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ABSTRACT

Controlling the frequency response of an engineering component or struc-
ture is important in the aerospace and automotive sectors and is a key
consideration when seeking a new and more efficient design for a given
component. In this contribution, the standard truss layout optimization
procedure is modified to incorporate semidefinite constraints to limit the
minimum value of the first natural frequency. Since this increases the com-
putational expense and reduces the scale of the problem that can be
solved, a bespoke algorithm incorporating an adaptive ‘member adding’
procedure is proposed and applied to a number of benchmark example
problems. It is demonstrated that this allows problems to be solved with
relatively fine numerical discretization, allowing modified structures with
an acceptable minimum first natural frequency response to be successfully
identified.
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1. Introduction

In the design ofmodern engineering components, many considerations need to be taken into account
including safety, cost, weight and manufacturability. The most prominent of these is safety, taking
account of the regime of applied stresses to be sustained over the life of the component. Safety is
influenced by the properties of thematerial employed, whichmay change as the design evolves. Addi-
tionally, when considering structures that include slender elements in compression, it is necessary to
check for buckling instability to ensure safety is maintained. Another key parameter in the aerospace
sector is the harmonic frequency of a structure. This should lie outside the frequency bands of sur-
rounding components. Should a fundamental frequency of one component (e.g. a bracket) overlap
with those of its attached neighbours, then resonance in the component may occur, also referred to
as forced vibration. Forced vibration and resonance can then lead to High Cycle Fatigue (HCF) in
the component, affecting its serviceable life and reducing its time to failure. It should be noted that
a component may exhibit multiple resonant frequencies, each corresponding to a mode of vibration;
repeated exposure to these frequencies may reduce the life of the component. However, this phe-
nomenon is beyond the scope of the current contribution. Considering component manufacture, it
is important to note that traditional manufacturing methods may limit the design freedom avail-
able; however, in the present contribution, it is assumed that Additive Layer Manufacturing (ALM)
methods are available. The use of ALMmeans that complex truss forms can potentially be fabricated,
beyond the scope of traditional subtractive manufacturing methods.
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There have been numerous recorded HCF related incidents. A notable example led to the loss of
BritishMidland flight #92 in 1989 (Cooper 1989). Thiswas initiated by the failure of a fan blade on one
of the two CFM International S.A. CFM56-3 turbofan engines. A single blade failed owing to the cou-
pling of a torsional–flexural transient and a non-synchronous oscillation, leading to rapid reduction
of the HCF life of the blade. The blade was subsequently released, causing high levels of vibration in
the engine and aircraft, contributing to the loss of the aircraft upon attempting an emergency landing
at East Midlands Airport in the UK.

Given the potentially catastrophic consequences of failure, the design optimization of components
with stress and frequency constraints has been of interest for many years. Forced vibration problems
can be avoided by (a) redesigning the component being analysed, (b) redesigning the stimuli to change
its frequency characteristics, and/or (c) introducing a dampingmechanism into the system. Themost
straightforward of these options is often (a), redesigning a component to move its fundamental fre-
quencies away from those where resonance may occur. This may be achieved, for example, by adding
stiffening ribs to the part or strategically increasing the volume of material.

Computer aided methods have been employed to treat such problems, largely focusing upon
the use of topology optimization in works such as Bendsøe and Sigmund (2003), where links
can be formed between discrete and continuum structures (Achtziger 1999). Additionally, Du and
Olhoff (2007) formulated simple and multiple eigenfrequency optimization techniques for linear
elastic structures without damping. The present contribution will focus upon the design of truss
structures that are attractive when there is significant available design freedom. In practice, it is
rare that the available design freedom is fully exploited, usually due to limitations associated with
the manufacturing method involved. However, ALM allows the available design freedom to be
exploited to a much greater extent than when traditional subtractive manufacturing methods are
employed. Since the ground structure method was first introduced by Dorn, Gomory, and Green-
berg (1964) to solve plastic truss design problems, layout optimizationhas provided an effectivemeans
of identifying the most efficient arrangement of elements (also referred to herein as ‘members’ or
‘bars’) to form a truss structure. This methodology has been well used to identify minimum volume
truss structures (Dorn, Gomory, and Greenberg 1964; Hemp 1973; Gilbert and Tyas 2003; Smith et
al. 2016) using Linear Programming (LP) and member adding (column generation) to solve single
load case problems efficiently. These methods have been further extended by Pritchard, Gilbert, and
Tyas (2005) and Sokół (2014) to include application to multiple load cases; to keep the underlying
layout optimization problem formulation reasonably simple, the present contribution will focus on
single load case problems with a single specifiedminimum frequency, usually chosen so as to lie away
from the frequencies of any sources of excitation. However, frequency analysis is a nonlinear problem
and so semidefinite programming (SDP) must be used to treat the constraints.

SDP is a subset of convex optimization and aims to minimize a linear function subject to
the constraint that an affine combination of symmetric matrices is positive semidefinite. SDP has
been applied to the optimization of truss structures previously by Ben-Tal and Nemirovski (1997),
and later Kanno (2018) used SDP to produce structures that were robust against uncertainty in
the loading, and Giniünaité (2015) applied SDP to identify minimum mass structures. A number
of solvers are available that are capable of treating semidefinite problems of varying complex-
ity: fminsdp (Thore 2018); MOSEK (v8+) (MOSEK ApS 2017); PENLAB (Fiala, Kočvara, and
Stingl 2013) and CVX (Grant and Boyd 2014) are a few examples. However, a bespoke approach
is required when combining generative truss design with optimization for frequency constraints.

Frequency optimization belongs to the field of eigenvalue optimization in mathematics, which
has been studied extensively by the mathematical programming community: Fox and Kapoor (1970)
adopted a feasibility approach to solve the underlying semidefinite programming problem, Grandhi
and Venkayya (1988) and Khot (1985) used the optimality criteria method and Kaveh and Ghaz-
aan (2016) used non-smooth optimization to perform size optimization of existing truss structures
to meet certain frequency requirements. Additionally, Achtziger and Kočvara (2007) used SDP to
solve similar problems, and Aroztegui et al. (2011) developed a feasible direction algorithm for SDP
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in order to maximize the fundamental frequencies based upon simple fully connected ground struc-
tures. Considering optimization of frequency in isolation,Azad et al. (2018) assessed the simultaneous
size and geometry optimization of steel structures under excitation using the ‘big bang–big crunch’
algorithm,withmixed results when considering the optimum solutions, whilst Taheri and Jalili (2016)
and Tejani et al. (2018) used other meta-heuristic methods to impose frequency constraints in truss
optimization problems.

In many of these studies, the design variable was treated as continuous but the number and
arrangement of the variables were assumed to be finite and arrived at by utilizing the most effi-
cient members from a pre-defined ground structure. By contrast, in the present article an alternative
methodology is proposed in which standard equilibrium constraints are supplemented by semidef-
inite constraints to enable problems involving both frequency and strength considerations to be
tackled. The ground structure method is employed to provide a large search space, with an adap-
tive member adding algorithm used to reduce the associated computational burden significantly. In
the interests of simplicity, buckling instability and other issues are not considered explicitly in this
contribution, though would need to be checked prior to, for example, usage in a qualified aerospace
application.

This article is organized as follows: Section 2 describes the basic formulations relevant to the fre-
quency problem at hand, with examples used to illustrate limitations; Section 3 then proposes a new
formulation that is significantly more computationally efficient; the new formulation is then applied
to various example problems in Section 4; and conclusions are drawn in Section 5.

2. Basic formulations

2.1. Truss layout optimization formulation

Ground structure-based layout optimization begins with the definition of a design domain, the vol-
ume of space in which the optimized structure can reside, with materials, loads and supports then
also prescribed to describe the problem fully, see Figure 1(a). The objective is to arrive at a structure
of minimum volume, and hence mass, whilst maintaining structural integrity. With a Cartesian grid,
the design domain is populated with a predefined number of nodes n in the x- and y-directions (also
in the z-direction for 3D problems). It is then joined withm potential connections, or elements, such
that each node is connected to every other node in the domain to form a ground structure, as in Fig-
ures 1(b) and 1(c). Herein, each example will employ a number of nodes expressed in terms of the
number of nodal divisions, e.g. referring to Figure 1(b), the domain has 4 × 2 nodal divisions, with
4 divisions and 5 nodes in the x-direction and 2 divisions and 3 nodes in the y-direction, giving 15
nodes in total. Constraints are introduced to ensure equilibrium is enforced at nodes, and to ensure
that the cross-sectional area of each element is both a positive number and is sufficiently large to carry
the internal forces, given the limiting stress of the material. The plastic single load case formulation
can be written as (after Dorn, Gomory, and Greenberg 1964):

min
a,q

V = lTa

s.t.

⎧

⎨

⎩

Bq = p,
−σ−ai ≤ qi ≤ σ+ai, ∀ i
ai ≥ 0, ∀ i,

(1)

where V is the total volume of the structure; l is a vector of individual element lengths {l1, l2, . . . , lm};
a is a vector containing element cross-sectional areas {a1, a2, . . . , am};B is a suitable (2n × m or 3n ×

m) equilibriummatrix containing direction cosines (for 2D or 3D problems); q is a vector of element
axial forces, q = {q1, q2, . . . , qm}, where qi is the force in element i; p is a vector of applied loads and
p = {px1, p

y
1, p

z
1, p

x
2, p

y
2, p

z
2, . . . , p

z
n} where p

x
j , p

y
j , p

z
j are the x-, y- and z-direction components of the

load applied to node j (j = 1, . . . , n). Finally σ+ and σ− are, respectively, the limiting tensile and
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Figure 1. Steps in layout optimization: (a) definition of the problem domain and boundary conditions; (b) domain populated with
equally spaced nodes; (c) each node is connected to every other node in the domain to form a fully connected ground structure
or (d) each node is connected only to neighbouring nodes to form a minimally connected ground structure; and (e) the resulting
optimized layout using a member adding algorithm (red and blue bars indicate those in tension and compression, respectively
[online only]).

compressive stresses that can be sustained by the material. Problems of this nature may be solved
using linear programming.

Employing a fully connected ground structure of this type is computationally expensive, with the
problem comprising n(n − 1)/2 potential connections for a domain, where n is the total number of
nodes. The majority of the connections will have an area equal or close to zero following the opti-
mization and so do not contribute to the final structure. This issue may be alleviated by applying
the adaptive ‘member adding’ method proposed by Gilbert and Tyas (2003), which is a customized
column generation technique. With this method, nodes in the initial ground structure are only con-
nected to their immediate neighbours, Figure 1(d), instead of to every other node in the domain,
Figure 1(c). An iterative process is then used, with elements added to the current ground structure
from the list of potential connections. Newly added elements are introduced into the solution using
the Michell–Hemp criterion (2), which specifies limits on the virtual strain (ε) experienced by each
potential element (i), given a prescribed limiting stress (σ ):

−
1

σ−
≤ εi ≤

1

σ+
, i = 1, . . . ,m. (2)
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In the parlance of the column generation method (Gondzio and Sarkissian 1996; Desrosiers and
Lübbecke 2005; Gondzio, González-Brevis, and Munari 2013), new columns are added to the LP
constraint matrix B in (1). At the end of each iteration, potential connections are ranked, with those
most violating the criteria then added for use in the next iteration. Once there are no potential con-
nections violating the criteria remaining, the algorithm terminates. The solution obtained shown in
Figure 1(e) is provably optimal, with the computed volume the same as that obtained using a fully
connected ground structure.

2.2. General eigenvalue equation

Consider a truss structure consisting of m elements connecting a pre-determined set of n nodes. A
large external force P is applied to a specific node, with internal forces transmitted through the struc-
ture, resulting in small displacements at each node; this may be considered to be a static problem. To
take account of the vibration characteristics of the structure, it is necessary to consider the following
dynamic problem derived from the equation of motion:

K{u} + M{ü} = 0, (3)

where K and M represent the global stiffness and mass matrices, respectively. The mass and stiff-
ness matrices are represented as symmetric 2n × 2n matrices when modelling a two-dimensional
truss structure and 3n × 3nmatrices for a three-dimensional truss structure. The size of these global
matrices will be reduced by the number of supported degrees of freedom, since there are no displace-
ments at these locations. Given that the displacement vector is harmonic, (3) may be restructured
into the generalized eigenvalue problem:

Kφj = λj(M + M0)φj, (4)

whereM refers to the global mass matrix for the structure’s bar elements,M0 refers to the additional
mass of the nodes connecting each element and λj represents the eigenvalue for a given mode of
vibration φj (j = 1, 2, 3, . . . ). The free vibrations of a structure are equal to the square root of the

eigenvalues ω2
j = λj in radians per second, and thus the natural frequencies and normal modes of

vibration for the structure may be determined.

2.3. Frequency formulation

2.3.1. Determine the reference frequencies

To determine conformance with the original design problem, it is necessary to calculate the natural
frequencies of the structure. If a candidate design has been obtained via layout optimization, then this
can be performed using the connectivity andmember cross-sectional areas generated in the optimiza-
tion. The areas for each element are multiplied by the corresponding mass and stiffness coefficients
before being assembled into the global matrices (K andM) at the row/column index corresponding
to the degrees of freedom associated with the member end nodes, with rows and columns related to
the supported degrees of freedom omitted. The eigenvalues can be extracted e.g. using the built-in
MATLAB® eigs functionality. Previous studies, e.g.Du andOlhoff (2007), have consideredmultiple
eigenfrequencies; however, this contribution will concentrate on just the first natural frequency in
hertz for the structure to ensure it will not resonate when exposed to a source of excitation.

2.3.2. Semidefinite constraint

In order to perform an optimization targeting the natural frequencies of the structure, a new con-
straint equation must be derived from the generalized eigenvalue problem (4). Once the coefficient
matrices for stiffness and mass are determined, in order to avoid the optimization generating a struc-
ture prone to low frequency vibration, a threshold can be set such that the smallest eigenvalue from (4)
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is greater than or equal to a defined minimum value. Thus (4) may be transformed into the following
constraint:

K(a) − λ(M(a) + M0) � 0, (5)

where K(a) =
∑m

i=1 aiKi andM(a) =
∑m

i=1 aiMi are the global stiffness and mass matrices, respec-
tively, ai refers to the cross-sectional area of member i, λ is the eigenvalue derived from theminimum
specified natural frequency (ω1) for the specifiedmode of vibrationφj and � indicates that thematrix
to its left is symmetric and positive semidefinite. For the purposes of this contribution, the connecting
nodes are not considered and therefore the mass associated with jointsM0 = 0.

Thus, when incorporated into the layout optimization formulation (1), the problemmay bewritten
as

min
a,q

V = lTa

s.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Bq = p,
K(a) − λ0M(a) � 0
−σ−ai ≤ qi ≤ σ+ai, ∀ i
ai ≥ 0, ∀ i.

(6)

Fixing the smallest eigenvalue (λ0) to be greater than or equal to the minimum specified frequency
ensures that the areas of the elements are adjusted as part of the optimization until the inequality
constraint is achieved. Incorporation of the semidefinite constraint means that an SDP solver is now
required to solve the problem. Note that SDP problems are convex, enabling a globally optimal solu-
tion to be obtained, but are considerably more computationally demanding to solve than their LP
counterparts.

2.4. Short cantilever example

Two means of optimizing a short cantilever structure based on a prescribed minimum first natural
frequency will now be outlined, using the example problem defined in Figure 2 to illustrate salient
points. For this problem: P = 1 × 103N; E = 210 × 109Nm−2; ρ = 8050 kgm−3; and the limiting
tensile and compressive stresses σ = 350 × 106 Pa. The prescribed constraint on the fundamental
natural frequency is f1 ≥ 425Hz. All numerical examples in this contribution were run on a 64 bit
Windows® 10 desktop PC equipped with an Intel® i5 3.7GHz processor and 32GB of RAM, using
a script programmed using MATLAB 2020b. A number of semidefinite solvers are available and
are compared by Tyburec and Zeman (2017). This contribution will initially employ the MOSEK
ApS (2017) v8.1 solver using the Java Fusion MATLAB interface. It should be noted that unless oth-
erwise specified all layouts presented in the figures are filtered to include only elements with areas
greater than 1 × 10−6m2. This may occasionally result in elements that appear to be disconnected
from the overall structure. Additionally, to facilitate comparison with other published work, non-
dimensional volumes V are presented throughout the article, with scaled volumes V(P/σ) in cubic
metres also included in accompanying tables for completeness.

2.4.1. Two phase optimization approach

Since SDP problems are computationally expensive to solve, initially the efficacy of a two phase
optimization approach is evaluated. With this approach, a traditional layout optimization is first
undertaken without considering frequency constraints; if prescribed frequency requirements are not
met by the generated design, then a size optimization is subsequently performed to ensure that these
are met, modifying only the subset of elements present in the optimal structure; i.e. in this second
phase the areas of each element ai are adjusted to ensure the semidefinite constraint (5) is met. In
the interests of computational efficiency, only those elements that have an area greater than a pre-
determined minimum (taken as 1 × 10−6m2) are included in the optimization; these elements will
henceforth be referred to as members.
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Figure 2. Short cantilever example: design domain, loading and support details. All dimensions are in metres.

Figure 3. Short cantilever example: (a) reference LP solution achievedusing layout optimizationusing 120 × 60nodal divisions; (b)
morepractical LP layout, achievedby reducing thenodal divisions to 40 × 20andpenalising joints; (c) outcomeof the SDP frequency
optimization performed on the practical layout from (b); (d) layout generated using SDP optimization of the full ground structure,
including frequency constraint using 12 × 6 nodal divisions. (Key: red = tension; blue = compression; green = members in (c)
whose areas have been modified compared with (b); grey = members whose areas are as per the layout in (b) [online only]. (For
(a) V = 7.030, f1 = 403 Hz. (b) V = 7.095, f1 = 410 Hz. (c) V = 7.436, f1 = 425 Hz and (d) V = 7.134, f1 = 425 Hz.)

Table 1. Short cantilever example: LP and SDP results (target frequency for the SDP problem= 425 Hz).

Nodal V(P/σ) f1 Time
Figure Model divisions V (×10−5m3) (Hz) (s)

3(a) LP (fine ref.) 120 × 60 7.030 2.009 403 146
3(b) LP 40 × 20 7.095 2.027 410 26
3(c) SDP (size only) . . . 7.436 2.125 425 3
. . . LP (coarse ref.) 12 × 6 7.116 2.033 407 9
3(d) SDP (full) 12 × 6 7.134 2.038 425 1472

Considering first the example problem defined in Figure 2, an initial layout optimization is carried
out to provide reference values for the volume and first natural frequency of the structure; see Table 1
and Figure 3(a). The structure shown is similar to that obtained by He, Gilbert, and Song (2019).

However, the reference structure contains many members, so for the first phase of the proposed
two phase procedure a domain with fewer nodes is used to enable a more practical layout to be gener-
ated, containing fewer ‘fibrous’ elements. This is achieved by both reducing the number of nodes and
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Figure 4. Half wheel example: (a) problem definition; (b) optimal structure obtained after phase one of the two phasemethod (i.e.
not considering frequency constraints). All dimensions are in metres.

introducing a joint penalty, after Parkes (1975). This results in the structure shown in Figure 3(b),
which has fewer joints and elements than the benchmark but which has a similar volume.

In the second phase, the structure from the first phase is re-optimized using themodified formula-
tion that includes frequency constraints (6) to revise member sizes ensuring the frequency is not less
than 425Hz. In the re-optimization it is found that the areas of diagonal members radiating from the
support line, along with somemembers interconnecting these, need to bemodified (resizedmembers
are highlighted in green in Figure 3(c) in the online version of the paper).

It is evident that the solver has been successful in achieving the desired minimum natural fre-
quency, at minimal CPU cost; however, this has in this case come at a relatively high cost in terms
of increased volume (8.7%). This suggests that changing the size of the elements alone may not lead
to the most efficient solution, and a better one may be available if a wider solution space were to be
made available.

Next consider the classical half-wheel problem shown in Figure 4, as originally studied
by Michell (1904). The problem involves a central point load P = 1 × 103N applied at midspan
between statically determinate supports, limiting tensile and compressive stresses σ = 350 × 106 Pa
and, in common with the other presented examples, E = 210 × 109Nm−2 and ρ = 8050 kgm−3.
The optimal solution obtained when using 16 × 8 nodal divisions is shown in Figure 4(b) and has a
non-dimensional volume V = 3.191. This includes a short vertical member above each of the sup-
ports, leading to a structure that is in unstable equilibrium with the applied loading. This arises
because only equilibrium (and strength) constraints are enforced in phase one. However, a byproduct
of this is that subsequently adjusting the sizes of structural members alone in the second phase, with a
view to achieving a natural frequency of for example f1 = 200Hz,will fail owing to inherent instability
in the problem. This highlights a further limitation of the two phase optimization approach.

2.4.2. Holistic optimization

Although the two phase approach described in the preceding section is computationally efficient for
problems where it can obtain viable solutions, if the increase in volume in the second phase is large
then the question arises as to whether a more materially efficient design exists.

This can be checked by applying the formulation including an SDP frequency constraint to the
full ground structure. The associated computational expense means that only a coarse nodal grid
(12 × 6) can be used in this case. For the short cantilever example, the solution obtained using the
finest nodal density achievable with the available memory is shown in Figure 3(d). When compared
with a reference structure consisting of the same size, it demonstrates that a modified design enables
the target frequency to be met with little impact on the overall volume of the structure. The optimum
point where the equilibrium and frequency constraints are satisfied requires a layout different from
that of the structural optimization alone. However, it must be noted that the largest problem that
could be solved with a fully connected ground structure is much smaller than the one that could be
solved using the two phase approach.
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3. SDP formulation withmember adding

To solve complex problems of this nature with a large initial ground structure efficiently, a special
purpose solver based on the Mehrota-type primal–dual interior point method (Fujisawa et al. 2000)
was developed. The approach and its implementation closely follow Weldeyesus et al. (2019), which
describes the optimization of truss structures with constraints on global stability modelled via SDP.
In Weldeyesus et al. (2019), the proposed method is capable of obtaining solutions to relatively
large problems that could not otherwise have been solved. Owing to similarities between the math-
ematical properties of the optimization problem considered in this article and those of the problem
discussed in Weldeyesus et al. (2019), only the member adding method is explained here in detail.
Issues such as exploiting sparsity and the low rank property of the element stiffness matrices Ki

and mass matrices Mi when forming the linear systems arising in the interior point algorithm for
SDP are not repeated here, but play a crucial role in the overall efficiency of the approach. As
outlined in Section 2.1, the adaptive member adding approach—which is based on the column gen-
eration technique, see Gondzio and Sarkissian (1996), Desrosiers and Lübbecke (2005) and Gondzio,
González-Brevis, and Munari (2013)—is an iterative process originally proposed in Gilbert and
Tyas (2003), and also applied to other problems by e.g. Sokół and Rozvany (2013) and Weldeyesus
and Gondzio (2018), who also employed linear programming to obtain solutions. The method was
extended to treat SDP problems by Weldeyesus et al. (2019). The procedure starts by solving a min-
imum connectivity ground structure problem (Figure 1(d)), and proceeds by adding elements from
a potential connection list until a solution that satisfies the original fully connected ground structure
problem is obtained. This approach enables the method to obtain a solution using a small fraction of
the large number of potential connections: see Gilbert and Tyas (2003) and Weldeyesus et al. (2019)
for supporting numerical results.

3.1. Details of the SDPmember adding algorithm

Here, amathematical description of themember adding procedure akin to that described in Section 4
of Weldeyesus et al. (2019) is presented. The primal problem (6) has an associated dual problem (7),
where u ∈ R

n andX ∈ S
n
+ (i.e.X is symmetric and positive semidefinite) are the Lagrangemultipliers

for the equilibrium equation and the matrix inequality constraints in (6), respectively. Note that, in
some literature, for exampleWolkowicz, Saigal, andVandenberghe (2000), the primal formulation (6)
is stated as dual and the dual problem formulation (7) as primal.

maximize
u,X

pTu

subject to −
1

σ−
(li − (Ki − λMi) • X) ≤ (BTu)i, ∀ i

(BTu)i ≤
1

σ+
(li − (Ki − λMi) • X), ∀ i

X � 0.

(7)

After solving, the dual violations can be obtained using only the variables u and X in (7). The process
is as follows.

For any variable corresponding to member i to be dual feasible, formulation (7) implies that the
relation

−
1

σ−
≤

1

li − (Ki − λMi) • X
(BTu)i ≤

1

σ+
(8)

is satisfied. Now suppose that I0 ⊂ {1, . . . ,m} is a set of indices of members for which the primal
problem (6) and its dual (7) are currently solved. After solving problem (6), and obtaining dual
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Table 2. Short cantilever example: fully connected ground structure and member adding approaches (target frequency =

425 Hz).

Nodal V(P/σ) Time Speed Memory
Figure Model divisions V (×10−5 m3) (s) up (MB)

3(d) SDP (full) 12 × 6 7.134 2.038 1,472 . . . 16,081
5(a) SDP (mem. add.) 12 × 6 7.134 2.038 8 ×183 5

Table 3. Short cantilever example: results from the SDP member adding algorithm.

Nodal �Va V(P/σ) f1 Time
Figure divisions V (%) (×10−5m3) (Hz) (s)

5(b) 40 × 20 7.064 +0.5 2.018 425 4,915
5(c) 40 × 20 7.129 +1.4 2.037 450 11,655
5(d) 40 × 20 7.597 +8.0 2.171 480 17,671

aPercentage change compared with the volume of the reference structure shown in Figure 3(a).

values corresponding to (7), for all members with indices in I0, condition (8) can be used for all
i ∈ {1, . . . ,m0}\I0 to generate a set I of member indices to be added, given by

I =

{

i ∈ {1, . . . ,m0}\I0

∣

∣

∣

∣

1

li − (Ki − λMi) • X∗
(σ−ε−

i + σ+ε+
i ) ≥ 1 + β

}

, (9)

where the virtual strains are ε+
i = max{(BTu∗)i, 0} and ε−

i = max{−(BTu∗)i, 0} with u∗ and X∗

being optimal points of the preceding subprogram and β > 0 is an allowed tolerance decided by
the user. If I = ∅ the member adding procedure terminates; otherwise, members with indices in
I are added to the subsequent problem, filtering these using the heuristic techniques described
in Weldeyesus and Gondzio (2018) if necessary to avoid problem size growing too rapidly.

3.2. Revisiting the short cantilever and half-wheel examples

In order to establish the gains in efficiency from utilising the new member adding-based SDP
algorithm, the problem given in Figure 2 will be revisited, initially replicating the problem in
Figure 3(d) to demonstrate the efficiency gains of using the member adding algorithm.

Results for coarse nodal grids are presented in Table 2 and Figure 5(a). It is evident that the optimal
volumes are identical irrespective of whether a fully connected ground structure ormember adding is
employed, and the optimal truss solutions shown in Figures 3(d) and 5(a) are also virtually identical.
Most significantly, it is also evident that the proposedmember adding algorithm can obtain a solution
over two orders of magnitude more quickly than when a fully connected ground structure is used,
with thememory requirements reduced by three orders ofmagnitude. These efficiency improvements
mean that problems involving relatively fine nodal grids can now be tackled, which was not possi-
ble before. Thus, revisiting the problem shown in Figure 3(a), a new solution obtained via member
adding is presented in Figure 5(b), with additional solutions presented for higher minimum target
frequencies in Figures 5(c) and 5(d). Corresponding computational details are shown in Table 3. This
shows that relatively fine grid problems can be tackled, and that the geometry of the optimal structure
changes when higher target frequencies are specified, with the overall volume also increasing.

Now revisiting the half wheel example, by applying the procedure proposed in this contribution
a structure that satisfies both equilibrium and frequency constraints can be generated. For a target
frequency of 200Hz, the generated solution is negligibly higher in non-dimensional volume (now
V = 3.193, just 0.05% greater than before); see Figure 6. Significantly, to satisfy the frequency con-
straint, it is evident that additional stabilizing members have been added—although in this case
some of these are very thin, with some radial members below the filter cut-off (in this case area =
6 × 10−8m2) omitted.
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Figure 5. Short cantilever example: results obtained using the SDPmember addingmethod for a range ofminimum frequencies. A
total of 12 × 6 nodal divisions are used in case (a) and 40 × 20 in cases (b)–(d). (For (a) V = 7.134, f1 = 425 Hz. (b) V = 7.064, f1 =

425 Hz. (c) V = 7.129, f1 = 450 Hz and (d) V = 7.597, f1 = 480 Hz.)

Figure 6. Half wheel example: structure obtained using combined equilibrium and frequency constraints for a target frequency of
200 Hz (dashed lines indicate members added to satisfy the frequency constraint, also helping to stabilize the structure).

3.3. Influence of initial member arrangement on computation

It has been demonstrated that the inclusion of a member adding step in the optimization reduces
the memory burden and enables problems of significant size to be tackled. To understand the per-
formance of the member adding method further, the examples originally considered by Gilbert and
Tyas (2003) are used to investigate the influence of the chosen initial nodal connectivity on the solu-
tion, the computational time and the required memory footprint. A 28 × 28 nodal division square
domain is used; however, in this contribution overlapping connections are omitted as they can lead
to instability in the frequency calculations due to multiple members coexisting in the same space.
In addition, due to the significant memory requirements of the fully connected ground structure
example (circa 400GB), an additional set of results is obtained using a domain comprising a reduced
number of 14 × 14 nodal divisions.

Applying the same physical parameters as in the example shown in Figure 2, the original optimal
truss structure from Gilbert and Tyas (2003) was assessed and found to have a first natural frequency
of f1 = 945Hz; therefore, an initial frequency target of f1 = 950Hz was considered appropriate for
the starting problem as it is close to the original yet includes an active frequency constraint. The



12 S. J. SALT ET AL.

Figure 7. Influence of initial connectivity inmember adding scheme: (a) adjacent nodes connected (right to left upward diagonals
in all units), iteration 1; (b)minimally connectedground structurewith nearest neighbour nodes connected, iteration 1; (c)minimally
connected ground structure plus boundary/loaded nodes connected, iteration 1; (d) final optimized structural form common to all
starting points.

target frequency was then increased by 10% to help verify the extent to which the influence of the
initial member connectivity is common across a range of target frequencies.

Table 4 shows the four initial ground structures considered, (a)–(d), together with results for the
two target frequencies for each of the two nodal division discretizations; note that, to maintain a basis
for comparison, all presented volumes are non-dimensional. The resulting volumes for all the cases
are within 1% of those provided in the original article, demonstrating that in this case the frequency
constraint does not come at a high cost in terms of structural efficiency; however, CPU times are
markedly increased. In contrast to the findings in the original article by Gilbert and Tyas (2003), here
it is also clear that themost efficient initial ground structure in terms of CPU time comprises a ground
structure with the supports directly connected to the load (case (c)); in addition, this leads to a lower
number of peak LP variables, indicating a reduced memory burden. Figure 7 shows the outcome of
the initial iteration for each of the three initial ground structures investigated when using themember
adding scheme for the 14×14 nodal division case. It is evident that, although the supports are in each
case connected to the load, in the case of (c) this is predominantly achieved through the use of just
two diagonal elements, which directly connect the load with the supports.

It should be noted that, when member adding is used, ground structure (a) has the longest associ-
ated CPU time, and also the greatest number of LP variables at the end of the optimization process.
Ground structure (c) has the shortest associated CPU time, the fewest LP variables, and hence also the
lowest memory consumption. However, for the sake of simplicity, initial ground structure (b) will be
used for all subsequent examples in this contribution. Finally, it should also be noted that, although
the optimized volume obtained when using a fully connected ground structure from the outset, (d), is
marginally higher than that obtained in the other three cases, this is probably due to the contribution
to the volume of a large number of elements with areas very close to zero.

4. Numerical examples

Awider range of examples are now considered to investigate the efficacy of the presented SDPmember
adding algorithm further when used to optimize a component, considering simultaneously equilib-
rium, strength and first natural frequency constraints. The classical Hemp cantilever and MBB beam
examples are first considered. A 3D cantilever designed to carry a point load is then considered, with
different minimum specified natural frequencies used to show the resulting variation in form and
associated volume. Each example begins with a minimum connectivity ground structure.

4.1. Hemp cantilever example

The initial example considered was first studied by Hemp (1973) and consists of a square domain
with single point load located at mid-height between two supports, as shown in Figure 8(a).
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Table 4. Influence of initial member connectivity on efficiency of member adding scheme: (a) adjacent nodes connected (right to
left upward diagonals in all cells); (b) minimally connected ground structure, comprising nearest neighbour connectivity; (c) min-
imally connected ground structure plus connections between boundary and loaded nodes; (d) traditional fully connected ground
structure (without overlapping bars).

Grid f1 (Hz)

28 × 28 950 Volume, V 2.432 2.432 2.432 –
No. of iterations 9 6 7 –
Initial no. of bars 2,408 3,192 3,221 –
Peak no. of bars 36,151 8,000 5,881 –
Time to 1.001V (s) 63,875.1 2,209.9 804 –
CPU time (s) 182,738.9 3,811.6 2,102.8 –

1,045 Volume, V 2.441 2.441 2.441 –
No. of iterations 12 7 8 –
Initial no. of bars 2,408 3,192 3,221 –
Peak no. of bars 33,964 10,710 7,005 –
Time to 1.001V (s) 192,161.2 4,054.9 992 –
CPU time (s) 289,679.8 8,555.2 2,852.6 –

14 × 14 950 Volume, V 2.435 2.435 2.435 2.437
No. of iterations 9 6 6 –
Initial no. of bars 616 812 827 15,556
Peak no. of bars 4,239 1,982 1,197 15,556
Time to 1.001V (s) 660.2 69.9 29.1 –
CPU time (s) 1,379.1 116.7 51.2 5,501.3

1,045 Volume, V 2.443 2.443 2.443 2.448
No. of iterations 9 6 5 –
Initial no. of bars 616 812 827 15,556
Peak no. of bars 3,365 1,936 1,265 15,556
Time to 1.001V (s) 346 67.4 33.8 –
CPU time (s) 748.1 134.8 45.5 5,089.7

Table 5. Hemp cantilever example: results obtained from equilibrium optimization and with inclusion of the
frequency constraints.

Nodal �V V(P/σ) f1 Time
Figure Model divisions V (%) (×10−5m3) (Hz) (s)

8(b) REF 72 × 72 4.332 . . . 1.238 616 194
. . . LP 48 × 48 4.339 +0.01 1.240 623 17
8(c) SDP 48 × 48 4.340 +0.01 1.240 700 42,676
8(d) SDP 48 × 48 4.794 +10.6 1.370 1,000 75,004

Hemp determined the non-dimensional analytical volume to be approximately 4.34; later, He and
Gilbert (2015) applied more precise methods and geometry rationalization, further reducing the
optimum volume to 4.3228. Here, a nodal grid comprising 72 × 72 nodal divisions and the mate-
rial properties P = 1 × 103N, E = 210 × 109Nm−2, ρ = 8050 kgm−3 and the limiting tensile and
compressive stresses σ = 350 × 106 Pa were used to obtain a reference LP solution with a volume
V = 4.332, within 0.5% of the improved optimum figure. The associated structure is shown in
Figure 8(b). The first natural frequency of this reference structure was computed to be f1 = 616Hz.

In order to generate solutions in a reasonable timescale for the SDP analyses, the nodal density was
reduced to 48 × 48. An additional LP reference was obtained at this density that has negligible impact
on volume but changes the first frequency to 686Hz. SDP analyses were conducted with target first
natural frequencies of f1 = 700 and 1000Hz to identify changes in the generated structure. Results of
the associated optimization runs are presented in Table 5 and Figures 8(c) and 8(d), respectively.

In the first case, the impact on the resulting generated structure and associated volume is small,
with the increase in volumebeing less than 1%and little difference in overall layout. In the second case,
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Figure 8. Hemp cantilever example: (a) problem definition with dimensions in metres; (b) reference LP solution, obtained with
72 × 72nodal divisions; (c) SDPmember adding solution obtained for a target frequency of 700 Hz; (d) SDPmember adding solution
obtained for a target frequency of 1000 Hz. Note that both (c) and (d) have 48 × 48 nodal divisions. (For (b) V = 4.332, f1 = 616 Hz.
(c) V = 4.350, f1 = 700 Hz and (d) V = 4.794, f1 = 1000 Hz.)

increasing the minimum frequency to f1 = 1000Hz can be observed to have a muchmore significant
impact, with the overall structural depth and complexity of the result both reduced.

4.2. MBB beam example

The Messerschmidt–Bölkow–Blohm (MBB) beam is attributed to the German aircraft company of
the same name, and can still be found in Airbus passenger aircraft. Though the real-world problem
includes a number of design constraints, in the literature a simpler problem is normally consid-
ered, involving simple loading and boundary conditions and usually targeting minimum volume or
compliance. The exact analytical layout for the MBB structure with stress constraints was derived
by Rozvany (1998), with the optimal non-dimensional volume V = 13.597 for a beam length of
three. As the beam is symmetrical, only the right half is shown in Figure 9(a). An optimization was
carried out with nodes directly along the symmetry plane free to move vertically whilst the bottom
right corner was fixed in the vertical direction and free to move horizontally. The example assumes
aerospace grade aluminium is used with P = 1 × 103N, σ = 90 × 106 Pa, E = 68.9 × 109Nm−2

and ρ = 2770 kgm−3.
An initial LP optimization was carried out to obtain a reference volume and frequency for the

structure, using 60 × 20 nodal divisions to provide a balance between accuracy and computational
efficiency (Figure 9(b)). SDP solutions were then sought for two minimum target frequencies; the
solutions obtained (Table 6 and Figures 9(c) and 9(d)) demonstrate that the introduction of a fre-
quency constraint has enabled minimum volume structures satisfying a given minimum frequency
to be obtained, with very little impact on overall volume. However, it is evident that the time required
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Figure 9. MBB beam example: (a) problem definition with dimensions in metres; (b) reference solution obtained for this example
with the determined first natural frequency; (c) SDPmember adding solution obtained for a target frequency of 400 Hz; (d) a target
of 425 Hz. (For (b) V = 14.136, f1 = 374 Hz. (c) V = 14.237, f1 = 400 Hz and (d) V = 14.631, f1 = 425 Hz.)

Table 6. MBB beam example: SDP member adding algorithm results.

Nodal �V V(P/σ) f1 Time
Figure Model divisions V (%) (×10−4m3) (Hz) (s)

9(b) LP 60 × 20 14.136 . . . 1.571 374 8
9(c) SDP 60 × 20 14.238 +0.72 1.582 400 31,781
9(d) SDP 60 × 20 14.631 +3.5 1.626 425 46,317

to complete a frequency optimization is clearly considerably longer than that required for a basic LP
optimization.

4.3. 3D cantilever example

The third example is a simple 3D cantilever beam, as shown in Figure 10(a). To improve the clar-
ity of the results and to minimize the additional computational burden associated with solving 3D
problems, the number of nodal divisions has been reduced to 6 × 2 × 2 to ensure solutions are
obtained in a manageable time-frame. The properties for this example are as follows: P = 1 × 103N;
E = 210 × 109Nm−2; ρ = 8050 kgm−3; and the maximum tensile and compressive stresses are
σ = 350 × 106 Pa. Various target first natural frequencies are used to demonstrate the change in
structural form that results from including a frequency constraint.

Full results for this example are shown in Table 7. Figure 10(b) shows the layout of the optimal
structure based solely upon equilibrium and strength considerations, with the natural frequency of
the resulting structure being found to be 57Hz. When a frequency constraint f1 = 100Hz is intro-
duced (Figure 10(c)) the structure begins to change, with new members added to the structure.
Similar to the 2D examples, these additional elements brace the structure, adding stiffness and there-
fore increasing the frequency; however, the use of member adding has allowed this to happen in a
short amount of time and with limited impact on the overall volume of the structure. As the target
frequency is increased further to 150 and 200Hz as shown in Figures 10(d) and 10(e), respectively, a
more dramatic change begins to take place, with the members that are primarily taking the load and
providing structural stiffness becoming longer and growing in cross section.
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Figure 10. 3D cantilever example: (a) problem definition with dimensions in metres; (b) LP solution (no frequency constraint); (c)
SDP member adding solution for a target frequency of 100 Hz; (d) target of 150 Hz; (e) target of 200 Hz. All cases employ 6 × 2 × 2
nodal divisions. (For (b) V = 30.676, f1 = 57 Hz. (c) V = 30.883, f1 = 100 Hz. (d) V = 33.233, f1 = 150 Hz and (e) V = 38.111, f1 =

200 Hz.)
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Table 7. 3D cantilever example: SDP member adding algorithm results.

�V V(P/σ) f1 Time
Figure Model Cons V (%) (×10−5

m
3) (Hz) (s)

10(b) LP 474 30.676 . . . 8.765 57 5.8
10(c) SDP 566 30.883 +0.6 8.824 100 9.9
10(d) SDP 633 33.233 +8.3 9.495 150 12.6
10(e) SDP 582 38.111 +24.2 10.889 200 13.3

5. Conclusions

Numerical layout optimization provides an efficient means of generating optimal truss structures for
a given set of design requirements. However, traditional linear programming-based formulations are
limited, and cannot for example accommodate frequency constraints. In this contribution, extended
semi-definite programming-based formulations are considered that allow the minimum first natural
frequency of a structure to be specified. The main conclusions are as follows.

• The use of a two phase approach, in which the traditional LP layout optimization formulation
is used in the first phase and an SDP size optimization is used in the second phase, provides a
computationally efficientmeans of generating solutions satisfying a specified frequency constraint.
However, the solutions obtained are likely to be sub-optimal, with the resulting structures having
higher than necessary volume.

• Alternatively, a constraint on frequency can be introduced in the optimization directly, furnishing
layouts that satisfy both structural performance and first natural frequency requirements. How-
ever, when using a fully connected ground structure and a standard SDP solver, the computational
cost and memory requirements have been found to be high, severely limiting the scale of problem
that can be tackled.

• The use of a bespoke solver and an adaptive member adding solution strategy, which involves
starting with a sparsely connected ground structure and only adding members as required until
the optimal solution is found, allows solutions to be obtained in a much shorter time-frame (183
times quicker in the case of one of the examples considered), and with much lower memory con-
sumption. This approach has been successfully applied to a range of 2D and 3D problems in this
article.

In future studies, the influence of joints on vibration characteristics will be considered in more
detail, with for example differences in optimal layout and volume being evaluated when rigid-joints
as opposed to pin-joints are assumed. In addition, consideration will be given to limiting the num-
ber and arrangement of members within a final design, to ensure the resulting component is readily
manufacturable.
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