, 2021.
[37] “Insightface: an open source 2d&3d deep face analysis library.”

[Online]. Available: https://insightface.ai/
[38] “Effect of batch size on training dynam-

ics.” [Online]. Available: https://medium.com/mini-distill/
effect-of-batch-size-on-training-dynamics-21c14f7a716e

[39] A. Jayarajan et al., “Priority-based parameter propagation for distributed
dnn training,” arXiv, 2019.

[40] S. Qiu et al., “Optimizing sparse matrix multiplications for graph neural
networks,” 2021.

[41] S. H. Hashemi et al., “Tictac: Accelerating distributed deep learning
with communication scheduling,” SysML, 2019.

[42] Y. Peng et al., “A generic communication scheduler for distributed dnn
training acceleration,” in SOSP, 2019.

[43] Y. Bao et al., “Preemptive all-reduce scheduling for expediting dis-
tributed dnn training,” in INFOCOM, 2020.

[44] S. Shi et al., “Mg-wfbp: Merging gradients wisely for efficient commu-
nication in distributed deep learning,” TPDS, 2021.

[45] J. Rasley et al., “Deepspeed: System optimizations enable training deep
learning models with over 100 billion parameters,” in KDD, 2020.

[46] “Habana homepage.” [Online]. Available: https://habana.ai/
[47] M. Liu et al., “E3: Energy-efficient microservices on smartnic-

accelerated servers,” in ATC, 2019.
[48] B. Klenk et al., “An in-network architecture for accelerating shared-

memory multiprocessor collectives,” in ISCA, 2020.

