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1. Introduction

The nature of redox changes before, during, and after the latest Permian mass extinction (LPME) have long been 

debated (Cao et al., 2009; Clapham & Payne, 2011; Wignall & Hallam, 1993; Wignall & Twitchett, 2002; Zhang 

et  al.,  2018). The significance of microbialite development immediately after the LPME, and the associated 

oxygenation levels, is a further controversial aspect of the crisis (Baresel et al., 2017; Z. Q. Chen et al., 2019; 

Kershaw et  al.,  2012,  2018; Liao et  al.,  2017; G. M. Luo et  al.,  2014; Wignall et  al.,  2020). Did prevailing 

oxygen-poor conditions facilitate microbialite growth by suppressing grazing organisms? Pyrite framboids have 

been widely employed to evaluate paleo-redox states (Bond & Wignall, 2010; Y. G. Huang et al., 2019; Wacey 

et al., 2015; W. Wang et al., 2021). Here, we present analytical results of pyrite framboids across the Permian-Tri-

assic boundary (PTB) from various sections in South China, including 3 nonmicrobialite platform sections, 11 

microbialite-bearing platform sections, 1 ramp section, and 8 intraplatform basinal sections (Table S1 in Support-

ing Information S1; Figure 1b). The study aims to reconstruct redox histories before, during, and after the LPME 

in these diverse environmental settings, and to test the relationship between redox changes associated with mass 

extinction and microbial development.

During the P-Tr transition, the South China Block (SCB) was located in tropical latitudes of the eastern Paleo-Te-

thys Ocean (Figure 1a). A major carbonate platform called the Yangtze Platform developed in central part of 

the SCB, and was flanked by ramps on its northern and southern margins that extended into the Qinling sea and 

Nanpanjiang basin, respectively (Figure 1a). In this study, seven sections were sampled for pyrite analysis: Liang-

fengya (LFY), Zunyi (ZY), Yangou (YG), Tieshikou (TSK), Yudongzi (YDZ), Chaohu (CH), and Shangsi (SS). 

Among them, five sections are of shallow platform facies: LYF, ZY, YG, TSK, and YDZ (Figure 1a). The YG, 

Abstract Redox variations across the Permian-Triassic boundary (PTB) have long been debated, especially 

during the proliferation of PTB microbialites. Here, we report redox fluctuations across the PTB to evaluate 

links between the two based on pyrite framboid analysis from basin to platform settings in South China. During 

the end-Permian extinction, abundant framboids indicate a widespread anoxia that was likely a direct cause of 

extinction. In the earliest Triassic (Hindeodus parvus conodont zone), pyrite framboids were absent in ramp 

to basin and shallow, nonmicrobialite platform sections. In contrast, the coeval microbialites yield abundant 

framboids indicative of dysoxia. The fact that framboids were only confined to PTB microbialites and absent 

in other habitats indicates that microbe bloom may have stimulated dysoxic watermass and triggered the 

framboid growth within microbe aggregates. Thus, microbialites were not built in reducing settings, but instead, 

microbial proliferation caused local, dysoxia within shallow oxygenated platforms after the extinction.

Plain Language Summary The widespread occurrence of microbialites immediately after the 

end-Permian extinction has attracted interest about their formation conditions. Microbialites are generally 

believed to be formed during microbial bloom in reducing conditions linked to the mass extinction. However, 

the cause-and-effect relationship between microbe bloom and reducing states of seawater has long been 

disputed. Our new results based on analyses of 17,306 pyrite framboid diameters and morphologies derived 

from various Permian-Triassic boundary sections in South China show that microbialite formation (microbial 

bloom) was not triggered by reducing waters upwelled from deeper water masses, instead, it caused local, 

dysoxic areas within oxygenated platforms after the end-Permian crisis.
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LFY, and ZY sections record continuous carbonate deposition during the P-Tr transition, with shallow platform 

bioclastic or oolitic limestones of the uppermost Changxing Formation overlain by alternating marlstone and 

mudstone of the basal Triassic Daye/Feixianguan Formation. Of these, both LFY and ZY sections were located 

in relatively deep locations within the interior of the Yangtze Platform, while the YG section was located on the 

northern margin of the eastern wing of the Yangtze Platform. A hiatus is developed in many shallow-water PTB 

sites due to sea-level fall but continuous sedimentation of shallow water oolitic limestone occurred at YG prob-

ably due to rapid subsidence adjacent to the faulted platform margin at this location (Feng et al., 1997; H. Zhao 

et al., 2021; Zhu et al., 1994). At YDZ, the uppermost Permian bioclastic limestone is overlain unconformably by 

a basal Triassic microbialite unit. The TSK section consists of shallow platform bioclastic limestone in the upper 

Permian portion, transitioning to ramp facies (thin-bedded muddy limestone) in the uppermost Permian, and 

basinal mudstone in the lowest Triassic (Figure 2) which yields small bowl-like microbialites (Yang et al., 2019). 

The other two sections (CH and SS) are basinal and comprise uppermost Permian siliceous shale and cherty 

limestone overlain by the basal Triassic marlstone and mudstone of the basal Daye/or Feixianguan Formation. 

In addition, 16 additional and previously studied sections (including 8 microbialite-bearing sections) were also 

included in our regional redox mapping (Table S1 in Supporting Information S1). Results of former pyrite fram-

boid analyses of the Meishan (MS) and Dajiang (DJ) sections have been re-examined due to slightly different 

analytical methods and standards used in various studies and are presented here (Z. Q. Chen et al., 2015; Y. G. 

Huang et al., 2017; Li et al., 2016).

Conodont zones across the PTB are well established in South China, and here they are divided into four phases. 

Phase 1 is equivalent to Clarkina yini zone (or upper C. changxingensis zone) and predates the LPME. Phase 

2 corresponds to the C. meishanensis, Hindeodus changxingensis, and C. taylorae zones, the interval of mass 

extinction and its immediate aftermath. Phase 3 is equivalent to the Hindeodus parvus zone. The PTB is placed 

at the base of the parvus zone, and the majority of microbialites formed in this interval. In microbialite sections, 

Phase 2 is often absent due to a regional regression represented by an irregular contact at the base of the micro-

bialite (Bagherpour et al., 2017; Foster et al., 2020; Kershaw et al., 2012; H. F. Yin et al., 2014). Phase 4 is 

defined by the conodonts Hindeodus staeschei, Isarcica lobata, and I. isarcica zones and equates the broadly 

defined I. isarcica zone in many earlier publications for these sections studied here.

Carbonate and organic carbon isotopes show a pronounced negative excursion around the LPME horizon, provid-

ing additional age constraint. Detailed descriptions as well as conodont biostratigraphic and carbon isotopic 

chemostratigraphic correlations of the studied sections (Figure S1 in Supporting Information S1) are provided in 

online supplementary data.

Figure 1. Paleogeographic map during the Permian-Triassic (P-Tr) transition. (a) Location of the South China Block (SCB) 

(Scotese & Schettino, 2017). (b) Paleogeographic settings of the 23 studied sections in the SCB (see Table S1 in Supporting 

Information S1). XJB, Xiaojiaba; CT, Changtan; SS, Shangsi; YDZ, Yudongzi; LFY, Liangfengya; LLD, Laolongdong; XJC, 

Xiajiacao; TQ, Tianqiao; XK, Xiakou; CTH, Changtanhe; CL, Cili; ZY, Zunyi; BY, Bianyang; DJ, Dajiang; ZD, Zuodeng; 

TP, Taiping; CY, Chongyang; XS, Xiushui; YG, Yangou; TSK, Tieshikou; CH, Chaohu; MS, Meishan; PJZ, Panjiazhuang.
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2. Materials and Methods

A total of 12,441 pyrite framboid grains were measured, and the data combined with published size measure-

ments on 4,865 framboids from 23 P-Tr boundary sections across South China. The newly studied sections 

include: three nonmicrobialite platform sections (LFY, ZY, YG), two microbialite platform sections (YDZ, TSK), 

and three intraplatform basin facies sections (CH, SS) (Figure 1b). A total of 16 sections cited here include: 

8 microbialite platform sections (Xiushui, Chongyang, Xiajiacao, Cili, Zuodeng, Laolongdong, Panjiazhuang, 

Taiping, and Dajiang; Table S1 in Supporting Information S1), 1 ramp section (MS), and 6 intraplatform basin 

sections (Changtanhe, Chaotian, Tianqiao, Bianyang, Xiaojiaba, and Xiakou; Table S1 in Supporting Informa-

tion S1). These framboids were employed for size distribution and morphologic analyses.

Polished blocks (approximately 2 cm × 2 cm) of the samples were examined for framboid analysis using the 

Field Emission Scanning Electron Microscope Hitachi SU8010 at the State Key Laboratory of Biogeology and 

Environmental Geology, China University of Geosciences (Wuhan). Detailed experimental procedure and meas-

urement bias controls follow Y. G. Huang et  al.  (2019). The standards for size distribution and morphology 

of framboids are modified from that of Bond and Wignall  (2010), and are applied to distinguish four redox 

levels: euxinic, anoxic, dysoxic, and oxic conditions of water columns. Pyrite-size distributions are also evaluated 

using crossplots of mean framboid size (M) versus standard deviation (SD) (Wignall & Newton, 1998; Wilkin 

et al., 1996). On such a crossplot, the boundary separating euxinic from oxic-dysoxic facies was determined as: 

M = −3.3 × SD + 14 (Wignall & Newton, 1998), where M is the mean diameter of framboids, and SD represents 

their standard deviation. Both framboid size and morphology criteria (Bond & Wignall, 2010) and the M-SD 

crossplot are utilized here to reconstruct marine redox states before, during and after the LPME.

Figure 2. Correlations of P-Tr paleoredox condition changes among nine sections representing various water-depth settings in South China. Phase 3 is highlighted. 

Abbreviations are identical with Figure 1. Detailed conodont zones and framboid size distributions are shown in Figure S2 in Supporting Information S1. Scale 

bar = 0.5 m.
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3. Results

3.1. Spatiotemporal Distributions of Pyrite Framboids and Redox 

Interpretation

In Phase 1, all microbialite sections and most nonmicrobialite sections on 

shallow platforms lack pyrite framboids (LYF to YG; Figure 2), except for ZY 

section that yields small framboids (4–8 μm in diameter) at several horizons, 

with a narrow size range and few crystals (Figure S2 in Supporting Infor-

mation S1). Of the ZY samples, four and five samples had framboids that 

indicate anoxic and dysoxic conditions, respectively in mean-standard-de-

viation (M-SD) plots (Figure  3). In contrast, framboids were abundant in 

relatively deeper sections during Phase 1. Most samples from a ramp setting 

(MS) yield small framboids (approximately 6 μm in diameter), with a narrow 

size range and rare crystals, suggesting anoxia (Figure 3 and Figure S2 in 

Supporting Information  S1). However, sections from basinal locations in 

Phase 1 lack framboids, although some horizons yield framboids of 6–10 μm 

diameter that fall into the dysoxic area in M-SD plots (Figure 3 and Figure S2 

in Supporting Information S1).

Phase 2 framboids become abundant in the C. meishanensis and H. changxin-

gensis zones in ramp facies before becoming rare in the C. taylorae zone 

(Figure S2 in Supporting Information S1). Most framboids are 4–6 μm in 

diameter, with a narrow size range, and fall into the anoxic area in the M-SD 

plot (Figure 3 and Figure S2 in Supporting Information S1). The rarity of 

pyrite crystals at this time is also typical of anoxic conditions (Bond & 

Wignall, 2010). The same interval in the deeper intraplatform basin sections 

(CH, SS) contains framboids in the C. meishanensis zone and alternations 

of framboid-rich and framboid-barren horizons in H. changxingensis and 

C. taylorae zones (Figure S2 in Supporting Information S1). The framboids 

from these two horizons are around 6 and 6–8 μm in mean diameter, respec-

tively, and they fall into the anoxic and dysoxic areas, respectively in M-SD 

plots (Figure 3), indicating widespread oxygen-poor conditions during the 

LPME, ameliorating somewhat in its immediate aftermath in deeper water 

settings. All microbialite sections lack Phase 2 strata because of a hiatus at 

this level but most of the non-microbialite sections, from intraplatform basins (YG, LFY, TSK) do not yield any 

framboids. The ZY section, however, yields occasional framboids in the C. taylorae zone (Figure S2 in Support-

ing Information S1). Thus, oxic conditions prevailed at this time in the local depocentres that persisted on the 

platform.

During Phase 3, the basinal sections (CH, SS) surprisingly do not yield any framboids, suggesting oxic condi-

tions (Figure 2 and Figure S2 in Supporting Information S1). A few large framboids and pyrite crystals occurred 

in the same interval in a ramp setting (MS), again indicating good oxygenation (Z. Q. Chen et al., 2015; Y. G. 

Huang et al., 2017). Framboid occurrences are markedly different in shallow platform sections in this phase. 

Abundant framboids of 6–10 μm in diameter occur in all microbialite sections (DJ, YDZ, and others), pointing 

to dysoxic conditions. In contrast, no framboids are found in this interval in non-microbialite platform locations 

(ZY, LFY, YG; Figure 2 and Figure S2 in Supporting Information S1), reflecting oxic redox states. The TSK 

section yields some framboids, but they are found in the bowl-like microbialites, whilst the surrounding mudstone 

lacks framboids.

In Phase 4, framboids have very different stratigraphic distributions among various sections. The deeper ramp 

and basinal sections (MS, SS) yield abundant tiny framboids that fall into the anoxic and euxinic areas in M-SD 

plots (Figure 3), while the CH and TSK sections of the same facies contain rare or lack framboids. The shallow 

platform nonmicrobialite sections (ZY, YG, LFY) yield framboids indicative of dysoxic to anoxic conditions. The 

microbialite DJ section yields framboids suggestive of anoxic conditions, but another microbialite section (YDZ) 

lacks framboids, indicative of oxic conditions (Figure 2 and Figure S1 in Supporting Information S1).

Figure 3. Mean - standard deviation plots of studied sections. (a) Plots of 

shallow platform sections. (b) Plots of deeper ramp and basinal sections. P1-P4 

represent Phases 1–4. The dysoxic/anoxic-euxinic boundary is from Wilkin 

et al. (1996).
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3.2. Spatial Redox Variations Over the P-Tr Transition

Framboid analysis shows that most habitats in shallow platforms in South China were oxygenated prior to the 

LPME (Phase 1), except for few localities (i.e., ZY) where dysoxia developed (Figure 4). Anoxic water columns 

prevailed in ramp settings (MS), with episodic incursion of dysoxic to oxic water masses (Figure 4a). During the 

LPME (Phase 2), anoxia was extensive, indicating a close link between anoxia and the biotic crisis, as also indi-

cated by geochemical proxies (i.e., U isotopes; Elrick et al., 2017; Zhang et al., 2018). Some of the deep locations 

in the interior of the Yangtze Platform (i.e., ZY) also developed anoxic waters, while all platform locations that 

would later go on to develop microbialites were subaerially exposed at this time (H. F. Yin et al., 2014).

Remarkably, the development of anoxia in Phase 3 was the opposite to that seen in Phase 2 in South China 

(Figure  4c). Dysoxia was confined to the microbialite sites in shallow platforms, whilst oxygenated water 

columns prevailed in shallow nonmicrobialite platform locations, ramp, and deeper basin settings (Figure 4c). 

Pyrite framboids at this time are embedded within microbialites, but are absent from the surrounding basinal 

mudstone (see TSK section). This indicates that microbial growth stimulated the development of dysoxia in 

interstitial waters. Oxygen-depleted watermasses expanded once again in Phase 4 and spread into shallow and 

deeper settings (Figure 4d).

Figure 4. Redox mapping over the P-Tr transition (from Phase 1 to Phase 3) in South China. (a)–(c) Redox maps showing spatiotemporal distributions of reducing 

water masses during Phases 1–3.
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4. Discussion

4.1. Redox Variations Over the P-Tr Transition in South China

In South China, framboid data show that episodic anoxic and dysoxic water masses prevailed in ramp and deeper 

intraplatform basin settings prior to mass extinction, whilst adjacent platforms were mostly oxic, except for few 

localities (i.e., ZY) that were occasionally invaded by oxygen-poor water masses (Figure 2). This intermittent 

dysoxia is also revealed in ramp and restricted platform settings by biomarker and sulfur isotopic analyses (Cao 

et  al.,  2009; Grice et  al.,  2005; Y. A. Shen et  al.,  2011). Deeper basinal sections have few framboid-bearing 

horizons and lack small populations of framboid diameter indicating only occasional oxygen restriction in these 

settings (Figure 4). Thus, in Phase 1 the most oxygen-restricted conditions developed in ramp locations perhaps 

due to the presence of a mid-depth oxygen-minimum zone (OMZ; Figure 4a). Alternatively, a depletion of Fe 2+ 

in water column may also cause the rarity of framboids in deeper basinal settings because intensive anoxia in 

mid-depth waters have already removed Fe 2+ as pyrites. However, this is not the case for the P-Tr records because 

marine anoxia spread over all water-depth settings during Phase 2 (LPME), but pyrite framboids were abundant 

in deep basinal sections, implying that the water columns were not short of Fe 2+ at that time.

During Phase 2, temporal distribution of framboids indicates widespread anoxia coincident with the LPME espe-

cially in deeper ramp and basin environments in South China, confirming the results from numerous other studies 

(Z. Q. Chen et al., 2015; Huang et al., 2017, 2019; Lau et al., 2016; Li et al., 2016; Payne et al., 2010; Wignall 

et al., 2016; Zhang et al., 2018). Most shallow platform sections (except for ZY) lack framboids in this horizon, 

although there is a widespread hiatus at this level in such settings (H. F. Yin et al., 2014). Overall, it appears the 

OMZ of Phase 1 expanded greatly into both deeper waters and sporadically spread to shallow water habitats 

during this stage.

During Phase 3, there was a major reoxidation of water masses in almost all settings (from deep basin to shallow 

platform) except in microbialite sites which were dysoxic (Figure 4c). Even in ramp settings dysoxic to oxic 

conditions prevailed, implying only weak OMZ development. In contrast, moderate-sized framboids are abundant 

in all microbialites (up to 11 sites across South China; Table S1 in Supporting Information S1), pointing to a 

dysoxic state (see below). This means that redox conditions switched rapidly from the widespread anoxia linking 

with the LPME (Phase 2) to an oxygenated state (Phase 3) soon after.

During Phase 4, redox conditions decline once again with euxinia/anoxia in ramp settings, and anoxia/dysoxia 

in intraplatform basins and (episodically) in shallow platforms (Figure 2). Clearly, Phase 4 witnessed the most 

widespread oxygen-poor watermasses among these four phases of the P-Tr transition and coincides with the 

aftermath of the second phase of mass extinction that eliminated many surviving taxa (Song et al., 2013). Sedi-

mentary successions capping the PTB microbialites across South China are comprised of the mud-dominated 

calcareous strata, pointing to the rise in sea-level during Phase 4 (Z. Q. Chen et al., 2019; Kershaw et al., 2012; 

Yang et al., 2011). A coeval transgression was also indicated in other non-microbialite sections in South China 

(H. F. Yin et al., 2012, 2014). Accordingly, both the regional transgression and elevated reducing water masses 

may have resulted in the demise of microbialites across South China during Phase 4.

4.2. Enrichment of Pyrite Framboids and Oxygenation State of the Microbialites

Oxygenation state of the PTB microbialites has long been disputed due to conflicting evidence from different 

redox proxies (Bagherpour et  al.,  2017; Baresel et  al.,  2017; L. Chen et  al.,  2011; Collin et  al.,  2015; Ezaki 

et al., 2008; Heindel et al., 2018; Kershaw et al., 2018; Lau et al., 2016; Liao et al., 2017; G. M. Luo et al., 2013). 

The presence of framboids in all the PTB microbialite samples of Phase 3, but their absence from other platform 

facies indicates that environments were generally oxic but that microbial carbonate habitats were conducive to 

pyrite framboid growth. Previous suggestions that deeper anoxic waters upwelled or overturned and spilled into 

areas of microbialite growth (Baresel et al., 2017; Liao et al., 2017; G. M. Luo et al., 2013) are shown to be inva-

lid by our results because ramp and intraplatform basin settings were mostly oxic at that time (Figure 4c). This 

inference is also strengthened by the presence of abundant framboids, indicative of a dysoxic state, in stromatolite 

nodules embedded within mudstone of intraplatform basin facies, and their absence in the surrounding mudstone 

in TSK section (Yang et al., 2019). The microbial growth clearly created localized anoxic conditions favorable 

for the growth of framboids after the LPME. Thus, the shallow platforms were generally oxygenated except for 
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local microbe-rich water masses, in which the flourishing of microbes resulted in local oxygen-poor habitats that 

stimulated the production of abundant moderate-sized framboids.

The post-extinction microbial bloom was interpreted as the elimination of metazoans that usually consume 

microbes in marine ecosystems after the LPME (Xie et al., 2005). Alternatively, global nitrogen isotopes (δ 15N) 

showed strong denitrification across the LPME (Phase 2), followed by an enhanced nitrogen fixation in the 

earliest Triassic (Phase 3; Cao et al., 2009; C. Jia et al., 2012; G. M. Luo et al., 2011; Xie et al., 2010). Thus, the 

postextinction development of extensive microbialites was probably facilitated by diazotrophs (NH +4 self-suffi-

cient by N-fixation) or fertilized by ambient NH +4 (Sun et al., 2019). Cyanobacterial proliferation in microbial-

ites (G. M. Luo et al., 2013) was largely because many cyanobacteria have the ability of nitrogen fixation, and 

therefore were self-sufficient in a nitrate-depleted ocean. They may also have produced oxygen and nutrients for 

metazoans to grow within the microbialite ecosystem. This is why abundant and diverse metazoans inhibited 

microbialite ecosystems (Forel et al., 2013; Foster et al., 2019, 2020; Lehrmann et al., 2015; Yang et al., 2011), 

although their oxygenation state overall was dysoxic. This is why the PTB microbialites usually have little organic 

carbon burial, low contents of total organic carbon, and low productivities in South China (Algeo et al., 2013).

5. Conclusions

Analysis of 17,306 pyrite framboid diameters from 23 P-Tr boundary sections in South China, representing 

intraplatform basin, deep ramp, and shallow platform facies was undertaken in order to evaluate oxygenation 

variations across the PTB. The results show that redox variations were controlled by the expansion/contraction 

of oxygen minimum zones existing at moderate-depths in ramp habitats prior to the LPME. Anoxic water masses 

expanded considerably into deep basin and shallower ramp settings and episodically invaded shallow platforms 

at the time of mass extinction. The immediate aftermath of this crisis saw a major improvement of oxygenation 

levels across a broad range of environments, and the growth of microbialites that created localized anoxic condi-

tions favorable for framboid formation. This interval did not witness upwelling of anoxic water masses as widely 

claimed. The shutdown of the microbialite ecosystems saw the rise in sea-level and the resumption of widespread 

anoxic conditions in the earliest Triassic.

Data Availability Statement

All supplementary data related to this paper is available at: https://doi.org/10.5281/zenodo.6383974.
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