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Deep Hybrid Neural Network-Based Channel

Equalization in Visible Light Communication
Pu Miao, Member, IEEE, Gaojie Chen, Senior Member, IEEE, Kanapathippillai Cumanan, Senior Member, IEEE

Yu Yao, and Jonathon A. Chambers, Fellow, IEEE

Abstract—In this letter, the channel impairments compensation
of visible light communication is formulated as a time sequence
with memory prediction. Then we propose efficient nonlinear post
equalization, using a combined long-short term memory (LSTM)
and deep neural network (DNN), to learn the complicated channel
characteristics and recover the original transmitted signal. We
leverage the long-term memory parameters of LSTM to represent
the sequence causality within the memory channel and refine
the results by DNN to improve the reconstruction accuracy.
Results demonstrate that the proposed scheme can robustly
address the overall channel impairments and accurately recover
the original transmitted signal with fairly fast convergence speed.
Besides, it can achieve better balance between performance and
complexity than that of the conventional competitive approaches,
which demonstrates the potential and validity of the proposed
methodology for channel equalization.

Index Terms—Deep learning, nonlinear equalization, visible
light communication, hybrid neural network, long-short term
memory

I. INTRODUCTION

Visible light communication (VLC) based on light-emitting

diode (LED) has gained significant attention for indoor short-

range wireless communication [1]. The spectral efficiency of

VLC has been increased with the help of high-order mod-

ulation, however, it is distorted by the channel impairments,

which are mainly derived from the inherent nonlinearity of the

LED and the inevitable inter-symbol interference (ISI) from

the multipath optical transmission [2].

Various nonlinear post-equalization (NPE) techniques, in-

cluding model-solving based and feature-learning based

schemes, have been proposed to deal with the aforementioned

problem. For model-solving approaches [2], the equaliza-

tion performance mainly depends on the accuracy of the

equalizer model and the parameter identification, which will
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face the cumbersome problems of computational complexity

and insufficient accuracy. Deep learning (DL), which shows

unparalleled superiority for feature learning with unknown or

complex channels, is also applied to optical communication

for channel impairments compensation [3].

Comprehensive introduction of DL-based equalization can

be found in [4]–[10]. In [4] and [5], a fully connected deep

neural network (FC-DNN) was employed at the receiver to

demodulate the output signals. Because the learning ability

of FC-DNN for memory nonlinearity is limited, the bit error

rate (BER) performance is not good. The recurrent neural

network (RNN) with long short-term memory (LSTM) cell

[6]–[8] is powerful for modeling the nonlinear channel with

memory since it could handle the long-term dependencies

and store the memory parameters, which are directly related

with the channel characteristics. Nevertheless, the convergence

speed of the simple LSTM is merely adequate, and the

equalization accuracy doesn’t possess a good robustness to

the noise variation. To learn the useful features, a combined

convolutional neural network (CNN) with an LSTM scheme

was proposed in [9] and [10]. However, more convolution and

pooling layers are introduced to achieve satisfactory accuracy

for deep memory scenarios. Thus the network complexity is

high, and the training period is severely extended since the

inner parameters are intricate. Therefore, the trade-off between

the performance metrics is not well achieved, which is one of

the critical challenges in practical VLC application [1].

Inspired by the mathematical expression of a Volterra

equalizer, an ingenious design of the input form is employed

whereby the channel equalization is formulated as a time-

sequence with memory prediction problem. A deep hybrid

neural network (DHNN) is proposed as an efficient NPE

to predict the equalized outputs while guaranteeing the per-

formance balance. Simulation results demonstrate that the

proposed scheme can offer excellent BER performance with

reduced complexity compared to the existing competitive

methods. In addition, the proposed method exhibits relatively

fast convergence. It is more robust to the mismatched condi-

tions of training and testing, which shows the applicability of

the DHNN for memory nonlinearity compensation in VLC.

II. PROBLEM FORMULATION

Consider a typical VLC system employing an intensity mod-

ulation and direct detection (IM/DD) structure [1]–[3]. After

optical-to-electrical conversion in the photodetector (PD), the

received electrical signal can be expressed as

y (n)=RPD (x (n) + IDC) ∗ h (n) + ε (n) , (1)
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Fig. 1. Schematic of the proposed scheme in VLC system.

where x (n) is the real-valued transmitted signal, RPD is the

optoelectronic conversion factor of the PD, IDC denotes the

DC component, h (n) is the overall channel impulse response,

ε (n) is the channel noise following Gaussian distribution,

and ∗ denotes convolution. Therefore, the overall impairments

involved in y (n) will affect the transmission quality of the

VLC system.

At the receiver, y (n) is fed into the Volterra-based NPE,

then, the corresponding outputs x̃ (n) can be expressed as

x̃ (n) =
P
∑

p=1

L−1
∑

k1=0

· · ·

L−1
∑

kp=0

hp (k1, · · · , kp)

p
∏

i=1

y (n− ki) + v (n) ,

(2)

where L denotes the memory length, P is the nonlinear order,

hp (k1, · · · , kp) is the pth order Volterra kernel, and v (n) is

the modeling error. Let

c1 (n)=[y (n) , · · · , y (n− L+ 1)]T , (3)

which includes the truncated samples with memory L. Then,

x̃ (n) can be considered as the sum results of the response for

each hp (k1, · · · , kp) and cp (n), shown as

x̃ (n) =
P
∑

p=1

c
T
p (n)hp + v (n) , (4)

where cp (n) = cp−1 (n) ⊗ c1 (n) for p ≥ 2, and ⊗ is the

Kronecker product, and hp denote the corresponding kernel

coefficients for the hp (k1, · · · , kp) family. Note that the terms

hp (k1, · · · , kp) are arranged sequentially in hp for the index

(k1, · · · , kp).
The main goal of the NPE is to undo the overall nonlinearity

from y (n) and produce x̃ (n) which has a minimized error

with respect to x (n). As seen from (4), the calculation of x̃ (n)
is mainly related to c1 (n), which contains both the current

input and the past states of y (n). Thus, we can infer that

x̃ (n) can be correctly predicted from c1 (n) at the nth moment

once the kernel coefficients of hp are obtained accurately.

Therefore, from the perspective of learning and classification,

both hp and x̃ (n) can be learned from the training samples

set {x (n) , c1 (n)}, and the implementation of the NPE can be

considered as a one-dimensional time sequence with memory

prediction problem for the VLC channel input, in which the

DL approach is well applicable and justified.

III. THE PROPOSED SCHEME

To solve the above problem, we propose a DHNN equaliza-

tion scheme with good learning ability and convergence speed.

The model architecture is depicted in Fig. 1. The proposed

DHNN is composed of a cascade of several elaborated neural

networks, which includes the input subnet S1, multi-layer

LSTM net S2, the output net S3 and the refine net S4. In

addition, both S1 and S3 employ a simple neural network, S2

involves an LSTM network with L2 layers and S4 deploys

the FC-DNN with L4 layers, respectively. In what follows,

we assume that synchronization has been perfectly achieved

at the receiver [2].

Let y = [y (1) , y (2) , · · · , y (m) , y (m+ 1) , · · · , y (N)]
denotes the original received vector, and DS2

q denotes the cell

number of the qth layer of S2. As illustrated in Fig. 1, y is

firstly split into several short overlapping samples by a sliding

window in the pre-treatment block, where the window length

is m and the sliding step is 1. Moreover, m also represents

the time step of the LSTM unit. After (N −m+ 1) batch

sampling in the pre-processing block, the output is formed as

Y=









y (1) y (2) · · · y (m)
y (2) y (3) · · · y (m+ 1)

...
... · · ·

...
y (N −m+ 1) y (N −m+ 2) · · · y (N)









.

(5)

Y ∈ R
(N−m+1)×m contains time-step vectors, which are

firstly fed into S1 for data shaping to fulfil the input dimension

requirements of the following LSTM cell. Note that S1 is

composed of the cascaded sub-layer block including the dense

layer and batch normalization layer. After transformation, a

3-D vector Y ∈ R
(N−m+1)×m×D

S2

1 is obtained and fed into

S2. As for S2, it is composed of a cascaded sub-layer block

including multiple LSTM cells. In addition, different numbers

of LSTM cells can be deployed in different sub-layers.

The internal structure of a single LSTM cell in one layer is

shown in Fig. 2, which contains three Sigmoid functions σ (·)
in terms of forget gate, input gate and output gate. These gates

can selectively influence the state of the DHNN at each time

step. Moreover, the forget gate is the core of a single LSTM

cell, since its output ft determines the information that should

be retained or discarded according to the current cell input yt
at time step t and the previous cell output Ht−1 at time step

t−1. The input gate picks up some new information and then

adds it into the former state Ct−1, shown as

Ct = ftCt−1 + itzt, (6)

where ft ∈ [0, 1] and it ∈ [0, 1] indicating the proportion of

the important information in Ct−1 and in the temporary cell
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Fig. 2. Internal structure of a LSTM cell in one layer.

state zt. Then, the output of the LSTM cell is calculated by

Ht = tanh (Ct)σ (Wo [yt, Ht−1] + bo) , (7)

where Wo and bo denote the parameter and bias matrix of the

output gate, respectively. As a result, the outputs for every time

step of this layer are calculated as above-mentioned, then the

layer output H1 ∈ R
(N−m+1)×m×D

S2

2 is formed accordingly.

After that, H1 is fed into the corresponding LSTM cells

of the next layer for neural computing until the last layer.

However, for the last layer, only the Hm at the last time step

is selected thus all of them can be composed as the final

2-D output HL2
∈ R

(N−m+1)×D
S2

L2 . However, HL2
should

be transformed as a column vector because the main goal of

DHNN is to predict the (N −m+ 1) dimensional vector x̃

from y. Hence, the net S3 is applied subsequently to transform

HL2
into the proper identified data x̃L2

∈ R
(N−m+1).

In order to improve the prediction ability, we feed x̃L2

into S4 for refining the network output. The net S4 is made

up by cascading a sub-layer containing a dense layer, batch

normalization and activation function. It is noteworthy that the

Relu function ρRL(·) is used for most layers in S4 except for

the last layer, where the linear activation function is employed.

In addition, the last layer does not deploy normalization so as

to produce the true value of the original transmitted signal.

Finally, the equalized x̃ can be directly obtained.

For the computational complexity, it is worth noting that

the calculation of S2 and S4 are dominant in each time step.

Thus we define the cell number of each layer in S2 and S4 be

equal to DS2 and DS4 , respectively. Accordingly, the overall

complexity of a DHNN per time step can be approximately

expressed as O
(

4mDS2 + 4
(

DS2

)2
+ 2DS4

)

.

We adopt the direct current biased optical orthogonal fre-

quency division multiplexing (DCO-OFDM) as the training

symbols in the offline training stage. The model is trained

under the IM/DD channel, which involves LED nonlinearity,

optical propagation and channel noise. Notice that the channel

follows IEEE 802.15.7r1 for indoor environments [11], and

the receiving plane is divided into several grid units with

equidistant spacing used as potential locations for the PD.

Random data are first generated as the transmitted symbols

in each simulation. After VLC transmission, the received

electrical signals are collected under different PD locations,

and split into several short overlapping samples. Every short

sequence and one sample of the original transmitted signals

are combined as training data. Practically, we should collect

a diverse and abundant training set to enhance the parameters

learning ability of the DHNN. Moreover, we employ the

normalized mean squared error (NMSE) between the raw x

and the predicted x̃ as the training loss function, as calculated

by

loss =

∑

∥x− x̃∥2
2

∑

∥x∥2
2

. (8)

Furthermore, TensorFlow is adopted and the training proce-

dure is implemented on a work station running with a graphics

processing unit of NVIDIA GeForce 2080Ti drived by CUDA

10.0. Moreover, the adaptive moment estimation (Adam) is

used as the optimizer and the learning rate is fixed to 0.0001.

In the online deployment stage, the well-trained model

generates the output that predicts the transmitted signal with-

out explicitly estimating the IM/DD channel. As for testing,

only several special links are adopted to evaluate the system

performance. For convenience, the four-receiver locations with

the root mean square (RMS) delay spread of 7.92, 8.2, 8.3 and

8.9 ns are marked as U1, U2, U3 and U4, respectively.

IV. SIMULATION RESULTS

In this section, simulation results are conducted to evalu-

ate the corresponding performance of the proposed scheme.

A modulated DCO-OFDM symbol, containing total 512

sub-carriers with 16-based quadrature amplitude modulation

(QAM), is randomly generated at the transmitter. The normal-

ized DC is set as 0.4. As for the architecture of DHNN, S1 and

S3 employ only one dense layer with the neuron size of 128

and 256, respectively. The S2 involves two LSTM layers with

the cell size of (128, 256). The S4 employs a three-layer FC-

DNN where the neuron size of the hidden layer is 50. It should

be noted that these hyperparameters are manually determined

based on empirical trials, and the batch processing is used for

the network input.

A. Convergence Performance

Taking the time step m = 40, the proposed scheme is

individually trained as the training signal-to-noise ratio (SNR)

λ varies from 20 to 50 dB, respectively. The corresponding

training loss in terms of the NMSE is presented in Fig. 3.

All of the curves tend to become stable gradually with the

training epoch increased. Except for the curve of λ = 20 dB,

the other curves eventually achieve an acceptable training

performance, e.g., the average final loss of the last 1000

epochs for λ = 30 to 50 dB are fluctuating around −26.1
to −34.9 dB, which indicates the successful network training

since they can meet the requirements of the symbol detection

in the QAM constellation. In addition, as shown in the previous

3000 epochs, the convergence speed is increased with the

increase of λ, and it achieves the best value in the case of

λ = 40 dB. After that, it is decreased as the λ varies from 45

to 50 dB. Furthermore, the DHNN with λ = 40 dB just cost

about 2100 epochs to converge the NMSE of −30 dB while

the other curves need at least 4300 epochs to reach the same

NMSE level. The main reason is that the samples with high

SNRs would reduce the learning ability of the DHNN to the

channel noise, whereas that with low SNRs would weaken the

learning of the useful information.

In addition, the time step m determines the length of the

input sequence and also the memory ability in the prediction
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procedure. Appropriate m is also favorable for the channel

characteristics learning by DHNN. Fig. 4 shows the training

loss performance as the m varies from the length 5 to 50.

The curve of m = 5 failed in network training with the final

average NMSE of −6.5 dB, whereas the others can achieve

the average NMSE between −26.3 to −34.1 dB, showing

acceptable prediction precision. The figure illustrates that the

larger the m used, the smaller training NMSE is obtained.

However, the inner structure of DHNN will become intricate

as m is set too large, increasing network complexity. Under

the consideration of convergence and training quality, m = 40
and λ = 40 dB is employed in the following studies.

B. Impairments Compensation

By mapping the amplitudes of x (n) and y (n), the channel

impairments of U4 can be illustrated in Fig. 5. In addition,

the output of the proposed scheme and the ideal equalization

are also depicted here for comparison. Note that the ideal case

has the channel information perfectly-known to the receiver.

We can observe that the amplitudes of the original received

y (n) deviates from the linear straight line and exhibits strong

distortion. However, the proposed scheme is slightly diverged

from the ideal case and shows an excellent linear relationship

with the same channel inputs, indicating that the original

inputs can be accurately predicted by the proposed DHNN thus

the overall nonlinearity of the LED and the optical wireless

channel can be simultaneously mitigated.
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Fig. 5. Normalized amplitudes comparison of the input and output signal.
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The corresponding BER performance comparison is illus-

trated by the solid line in Fig. 6 as the testing SNR ζ varies

from 0 to 36 dB. In addition, the other four equalization

schemes in terms of the basic-DNN [4], the basic-LSTM [7],

the CNN-LSTM [9] and the conventional Volterra approach

based on orthogonal matching pursuit (OMP) [12] are also

presented here. In general, the BER performances of the above

methods have noticeable improvement as compared with the

original received y (n). However, the BER accuracy of the

basic-DNN tends to be saturated when ζ is over 27 dB.

In addition, both the proposed scheme and the CNN-LSTM

are competitive, because they can provide an excellent BER

performance among the other methods. Furthermore, they have

the similar BER performance to the one for the ideal case,

which indicates that the overall channel nonlinearity can be

essentially compensated perfectly. Besides that, as for the BER

level of 1 × 10−3, the two competitive schemes can save

the required SNR at least by 2.8 dB as compared with the

basic-LSTM, by 4 dB for the OMP-Volterra, and by 14 dB
for the basic-DNN, respectively. However, the CNN-LSTM

costs more hardware resources, and makes small devices

unaffordable which are next analyzed.

C. Complexity Analysis

The corresponding application complexity in terms of com-

putational complexity, amount of floating-point operations

(FLOPs) and time consumption required for the forward-

pass procedure of one OFDM symbol, are shown in Table I,
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TABLE I
COMPARISON OF APPLICATION COMPLEXITY

Complexity 1 FLOPs Time

Basic-LSTM O
(

4mD + 4D2
)

25.64M 1.72e-5s
CNN-LSTM O

(

K2C2 +M2C+4mD + 4D2
)

572.78M 5.32e-5s

The proposed O

(

4mDS2 + 4
(

DS2

)2
+ 2DS4

)

33.81M 1.84e-5s

1 K is the size of convolutional kernel, C is the number of filters, M is
spatial size of the output feature, and D is the number of LSTM cell.

where the FLOPs are measured based on the frozen graph.

Note that the CNN employs one convolutional and pooling

layer with K = 3 and C = 20. As the results show, the

CNN-LSTM has the highest structural complexity and costs

much computation time due to the complex operation in

convolutional and pooling layers, which grows quadratically

with K, C, M and D. Thus, it improves the BER performance

at the cost of complex signal processing with a huge amount

of inner parameters. By comparison, to achieve the equiva-

lent BER performance within the same training epochs, the

DHNN needs 33.81 million FLOPs, nearly one-sixteenth of the

CNN-LSTM. Therefore, the proposed scheme can effectively

balance the performance and application complexity.

D. Robustness Analysis

The above results are obtained based on the fixed conditions.

However, the mismatches may occur in practical deployment

because the signal will undergo different clipping, ambient

noise and delivering links. Therefore, it is very important for

the trained DHNN to be relatively robust to these mismatches.

As the clipping ratio (CR) is 6 dB, the BER curves of the pro-

posed scheme and the other four methods are demonstrated by

the dashdot line in Fig. 6. As compared with the case without

clipping, the proposed scheme has the slightest performance

deviation, indicating that the proposed scheme could provide

the benefits of clipping to the transmitter because of its inher-

ent robustness to the clipping distortions. In addition, although

the testing SNR mismatches the training SNR, it doesn’t have

significant damage on the BER performance. Moreover, the

well-trained DHNN is also evaluated for different receiver

locations, and the corresponding results are shown in Fig. 7.

The BER performances of these four cases are very similar

and only have a slight difference for high ζ. Therefore, the

proposed scheme can still work effectively and can provide the

robust BER performance even though the testing conditions

are not exactly the same as those used in the training stage,

which shows a good robustness and generalization ability of

the proposed scheme.

V. CONCLUSIONS

In this letter, we proposed a novel DHNN-based equalizer

for channel impairments compensation in a VLC system. The

results confirmed that the proposed scheme is beneficial to

mitigate the overall channel nonlinearity, and it can achieve

an excellent BER performance improvement with affordable

complexity cost, which outperforms the conventional methods

by at least 2.8 dB SNR when compared at the BER of 1 ×
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10-3

10-2

10-1

100

B
E
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U
1

U
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U
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U
4

Fig. 7. BER performance of the proposed scheme at different positions.

10−3. Furthermore, the proposed scheme exhibited its unique

advantages in channel characteristics learning, and is more

robust to the mismatch conditions of the practical deployment

and training stage, which validated the effectiveness and the

generalization ability of the DHNN equalizer.
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