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Abstract—In this paper, we use the term “Analysis-Runtime
Co-design” to describe the technique of modifying the runtime
protocol of a scheduling scheme to closely match the analysis
derived for it. Carefully designed modifications to the runtime
protocol make the schedulability analysis for the scheme less
pessimistic, while the schedulability guarantee afforded to any
given application remains intact. Such modifications to the
runtime protocol can result in significant benefits with respect
to other important metrics. An enhanced runtime protocol is
designed for the Adaptive Mixed-Criticality (AMC) scheduling
scheme. This protocol retains the same analysis, while ensuring
that in the event of high-criticality behavior, the system degrades
less often and remains degraded for a shorter time, resulting in
far fewer low-criticality jobs that either miss their deadlines or
are not executed.

Index Terms—Real-Time, Mixed Criticality, Fixed Priority,
Schedulability Analysis

I. INTRODUCTION

The role of schedulability analysis is to provide a priori

guarantees that a real-time application will meet its timing

constraints at runtime. Schedulability analysis is traditionally

derived after a runtime protocol has been chosen. So, for

example, Response-Time Analysis [1], [2] was developed for

fixed priority scheduling, and Processor Demand Analysis

[3] was developed for EDF scheduling. Ideally the analysis

derived is exact, in other words both sufficient (pass the test

and satisfy all deadlines) and necessary (fail the test and

miss some deadline). Unfortunately, as many runtime protocols

give rise to computationally complex scheduling problems,

tractable exact analysis is often unobtainable. Inexact but

sufficient analysis must be used instead. Such forms of analysis

are evaluated in terms of how pessimistic they are, i.e. how

likely they are to deem an application unschedulable that

will in fact meet all of its deadlines under the worst-case

conditions.

With this traditional approach, the runtime protocol is typi-

cally a given. Often it has been defined, or even standardized,

with little regard given to its timing behavior or its analysis.

It is not surprising then that exact schedulability analysis is

often intractable. In this paper we investigate how the runtime

protocol itself can be modified so that a form of analysis

that is inexact when applied to the original protocol becomes

more precise when applied to the modified protocol. Even in

situations where exact analysis is still not achievable, if the

level of pessimism in the analysis can be reduced then there

can still be an overall benefit.

When the offline analysis does not change but the runtime

protocol is modified in compliance with it, then obviously

the schedulability guarantees afforded to applications by the

analysis are unaffected; however, the runtime behavior and

characteristics can be significantly enhanced. For example,

resilience (fault tolerance) can be improved and runtime over-

heads may be reduced. If the analysis cannot take advantage

of a particular element of the original runtime protocol then

that element can be removed with no impact on the system’s

guaranteed worst-case performance. We refer to this approach,

of utilising feedback from inexact schedulability analysis in

the design of the runtime protocol, as Analysis-Runtime Co-

design, and employ it in this paper to improve upon the

Adaptive Mixed-Criticality (AMC) scheduling scheme [4].

The AMC scheduling scheme and its analysis are applicable

to mixed criticality systems that are implemented using fixed

priority scheduling on single-core processors. On detecting

high-criticality behavior, the runtime protocol allows the sys-

tem to switch from a mode in which all tasks release jobs,

into a degraded mode in which only the high-criticality tasks

are permitted to release jobs. Analysis of the AMC scheme

makes pessimistic assumptions about the state of the system

when these mode changes occur (see Section IV-B for details).

By modifying the runtime protocol to closely reflect the

analysis, we demonstrate that the system degrades less often

and remains in the degraded mode for a shorter time, resulting

in far fewer low-criticality jobs that either miss their deadlines

or are not executed.

Research into real-time scheduling often seeks to narrow

the gap between the guarantees provided by the schedulability

analysis employed and the precise behavior of the runtime

protocol (i.e. exact schedulability) by improving the analysis,

often at the expense of making it intractable. By contrast, the

analysis-runtime co-design approach proposed in this paper

retains simple tractable analysis and the real-time guarantees

that it provides, while modifying the runtime protocol in such

a way that improves other important performance metrics.

The tradeoff is that the gap between the guarantees provided

by the analysis and the precise behavior of the modified



runtime protocol is narrowed via a reduction in schedulability

according to a theoretical exact test. However, with no viable

means of determining exact schedulability, this disadvantage

may be hypothetical, while the advantages constitute practical

improvements in performance.

The motivation for the specific research presented in this

paper comes from mixed criticality systems in avionics. The

avionics industry has a strong preference for simple scheduling

policies and analyses, with those based on fixed priorities most

commonly used [5], [6]. For mixed criticality systems, AMC

schemes are being adopted [7], [8], underpinned by the simple

yet effective AMC-rtb schedulability analysis [4], which is

considered good enough for industrial use. In this research,

we employ analysis-runtime co-design to modify the runtime

protocol for AMC in such a way that it retains compati-

bility with the AMC-rtb schedulability test, while enabling

substantial improvements in metrics related to low-criticality

task performance. Using the modified runtime protocol reduces

the number of times that degraded mode is entered, the total

time in degraded mode, and most importantly the number of

low-criticality jobs not executed or missing their deadlines to

16.8%, 1.7%, and 2.5% respectively of their values with the

original AMC runtime protocol1. Ultimately, this is a compro-

mise, since exact schedulability is reduced with the modified

runtime protocol compared to the original, see Appendix A

for details. From an industry perspective this compromise

is worthwhile, since the advantages in improved runtime

performance outweigh the marginal gains in schedulability that

would, in any case, necessitate deployment of more complex

schedulability tests.

The remainder of the paper is organized as follows: Section

II discusses related work. Section III introduces the system

model, terminology, and notation. Section IV presents the

modified runtime protocol for the AMC scheme, leveraging

analysis-runtime co-design to improve its effectiveness. A

scenario-based evaluation of the performance of the modified

protocol is given in Section V. Finally, Section VI concludes

with a summary and directions for future research.

II. RELATED WORK

In this section, we outline prior work on mixed criticality

fixed priority scheduling schemes for single-core processors.

Since Vestal’s seminal work [9] in 2007, mixed criticality

systems have become a hot topic of real-time systems research,

see [10], [11] for a comprehensive survey. Many of these

papers focus on scheduling schemes that are based on fixed

priorities, most notably Static Mixed Criticality (SMC) [12]

and Adaptive Mixed Criticality (AMC) [4]. AMC is con-

sidered the most effective fixed priority scheme [13], and

has been extended to account for many additional aspects

including: preemption thresholds [14], [15], multiple criticality

1Results based on a comparison of the mean values obtained in experiments
on 500 task sets with semi-harmonic periods, representative of those found
in automotive and avionics systems, comparisons made between the original
runtime protocol (AMC+) and the modified runtime protocol (AMC-RH), see
Section V-E, Figures 1–3 for further details.

levels [16], criticality-specific periods [17], changes in pri-

ority [18], communications [19], deferred preemption [20],

weakly-hard timing constraints [21], probabilistic task mod-

els [22], context switch costs [23], and robust [24] and semi-

clairvoyant [25] timing behavior. An exact analysis has also

been developed for periodic task sets with offsets [26], [27].

Various forms of degraded service have been proposed for

low-criticality tasks when system behavior departs from what

is normally expected. These include: abandoning all jobs;

letting jobs that have already started complete execution, but

abandoning newly released jobs [12]; extending periods and/or

deadlines [28], [29]; reducing execution times by switching to

simpler versions [30]; dropping jobs from specific tasks [31]–

[33]; and applying weakly-hard constraints, allowing some

jobs to be skipped [21]. Alternative approaches seek to delay

the time at which the system starts dropping new releases of

low-criticality tasks, and also to reduce the time that the system

spends doing so. Delaying the onset of degraded behavior

can be achieved by using off-line sensitivity analysis [34] to

increase all low-criticality execution time budgets while still

retaining a schedulable system [30], [35]–[37].

Online accounting for budget under and overruns can also

be used to delay switching to degraded mode [38]. Further,

the time spent in the degraded mode can be reduced via

online budget accounting resulting in a faster bailout [39], [40]

and recovery. Finally, by using a separate background priority

queue, low-criticality jobs that would have been dropped in

degraded mode can be run in what would otherwise have been

idle time, providing a last chance to meet their deadlines [41].

This mechanism is orthogonal to the fixed priority scheduling

scheme used and can be applied to both AMC [4] and the

Bailout Protocol [39], [40].

Other work considers task-level [31] rather than system-

level mode changes, which selectively restricting releases of

some low-criticality tasks rather than all of them.

There are disparate views within the real-time systems

community as to the timing requirements for mixed criticality

systems, while most works assume that low-criticality tasks

do not have to meet their deadlines and new releases can

potentially be dropped as part of graceful degradation, others

do not [42], [43]. In this paper, we assume that abandoning

new releases of low-criticality tasks is acceptable when system

behavior diverges from what is normally expected.

III. SYSTEM MODEL

In this paper, we assume a mixed criticality system execut-

ing on a single-core processor under various schemes based

on fixed priority preemptive scheduling.

A mixed criticality system is assumed to have two crit-

icality levels: HI and LO. Each task τi is characterised

by its criticality level Li, which is either HI or LO. Each

LO-criticality task τj has a single estimate Cj(LO) of its

Worst-Case Execution Time (WCET). By contrast, each HI-

criticality task τk has two estimates Ck(LO) and Ck(HI)
of its WCET, where Ck(HI) ≥ Ck(LO). Each task τi has a

minimum inter-arrival time or period Ti between releases of its



jobs, and a constrained relative deadline Di, where Di ≤ Ti.

Each task τi is assumed to have a unique priority, with hp(i)
(resp. hep(i)) used to denote the set of tasks with higher (resp.

higher or equal) priority than task τi.
The Real-Time Operating System (RTOS) is required to

provide execution time monitoring and budget enforcement.

The RTOS is assumed to abort any job of a task τi that does

not complete within its execution time budget. This budget

is set to Ci(LO) for a LO-criticality task and Ci(HI) for a

HI-criticality task.

HI- and LO-criticality tasks have different requirements

in terms of the level of assurance required for their timing

guarantees. In any interval of time when the processor is busy

executing tasks:

R1 If all jobs of the tasks comply with their LO-criticality

WCET estimates Ci(LO), then all jobs must be guaran-

teed to meet their deadlines.

R2 If a job of a HI-criticality task τi executes for its

LO-criticality WCET estimate Ci(LO) without signaling

completion, then only HI-criticality tasks are required to

meet their deadlines.

These requirements give rise to the concept of a normal mode

during which all tasks must meet their deadlines, and an

abnormal mode during which only HI-criticality tasks need

meet their deadlines. Abnormal mode extends from the time

at which a job of a HI-criticality task τi has executed for

Ci(LO) without completing until the next idle instant. All

other time intervals equate to normal mode. Schedulability

analysis of mixed criticality schemes provides the necessary

guarantees that these requirements are met.

In this paper, we use the term degraded mode to describe

an interval of time during which a mixed criticality scheduling

scheme does not release new jobs of LO-criticality tasks. To

comply with the above timing requirements, degraded mode

must be contained within abnormal mode (defined above);

however, there need not be a one to one correspondence

between the two. Entry to and exit from degraded mode takes

place under the control of the RTOS and represents a well-

defined runtime behavior of the system. With the original

runtime protocol for AMC [4] degraded mode is entered when

a HI-criticality task executes for its LO-criticality execution

time estimate Ci(LO) without signalling completion. By con-

trast, with SMC [12] the concept of abnormal mode remains,

but there is no degraded mode as such, since releases of

LO-criticality tasks are never abandoned. Finally, with the

modified runtime protocol for AMC proposed in this paper,

degraded mode is entered when a job of a HI-criticality task

τi has not signalled completion by a time equal to its LO-

criticality response time Ri(LO), as measured from the start

of the priority level-i busy period during which it executes.

The concept of a priority level-i busy period [44] is defined

as follows:

(i) It starts at a time s[i] when a job of a task of priority

i or higher (i.e. in hep(i)) is released and there are no

jobs of tasks in hep(i) with execution pending that were

released before time s[i].

(ii) It is a contiguous interval of time during which jobs of

tasks in hep(i) execute.

(iii) It ends at the earliest time t[i] after s[i] when there are

no jobs of tasks in hep(i) that have execution pending

that were released strictly before t[i].

In mathematical terms, busy periods can be viewed as right

half open intervals [s[i], t[i]). Thus the end of one priority

level-i busy period may correspond to the start of the next

priority level-i busy period; the two are however distinct and

are not amalgamated.

IV. ADAPTIVE MIXED CRITICALITY SCHEMES

In this section, we recap on the Adaptive Mixed Criticality

(AMC) scheme [4] and show how the runtime protocol can

be modified to improve the service provided to LO-criticality

tasks by delaying the transition to degraded mode and expe-

diting the return from it.

A. Schedulability Analysis of AMC

The Adaptive Mixed Criticality (AMC) scheme [4] is based

on fixed priority preemptive scheduling. Under the original

runtime protocol for AMC, the system enters degraded mode

when a HI-criticality task τi executes for its LO-criticality

execution time budget Ci(LO) without signaling completion,

and returns from degraded mode when an idle instant occurs2.

During degraded mode, new releases of LO-criticality tasks

are abandoned.

In normal mode, when all tasks comply with their LO-

criticality execution time budgets, then all tasks must be

schedulable. Hence schedulability can be determined using

standard response time analysis for fixed priority preemptive

scheduling [1], [2], evaluated via fixed point iteration:

Ri(LO) = Ci(LO) +
∑

j∈hp(i)

⌈

Ri(LO)

Tj

⌉

Cj(LO) (1)

In abnormal mode, only HI-criticality tasks are required to

meet their deadlines. The worst-case response time Ri(HI)
for a HI-criticality task τi, accounting for the transition to

abnormal mode, is given as follows [4]:

Ri(HI) = Ci(HI) +
∑

j∈hpH(i)

⌈

Ri(HI)

Tj

⌉

Cj(HI)

+
∑

k∈hpL(i)

⌈

Ri(LO)

Tk

⌉

Ck(LO) (2)

where hpH(i) is the set of HI-criticality tasks with priorities

higher than that of task τi, and similarly hpL(i) is the set of

LO-criticality tasks with priorities higher than that of task τi.

The analysis embodied in (1) and (2) is referred to as the

AMC-rtb test [4], where rtb stands for response time bound.

2An idle instant occurs at time t when there are no jobs released prior to
that time that have execution remaining.



B. Applying Analysis-Runtime Co-design

We now apply the technique of analysis-runtime co-design

to modify the runtime protocol for the AMC scheme to match

the worst-case behavior that is accounted for by the above

analysis. The original runtime protocol for the AMC scheme

enters degraded mode when a job of a HI-criticality task τi
has executed for Ci(LO) without completing. By contrast,

the analysis (given by (2)) assumes that jobs of LO-criticality

tasks continue to be released up to a time Ri(LO) from the

start of the priority level-i busy period in which the job of task

τi was released. We therefore modify the runtime protocol to

reflect the behavior assumed by the analysis. The modified

runtime protocol for AMC is specified as follows:

S1: The system starts in normal mode. In normal mode both

LO- and HI-criticality tasks release jobs for execution.

S2: The system enters degraded mode when an active,

i.e. released but unfinished, job of some HI-criticality task

τi reaches a time Ri(LO) after the start of the priority level-i
busy period in which it was released. Jobs of LO-criticality

tasks released in degraded mode are dropped, i.e. not executed.

S3: The system exits degraded mode, i.e. returns to normal

mode, when a job of some HI-criticality task τj completes

and there is no active job of another HI-criticality task τk
that has reached a time Rk(LO) after the start of the priority

level-k busy period in which it was released.

S4: At all times, fixed priority preemptive scheduling is used

to determine which of the active jobs to run.

We refer to the variant of the AMC scheme using the

modified runtime protocol as AMC-RH, since it relies on

monitoring the response times of HI-criticality tasks relative

to the start of the busy period in which they were released.

We now prove that the AMC-rtb analysis given by (1) and

(2) is sufficient to ensure schedulability under AMC-RH for

both LO- and HI-criticality tasks according to requirements

R1 and R2, given in Section III.

First, we note two properties of the analysis that apply to

schedulable systems of constrained-deadline mixed criticality

tasks, i.e. when Ri(LO) ≤ Ri(HI) ≤ Di ≤ Ti, and follow

directly from standard response time analysis for fixed priority

preemptive scheduling [1], [2].

Property P1: Ri(LO), given by (1), corresponds to the

longest priority level-i busy period within which a job of a HI-

criticality task τi can execute, assuming that it and all higher

priority tasks execute for no more than their LO-criticality

execution times.

Property P2: Ri(HI), given by (2), corresponds to the

longest priority level-i busy period within which a job of a

HI-criticality task τi can execute, assuming that: (i) it and all

higher priority HI-criticality tasks execute for no more than

their HI-criticality execution times, and (ii) all higher priority

LO-criticality tasks release jobs only during the first part of

the priority level-i busy period, up to Ri(LO) from when that

busy period started.

Theorem 1. The AMC-rtb analysis given by (1) and (2) is

a sufficient schedulability test for AMC-RH, ensuring that

requirements R1 and R2 are met.

Proof. We separate the proof into two cases corresponding to

requirements R1 and R2.

Case 1: Considers intervals where the processor is busy ex-

ecuting tasks and no job of any task exceeds its LO-criticality

WCET estimate. In this case, requirement R1 applies and jobs

of both LO- and HI-criticality tasks must be guaranteed to

meet their deadlines. Since no job exceeds its LO-criticality

WCET estimate, then (1) bounds the LO-criticality response

time for each task under AMC-RH. Further, it follows from

Property P1 and the runtime protocol employed by AMC-RH

that degraded mode cannot be entered in this case, and so no

LO-criticality jobs are dropped.

Case 2: Considers intervals where the processor is busy

executing tasks and one or more jobs of one or more HI-

criticality tasks execute for their LO-criticality WCET esti-

mates without signaling completion. In this case, requirement

R2 applies and only jobs of HI-criticality tasks need be

guaranteed to meet their deadlines. In the context of this

case, consider an arbitrary priority level-i busy period in

which a single3 job J of a HI-criticality task τi executes.

Note, the end of this priority level-i busy period corresponds

to the completion of job J . Since fixed priority preemptive

scheduling is employed, there can be no interference on job J
due to jobs of lower priority tasks. Further, by definition of a

priority level-i busy period, there can be no interference from

any jobs of higher priority tasks that were released prior to the

start of the busy period. There are two sub-cases to consider.

Case 2a: The length of the priority level-i busy period is

no greater than Ri(LO), in which case Ri(HI) given by

(2) trivially upper bounds the response time of job J , since

Ri(HI) ≥ Ri(LO).
Case 2b: The length of the priority level-i busy period is

greater than Ri(LO). Given the runtime protocol employed by

AMC-RH, the system must necessarily be in degraded mode

from time Ri(LO) after the start of the busy period until job

J completes. From Property P2, it follows that Ri(HI) given

by (2) upper bounds the response time of job J

Note that in Case 2b above, there could be other intervals

of degraded mode prior to Ri(LO) as a consequence of the

behavior of the modified runtime protocol with respect to

jobs of other HI-criticality tasks; however, these additional

degraded mode intervals could only serve to decrease the

interference on job J by preventing the release of jobs of

higher priority LO-criticality tasks.

The AMC-rtb analysis given by (1) and (2) is less precise

for the original runtime protocol for AMC. This imprecision

occurs because releases of jobs with HI-criticality behavior

are not possible prior to a time Ri(LO), as measured from the

start of the busy period, without also potentially substantially

restricting the number of LO-criticality jobs that can be

released and therefore contribute interference. The analysis

3Since deadlines are constrained, then for a schedulable system there can
be at most one job of task τi in each priority level-i busy period.



is more precise for the modified runtime protocol of AMC-

RH, since releases of LO-criticality jobs are still permitted up

to Ri(LO) even when every job of a HI-criticality task in

the priority level-i busy period executes for its HI-criticality

execution time. Nevertheless, the analysis is still not exact for

AMC-RH, as shown by an example in Appendix A that also

serves to illustrate the differences in precision.

The original runtime protocol for AMC [4] assumes that de-

graded mode is entered when a HI-criticality task τi executes

for Ci(LO) without signalling completion, and is exited once

an idle instant occurs. However, considering the schedulability

analysis embodied in (2), it is easy to see that these criteria

are pessimistic. By comparison, the modified runtime protocol

for AMC-RH delays entry into degraded mode for as long as

permitted by the offline analysis and similarly exits degraded

mode as early as permitted.

Procrastinating until Ri(LO) from the start of the busy

period before switching to degraded mode means that the

transition occurs as late as it possibly could do when Ci(LO)
is used as a trigger. Procrastinating enables overruns by some

HI-criticality jobs to be mitigated by underruns of other jobs

meaning that a mode change may not be necessary at all. Fur-

ther, for periodic tasks, when the pattern of job releases does

not follow the worst-case (i.e. the initial synchronous arrival

sequence) then any dynamic slack available is automatically

captured by procrastinating before making the mode change.

Similarly, slack created by jobs of sporadic tasks arriving at

less that their maximum rate is also automatically captured.

Reducing the number of times that degraded mode is entered

and the time spent in that mode has significant advantages in

terms of reducing the number of LO-criticality jobs that miss

their deadlines or do not execute because they are abandoned.

Conversely, monitoring response times instead of execution

times to initiate the transition to degraded mode has a disad-

vantage in terms of more precise schedulability tests. There

are some systems that would be schedulable under AMC

according to exact analysis of the original runtime protocol

that are not schedulable according to exact analysis of the

modified protocol, see Appendix A for an example.

A further variant of the AMC scheme, explored in the

evaluation in Section V, is referred to as AMC-RA. Similar

to AMC-RH, AMC-RA is defined by specifications S1, S2,

and S4; however, specification S3 is replaced by S5 below.

S5: Under AMC-RA, the system exits degraded mode when

a job of some task τj completes and there are no other active

jobs of any task, i.e. there is an idle instant.

Theorem 2. The AMC-rtb analysis given by (1) and (2) is

a sufficient schedulability test for AMC-RA, ensuring that

requirements R1 and R2 are met.

Proof. Proof is identical to that for AMC-RH given in Theo-

rem 1, with the word “AMC-RH” replaced by “AMC-RA”

Appendix B provides a brief summary of how the RTOS can

manage entry to and exit from degraded mode, implementing

the modified runtime protocol of AMC-RH and AMC-RA.

C. Increasing Execution Time Budgets

The performance of AMC-RH and AMC-RA can be further

improved by using sensitivity analysis [34] to make use of off-

line slack [45] to increase the LO-criticality execution time

budgets of HI-criticality tasks as far as possible while still

retaining a schedulable system [30], [35].

The specific method used here is as proposed by Bate et

al. in [39], [40]. First, the execution time budgets of all HI-

criticality tasks are increased as much as possible while ensur-

ing that the system remains schedulable according to the AMC

analysis (i.e. (1) and (2)). This is achieved by forming a binary

search for the largest value of α such that the system remains

schedulable when the Ci(LO) value for each HI-criticality

task τi is replaced by Ci(BU) = min(Ci(HI), αCi(LO)).
Note, we use Ci(BU) rather than Ci(LO) to emphasize

that these are no longer the LO-criticality execution time

estimates associated with those HI-criticality tasks, but rather

execution time budgets that will be used to determine larger

Ri(BU) values that replace the Ri(LO) values, and are used

to trigger the transition to degraded mode at runtime. The

initial lower value of α used for the binary search is 1, since

the system is assumed to be schedulable under AMC to begin

with, and the initial upper value is given by the largest ratio

Ci(HI)/Ci(LO) for any HI-criticality task τi. At each step

of the binary search, Audsley’s Optimal Priority Assignment

algorithm [46] is used along with the single task schedulability

test (i.e. (1) and (2)) to determine if the system is schedulable

for that value of α. By reapplying Audsley’s algorithm on

each step, this ensures that the final assignment also has the

most robust priority ordering [47]. Second, a similar process

is used to further increase, if possible, the Ci(BU) value for

each individual task in turn, since after the first step, some but

not all of the Ci(BU) values may still be increased without

making the system unschedulable. (This is done for all HI-

criticality tasks in order of increasing deadlines).

We refer to the more sophisticated schemes that use in-

creased execution time budgets as AMC-RHS and AMC-RAS

respectively. The behavior of these schemes is effectively the

same as AMC-RH and AMC-RA; however, all occurrences

of Ci(LO) for HI-criticality tasks are replaced by the larger

Ci(BU) values, leading to larger Ri(BU) values that replace

the Ri(LO) values and are monitored in order to trigger transi-

tions to degraded mode. For systems that are schedulable under

classical fixed priority preemptive scheduling (i.e. assuming

that all jobs may take an execution time that corresponds to

their own criticality level i.e. Ci(HI) for HI-criticality tasks,

and Ci(LO) for LO-criticality tasks), AMC-RHS and AMC-

RAS have the useful property that no LO-criticality jobs miss

their deadlines. This is the case, because for such systems

the first step described above results in Ci(BU) = Ci(HI)
for all HI-criticality tasks. In practice, some of the statically

available slack in the system could also be used to provide

LO-criticality tasks with additional headroom for longer than

expected execution, i.e. execution budgets larger than Ci(LO).
This is not explored further in this paper.



D. Lazy execution of Jobs

The performance of AMC-RHS and AMC-RAS can be

further improved by running LO-criticality jobs that would

otherwise be abandoned in degraded mode at background

priorities to give them a last chance to complete by their dead-

lines. This approach was proposed by Iacovelli and Kirner [41]

as a way of augmenting the Bailout Protocol [39], [40], but

can be applied to any scheme based on fixed priorities that

abandons jobs in degraded mode.

The basic idea is one of lazy execution. A separate back-

ground run-queue is used for all jobs of LO-criticality tasks

that would otherwise be abandoned in degraded mode. Instead

of being abandoned, these jobs are added to the background

run-queue and executed according to fixed priority preemptive

scheduling whenever the normal run-queue is empty, i.e. when

the processor would otherwise be idle. If a job from the back-

ground run-queue reaches its deadline before it is completed,

then the job is discarded. Since we consider only constrained-

deadline tasks, only one job of each task can be active at

any given time, and hence jobs of the same task execute in

strict order of arrival regardless of whether they are placed

in the background run-queue or the normal run-queue. We

refer to the schemes that make use of both lazy execution and

increased execution time budgets as AMC-RHSL and AMC-

RASL respectively.

V. SCENARIO-BASED EVALUATION

In this section, we present a simulation and hence scenario-

based evaluation of the performance of the variants of the

AMC scheme introduced in this paper and compare them to

prior work in this area, specifically to variants of the Bailout

Protocol [39], [40] and the original AMC scheme [4], using

an experimental framework with configurations and metrics

similar to those that have previously been used to evaluate the

Bailout Protocol [39], [40] and Lazy Execution [41].

Scenario-based evaluation [48]–[50] complements the eval-

uation of schedulability analysis as the latter only illustrates

under what conditions timing guarantees are met. Rather, we

are interested in how well the different schemes perform in

terms of minimizing the number of jobs of LO-criticality tasks

that are abandoned without executing or miss their deadlines.

A. Evaluation Metrics

The following metrics were used in the evaluation.

(i) Number of HI-criticality Deadline Misses (HDM ): Such

deadline misses should not be experienced with any of

the schemes. This metric is used to check that is the case.

(ii) Jobs Not Executed (JNE): The number of LO-criticality

jobs that were abandoned in degraded mode.

(iii) LO-criticality Deadline Misses (LDM ): The number of

LO-criticality jobs that were executed, but missed their

deadlines.

(iv) Time in Degraded mode (T iD) - The amount of time

spent in degraded mode. (For the variants of the Bailout

Protocol that we compare against, degraded mode equates

to the bailout and recovery modes).

(v) Number of times in Degraded mode (NiD) - How many

times the system entered degraded mode.

Aside from the HDM metric, which should always be zero,

the most important metric is the sum of JNE and LDM ,

which represents the total number of LO-criticality jobs that

are not completed by their deadlines, including those that are

abandoned upon release.

B. Scheduling Schemes

The following mixed criticality scheduling schemes were

compared.

1. AMC-RA – The modified AMC scheme, as described

in Section IV, with transitions to degraded mode when

any HI-criticality task τi reaches, without completing,

its LO-criticality response time Ri(LO) since the start

of the busy period in which it was released. Degraded

mode is exited on an idle instant.

2. AMC-RAS – AMC-RA enhanced by off-line increases

in execution time budgets, see Section IV-C.

3. AMC-RASL – AMC-RAS enhanced via lazy execu-

tion [41] of jobs that would otherwise be abandoned, see

Section IV-D.

4. AMC-RH – The modified AMC scheme, as described

in Section IV, with transitions to degraded mode when

any HI-criticality task τj reaches, without completing,

its LO-criticality response time Rj(LO) since the start

of the busy period in which it was released. Degraded

mode is exited once there is no such active HI-criticality

task in the run queue.

5. AMC-RHS – AMC-RH enhanced by off-line increases

in execution time budgets, see Section IV-C.

6. AMC-RHSL – AMC-RHS enhanced via lazy execu-

tion [41] of jobs that would otherwise be abandoned, see

Section IV-D.

7. AMC+ – The original AMC scheme [4], with return to

normal mode on an idle instant.

8. AMC+S – The AMC+ scheme, enhanced by off-line

increases in execution time budgets, see Section IV-C.

9. AMC+SG – The AMC+ scheme enhanced by both off-

line increases in execution time budgets, and runtime

reclamation of gain time, see Section 5.2 of [40].

10. AMC+SGL – The AMC+SG scheme enhanced via lazy

execution [41] of jobs that would otherwise be aban-

doned, see Section IV-D.

11. BP – The basic Bailout Protocol, see Section 4 of [40].

12. BPS – The Bailout Protocol enhanced by off-line in-

creases in execution time budgets, see Section 5.1 of [40].

13. BPSG – The Bailout Protocol enhanced by both off-line

increases execution time budgets, and runtime reclama-

tion of gain time, see Section 5.2 of [40].

14. BPSGL – BPSG enhanced via lazy execution [41] of jobs

that would otherwise be abandoned, see Section IV-D.

C. Task Set Generation

Task set generation was performed as follows:



• Task Set Cardinality - The number of tasks was fixed,

default n = 20. The number of HI-criticality tasks

n(HI) was set to n · CP where CP is the Criticality

Proportion (default CP = 0.5), with the remaining tasks

assigned LO-criticality.

• Task Utilizations - The Dirichlet-Rescale (DRS) algo-

rithm [51] open source Python software [52] was used

to provide an unbiased distribution of task utilization

values that summed to the target utilization required,

subject to a set of individual constraints. First, HI-

criticality utilization values Ui(HI) were generated for

the n(HI) HI-criticality tasks, such that the total HI-

criticality utilization of those tasks summed to U(HI) =
CP ·CF ·U , where CF is the Criticality Factor (default

CF = 2.0) characterizing the multiplier between HI-

and LO-criticality utilization, and U is the target utiliza-

tion required (default U = 0.8). Second, LO-criticality

utilization values Ui(LO) were generated for all of the

tasks, such that the total LO-criticality utilization of all

tasks summed to U(LO) = U . For LO-criticality tasks,

Ui(LO) was constrained to be in the range [0.0, 1.0],
while for HI-criticality tasks, Ui(LO) was constrained

to be in the range [0.0, Ui(HI)], hence ensuring that

Ui(LO) ≤ Ui(HI).
• Periods and Deadlines - The period of each task was

chosen in one of two ways. Semi-harmonic periods were

chosen at random from a set of harmonics of two base

frequencies (i.e. 25, 50, 100, 250, 500, 1000 and 20, 40,

80, 200, 400, 800ms) as typically found in automotive

and avionics systems [53]. Non-harmonic periods were

chosen at random according to a log-uniform distribu-

tion [54], from a range 10ms to 1 second (rounded to

0.1ms). Task deadlines were set equal to their periods.

• Execution Times - The LO-criticality execution times of

all tasks were given by Ci(LO) = Ui(LO) · Ti, and

the HI-criticality execution times of HI-criticality tasks

by Ci(HI) = Ui(HI) · Ti. Finally, Best-Case Execution

Times (BCET) were chosen at random between 80% and

100% of Ci(LO). (This small variation is representative

of code from Safety Critical Systems).

• Failure Probability (FP ) - At runtime, jobs of HI-

criticality tasks had a probability of FP (default FP =
10−4 = 0.01%) of exceeding their Ci(LO) execution

time.

In all of the experiments, we required that the task sets

chosen had at least one task that was unschedulable according

to exact analysis of fixed priority preemptive scheduling [2]

(i.e. ignoring criticality), but were nevertheless schedulable

according to the AMC-rtb test [4].

D. Simulation

The experiments covered 500 task sets for each of the

configurations considered. For each scheduling scheme, we

simulated the runtime behavior of each task set, starting with

a different random seed. The same random seeds were used

for each of the schemes to ensure a precise like-for-like

comparison. The duration of each simulation run was 1013

time units (of 0.1ms), hence this was sufficient for 106 jobs

of the task with the longest period.

In the simulation on each release, an actual execution

time was chosen for the job as follows. For jobs of LO-

criticality tasks, the value was chosen at random from a

uniform distribution in the range [BCET,Ci(LO)]. For jobs

of HI-criticality tasks, a random boolean variable with a

probability of FP (default 10−4) of returning true was used

to determine if the job would exhibit HI-criticality behavior.

If so, then its execution time was chosen at random from a

uniform distribution in the range [Ci(LO), Ci(HI)], otherwise

the range was [BCET,Ci(LO)]. The probability FP used

to determine if HI-criticality behavior would be exhibited

was deliberately set to a relatively high value by default to

stress the system behavior. In practice such a high value is

perhaps unlikely, but possible, for example if the testing used

to determine LO-criticality execution time estimates did not

actually reveal the worst-case path.

For the schemes making use of statically available slack

to increase execution time budgets, the Ci(BU) parameters

were computed via off-line sensitivity analysis, as described

in Section IV-C, before running the simulator. The Ci(BU)
and corresponding Ri(BU) values were then used by the

simulator to determine when the system should transition to

degraded mode, with the Ci(LO) values used in the selection

of job execution times, as explained above. The simulation

did not include scheduling overheads, while these would have

some impact in practice, all of the schemes compared have

low overheads similar to those incurred by execution time

monitoring and budget accounting.

E. Evaluation Results

The evaluation results are shown using box and whisker

plots. The box represents the range of values between quartiles

(25 and 75 percentiles). The horizontal line in the middle of the

box is the median (50 percentile). The two horizontal whiskers

above and below the box show the 5 and 95 percentiles.

Four types of task sets were considered: (i) strictly periodic

task sets with semi-harmonic periods, (ii) strictly periodic

task sets with non-harmonic periods, (iii) sporadic task sets

with semi-harmonic periods, and (iv) sporadic task sets with

non-harmonic periods. In the case of sporadic task sets, all

LO-criticality tasks were sporadic, while all HI criticality

tasks remained strictly periodic. The schedulability analysis for

sporadic tasks was exactly the same as for periodic tasks. At

runtime, however, at each (periodic) arrival time for a sporadic

task, the probability of releasing its job was 0.5. Thus the job

release pattern mirrored that of strictly periodic behavior, with

the exception that about 50% of the jobs of LO-criticality tasks

were omitted.

The number of HI-criticality Deadline Misses(HDM ) for

all four types of task set and all 14 schemes was zero, hence

these results are not shown in the graphs. The other results are

organized by the type of task set, and then discussed according

to the metric considered.
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Figs. 1, 4, 7 and 10 illustrate the number of times (NiD(%))
that degraded mode was entered as a percentage of the number

of HI-criticality jobs (i.e. the maximum number of times that

degraded mode could ever be entered), for the four types of

task set. Note, the y-axis scale is identical on these four graphs.

NiD(%) has the same median value of 0.01 for AMC+ and

BP for all task sets. These values simply reflect the configured

Failure Probability FP (of a HI-criticality job executing

for more that its LO-criticality execution time), by default

FP = 10−4 = 0.01%. Utilizing off-line slack to increase

LO-criticality execution time budgets improves performance

for the AMC+S and BPS schemes, with further improvements

obtained by utilizing gain-time in AMC+SG and BPSG.

Observe that NiD(%) is almost exactly the same for each

AMC+ scheme and the equivalent scheme based on the Bailout

Protocol (i.e. for AMC+ and BP, for AMC+S and BPS, and for

AMC+SG and BPSG). This is because the Bailout Policy only

operates once degraded mode is entered, with the same criteria

for transition to that mode as AMC+. Hence, the Bailout Policy

does not act to reduce the number of times that the system

enters degraded mode, only how long it stays in that mode.

The AMC-RA and AMC-RH schemes greatly reduce the

number of times that degraded mode is entered compared to

AMC+ and BP. This is because the AMC-RA and AMC-

RH schemes wait until the LO-criticality response time of

some HI-criticality task is reached from the start of the busy

period in which it is released, rather than transitioning to

degraded mode immediately a HI-criticality task reaches its

LO-criticality execution time budget without completing. This

advantage is further enhanced by utilizing off-line increases in

execution time budgets to provide longer intervals (response

times) before degraded mode is entered in the AMC-RAS

and AMC-RHS schemes. The AMC-RH schemes typically

enter degraded mode slightly more often than their AMC-RA

counterparts. The reason being that the AMC-RA schemes

wait for an idle instant to exit degraded mode. This can

lead to what would otherwise be two separate intervals of

degraded mode under the equivalent AMC-RH scheme being

amalgamated into one interval of degraded mode under the

AMC-RA scheme, hence lowering the number of times that

degraded mode is entered, but increasing the time in that mode.

Figs. 2, 5, 8, and 11 illustrate the time spent in degraded

mode (T iD(%)) as a percentage of the total simulation time.

Note, the different y-axis scale on these four graphs. With non-

harmonic task sets, the workload is typically spread out more

by the de-synchronized job releases, resulting in shorter busy

periods and more frequent idle instants. This is the reason why

the time in degraded mode for all schemes is much shorter for

non-harmonic task sets than with semi-harmonic task sets. It

also explains why the schemes based on the Bailout Protocol

are able to substantially reduce the time in degraded mode

compared to their AMC+ counterparts for semi-harmonic task

sets, but not so much for non-harmonic task sets. In the former

case, the bailout mechanism conveys an advantage, whereas

in the latter case, both types of scheme often exit degraded

mode via an idle instant.

Figs. 2, 5, 8, and 11 also show how the advantage that the

AMC-RA and AMC-RH families of schemes have in entering

degraded mode fewer times, combined in the case of AMC-

RH with not having to wait for an idle instant to exit degraded

mode, translates into a large reduction in the overall time spent

in that mode compared to the BP and AMC+ schemes. Further,

each AMC-RH scheme has a significant advantage over its

AMC-RA counterpart due to its ability to exit degraded mode

without having to wait for an idle instant.

Figs. 3, 6, 9 and 12 show the percentage of LO-criticality

jobs that were not completed (JNE(%) + LDM(%)), either

because they were not executed or because they failed to

complete by their deadline. Note, the different y-axis scale

on these four graphs. These figures show that the baseline

AMC-RA and AMC-RH schemes are highly effective in

reducing the percentage of LO-criticality jobs that are not

completed compared to both the AMC+ scheme and the

Bailout Protocol. Further, by utilizing off-line increases in

execution time budgets to delay the transition to degraded

mode, the AMC-RAS and AMC-RHS schemes outperform

the existing AMC+S and BPS schemes that utilize off-line

slack. As expected, the AMC-RH (resp. AMC-RHS) scheme

outperforms the AMC-RA (resp. AMC-RAS) scheme, since

given the exact same scenario of job releases, it transitions

out of degraded mode no later.

Finally, observe that for all schemes, lazy execution is

highly effective at reducing the percentage of LO-criticality

jobs that are not completed, but has no bearing on the number

of times that degraded mode is entered or on the time spent in

that mode. Lazy execution is less effective for semi-harmonic

task sets due to the longer busy periods and fewer idle intervals

compared to non-harmonic task sets.

Overall, the results shown in Figs. 1 to 12 provide evidence

that the modified runtime protocol for the AMC scheme

introduced in this paper is highly effective in reducing: (i)

the number of times that degraded mode is entered, (ii) the

amount of time that is spent in degraded mode, and hence

(iii) the number of LO-criticality jobs that are unable to

complete execution by their deadlines. In particular, the AMC-

RH schemes outperform the previously published AMC+ and

BP schemes, providing substantially lower median values on

all three performance metrics.

VI. CONCLUSIONS

In mixed criticality systems, schemes such as Adaptive

Mixed Criticality (AMC) [4] employ a degraded mode where

new releases of LO-criticality jobs are abandoned to ensure

that HI-criticality tasks remain schedulable when some of the

jobs of those tasks do not conform to their normal behavior and

hence exceed low assurance bounds on their execution times

(i.e. LO-criticality execution time estimates). The original

runtime protocol for the AMC scheme transitions to degraded

mode whenever a job of a HI-criticality task τi exceeds its

Ci(LO) budget. However, if the rest of the system is not

exhibiting worst-case behavior in terms of task execution times

and the phasing of job releases, then such a transition may be



unnecessarily early leading to many more dropped jobs of LO-

criticality tasks than are in fact necessary to maintain the high

levels of assurance needed to provide HI-criticality tasks with

robust timing guarantees.

Via a consideration of the AMC-rtb schedulability test [4],

we employed analysis-runtime co-design techniques to modify

the trigger conditions for entering and exiting degraded mode

to correspond to the worst case that is accounted for by the

analysis. Thus we modified the runtime protocol to enter and

exit degraded mode based on whether or not there is an active

(i.e. unfinished) job of some HI-criticality task τi that is at

least Ri(LO) (it’s LO-criticality response time) from the start

of the priority level-i busy period during which it was released.

By design, the new scheme, referred to as AMC-RH, can

be analysed more precisely using the AMC-rtb schedulability

test. Further, we showed that the new scheme can also benefit

from increasing the LO-criticality execution time budgets

of HI-criticality tasks until the system is just schedulable.

Thus increasing their LO-criticality response times and hence

further delaying the onset of degraded mode and expediting

return from it. This variant of the scheme is referred to as

AMC-RHS, since it takes advantage of static slack.

A systematic scenario-based evaluation compared the new

scheme, AMC-RH, to the original AMC scheme and also to

the Bailout Protocol [39], [40]. The schemes were judged on

the basis of criteria characterizing the degradation in the level

of service provided to LO-criticality tasks. The new scheme

provided significant advantages in terms of a reduction in: (i)

the number of times degraded mode is entered (NiD), (ii) the

amount of time spent in degraded mode (TiD), and (iii) the

number of LO-criticality jobs that are either not executed or

miss their deadlines (JNE+LDM). Table I shows the values

of these metrics for the Bailout Protocol and the AMC-RH

scheme as a percentage of the values for the original AMC

scheme. Note, these summary results are based on a compar-

ison of the mean values obtained in experiments on 500 task

sets, see Section V-E, Figures 1–6 for further details. In the

case of task sets with semi-harmonic periods, representative

of those found in avionics and automotive systems, the most

important metric (JNE+LDM) was reduced by a factor of 40

using AMC-RH, compared to a reduction by a factor of 3

using the Bailout Protocol.

Semi-harmonic periods Non-harmonic periods
NiD TiD JNE+LDM NiD TiD JNE+LDM

BP 100% 36.9% 34.8% 100% 78.4% 83.4%
AMC-RH 16.8% 1.7% 2.5% 19.9% 4.1% 8.7%

TABLE I
PERFORMANCE COMPARISON WITH RESPECT TO THE ORIGINAL AMC+
SCHEME. (NOTE, SMALLER VALUES IMPLY IMPROVED PERFORMANCE).

Finally, we note that the performance of all of the schemes

can be improved by using an extra background priority queue

to permit LO-criticality jobs that would otherwise have been

dropped in degraded mode to be run in what would otherwise

have been idle time, providing a last chance to meet their

deadlines. However, this use of lazy execution [41], with jobs

of the same task executing at different priorities, impacts

Fig. 13. Schedules for original and modified AMC schemes

mutual exclusion protocols [55] and increases blocking effects,

which may hamper its practical application.

APPENDIX A: SCHEDULABILITY

In this appendix, we show that the analysis provided by

the AMC-rtb schedulability test (1) and (2) is not exact for

AMC-RH, but is less pessimistic for AMC-RH than it is for

the original AMC scheme. This can be seen by considering

an example task set as follows: τ1 = {C1(LO) = 1, T1 =
2, D1 = 2, L1 = LO}, τ2 = {C2(LO) = 1, C2(HI) =
5, T2 = 10, D2 = 10, L2 = HI}, and τ3 = {C3(LO) =
C3(HI) = 4, T3 = 100, D3 = 18, L3 = HI}. Note, that

under fixed priority preemptive scheduling, the only viable

priority ordering is for task τ1 to have the highest priority

and task τ3 the lowest. Further, it is easy to see that with this

priority ordering, tasks τ1 and τ2 are schedulable, hence we

focus on the schedulability of the lowest priority task τ3.

From (1), we have R3(LO) = 10, including interference

from 5 jobs of task τ1 (at 1 time unit each) and 1 job of task

τ2 (at 1 time unit). Further, from (2) we have R3(HI) = 19,

including interference from the same 5 jobs of task τ1 released

within R3(LO) (at 1 time unit each) and 2 jobs of task τ2 (at

5 time units each). The test therefore concludes that task τ3
is unschedulable; however, this is not in fact the case.

Figure 13 shows the schedules that result in the worst-case

response time for a job of task τ3 under the original and

modified AMC schemes. In the diagram, job execution within

a task’s LO-criticality WCET estimate Ci(LO) is shown in

light blue, while execution after that estimate is exceeded

is shown in dark blue. Jobs of LO-criticality tasks that are

dropped in degraded mode are shown as an empty box.

Under the original AMC scheme, degraded mode is entered

as soon as any job of task τ2 executes for C2(LO) = 1 without

completing (i.e. exhibits HI-criticality behavior). It can be

verified, by considering the different possible offsets of task



τ2 from the initial release of tasks τ1 and τ3 at t = 0, that

the worst-case interference on task τ3 occurs when task τ2 is

released at t = 6. By t = 6, three jobs of τ1 have executed and

τ3 has executed for 3 time units. A further job of τ1 is also

released at t = 6 and executes, followed by task τ2. At t = 8,

τ2 has executed for C2(LO) = 1 without completing, and so

degraded mode is entered, and hence further releases of the

LO-criticality task τ1 are not permitted. Task τ2 executes for a

further 4 time units, followed by τ3, which completes its final

time unit of execution for a worst-case HI-criticality response

time of 13. (Note, under the AMC scheme, the parameters of

this example are such that it is impossible for task τ3 to be

subject to interference from more than one job of τ2).

Under AMC-RH, each time task τ2 exceeds its LO-

criticality response time R2(LO) = 2, degraded mode is

entered and further jobs of LO-criticality task τ1 are no longer

released until the job of τ2 completes, which happens by its

HI-criticality response time R2(HI) = 6. As a consequence,

each time τ2 exhibits HI-criticality behavior and executes

for C2(HI) = 5 within R3(LO), two jobs of task τ1 are

necessarily skipped. This reduces the total interference on task

τ3 within R3(LO) to effectively three jobs of task τ1 (at 1

time unit each) and one job of task τ2 (at 5 time units), or

other combinations that entail no more interference. Hence

by R3(LO) = 10, task τ3 suffers at most interference of 8

time units and hence executes for 2 time units leaving 2 time

units of execution to complete. With a further 5 time units

of interference from a final job of task τ2, this equates to a

worst-case HI-criticality response time of 17 for τ3, which is

therefore schedulable under AMC-RH.

Observe that for this example, the AMC-rtb analysis pro-

vided by (1) and (2) is considerably more pessimistic for the

original AMC scheme than it is for AMC-RH. If the deadline

on task τ3 were 15, then the task set would be schedulable

under the original AMC scheme, but not under AMC-RH.

In the following we show that the exact value of Ri(HI)
of each HI-criticality task τi under AMC-RH upper bounds

that for the original AMC scheme.

For any scenario (i.e. pattern of task releases) and priority

level-i busy period culminating in the completion of a HI-

criticality task τi in its worst-case HI-criticality response time

under the original AMC scheme, all of the interfering releases

of higher priority LO-criticality tasks would also occur under

AMC-RH (and possibly other releases as well). This is the case

because under AMC-RH, it is not possible (by definition of

the Rj(LO) values used in the runtime protocol) for degraded

mode to be entered until at least one job of some HI-criticality

task τj has executed for its Cj(LO) without completing, which

is the rule that the original AMC scheme uses for entry into

degraded mode. Hence, AMC-RH cannot enter degraded mode

before the original AMC scheme does. Since the original AMC

scheme does not exit degraded mode until an idle instant,

i.e. at or after task τi completes, it follows that the exact

value of Ri(HI) of each HI-criticality task τi under the

original AMC scheme lower bounds that under AMC-RH.

Since the LO-criticality behavior is the same in both cases,

it follows that exact schedulability under the original AMC

scheme dominates that under AMC-RH (dominance rather

than equivalence is assured by the previous example showing

that there exists at least one case where exact schedulability

is worse under AMC-RH).

Finally, the AMC-max test [4] can be used to obtain more

accurate but still inexact schedulability results for the original

AMC scheme. The gains over AMC-rtb in terms of additional

schedulable task sets are relatively small [4] and hence the

majority of subsequent work, including the recent adoption

of AMC by industry [7], [8], has been underpinned by the

simpler AMC-rtb test. The AMC-max test is not compatible

with the modified AMC runtime protocol, due to the way in

which the test is formulated. The AMC-max test considers

jobs of each HI-criticality task τj released prior to the mode

change time at time s as contributing Cj(LO), which is not

necessarily the case with the modified protocol. The modified

AMC runtime protocol makes a trade-off in schedulability

versus an improved level of service for LO-criticality tasks,

which is completely hidden when the AMC-rtb test is used.

APPENDIX B: IMPLEMENTATION

In this appendix, we provide a brief summary of how the

modified AMC runtime protocol can be implemented.

First, the RTOS needs to track the start time s[i] of each

currently active priority level-i busy period, see Section III

for a definition. This can be achieved via O(1) additional

operations on each job release as follows. When a new job

of a task τi is released at time t and task τi is inserted in the

run-queue: (i) if τi is added to the head of the run-queue, i.e. it

has the highest priority of any task with an active job, then

s[i] = t, (ii) otherwise the busy period start time is inherited,

s[i] = s[k], from the task τk that is immediately ahead of task

τi in the run-queue, i.e. task τk is the next higher priority task

with an active job. Note, correct tracking of busy period start

times requires that tasks with simultaneous job releases are

added to the run-queue in priority order, highest priority first.

Second, the RTOS needs to manage entry to and exit from

degraded mode via a programmable timer interrupt and an

ordered expiry-queue of absolute response time expiry values:

s[i] +Ri(LO) for the tasks with active jobs. When a job of a

HI-criticality task is released, its response time expiry value is

inserted (requiring O(log n) operations) into the expiry-queue.

While the system is in normal mode, the programmable timer

is set such that it will interrupt at the expiry time indicated

by the value at the head of the expiry-queue, if any. When

the timer interrupt goes off, the system enters degraded mode.

On completion of a job of a HI-criticality task, its response

time expiry value is removed from the expiry-queue (requiring

O(1) operations). Further, with AMC-RH, if the system is in

degraded mode and the expiry time now at the head of the

expiry-queue has not yet been reached or the expiry-queue is

empty, then degraded mode is exited and the timer interrupt

reset. For AMC-RA, degraded mode is only exited on an idle

instant, i.e. when the run-queue becomes empty.
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