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A B S T R A C T   

In this work, we demonstrate the MBE growth of a systematic series of GaAsBi/GaAs multiple quantum well 
devices with up to 120 periods and report on their structural and optical characterisation. TEM images confirm 
the incorporation of a record number of wells for this material, while showing reasonable thickness uniformity. 
Fitting of the XRD data becomes worse as the number of quantum wells increases due to strain relaxation and 
out-of-plane growth inhomogeneity. The devices are compared to a previous series of devices grown in our group 
using PL and are found to have less severe strain relaxation due to the thicker barriers and lower average strain in 
the MQW stack, despite containing a greater number of wells.   

1. Introduction 

GaAsBi is a promising material for multi-junction photovoltaics due 
to the large reduction in band gap caused by Bi incorporation into GaAs 
[1]. The band gap reduction per unit strain is around three times greater 
for Bi than for In incorporation, which is useful for multi-junction 
photovoltaic devices that are hindered by the lack of a 1 eV band gap 
material lattice matched to GaAs. Multiple quantum well (MQW) de-
vices based on InGaAs were originally developed to ameliorate this 
limitation, since lattice mismatched InGaAs wells can be used to absorb 
lower energy photons while GaAsP barriers compensate the strain [2]. 
However, achieving a band gap of 1 eV using InGaAs based devices is 
challenging since the necessary In content is high enough that the 
thickness of a single well is close to the Matthews-Blakeslee critical 
thickness (MBCT), limiting the commercial yield and reliability. 
Exceeding the MBCT leads to misfit dislocations at the well interfaces 
which act as recombination centres. We note that InGaAs sub-cell test 
structures with many wells (>50) have achieved absorption edges of 
1.15 eV using a complicated structure involving InGaAs step layers, 
GaAs interlayers, and GaAsP step layers and barriers, for aiding carrier 
escape and strain balancing [3]. Replacing the InGaAs layers with 
GaAsBi could lead to an absorption edge closer to 1 eV with a less 
complicated structure, a lower P content, and therefore more efficient 
multi-junction photovoltaics. 

Previous theoretical investigations into GaAsBi have resulted in 

predictions of solar cell efficiencies exceeding 40% [4] and 52.5% [5]. 
The authors modelled 1.9 µm GaAs0.95Bi0.06 and 0.5 µm 
GaAs0.9417Bi0.0583 layers, respectively, in a 4-junction design. A 50 well 
strain compensated GaAs0.965Bi0.035/GaAs0.75P0.25 device was grown by 
MOVPE and had an efficiency of 8.25% when operated as a single 
junction solar cell [6]. GaAsBi MQW LEDs with 11 periods have been 
grown using a two-substrate temperature growth technique with a peak 
emission of 1.01 eV [7,8]. The absorption coefficients of GaAsBi with up 
to 6% Bi have been reported [9,10]. Lattice matched GaAsPBi bulk 
layers and MQWs with 4 periods have been grown using MBE, with the 
MQWs showing room temperature photoluminescence (PL) [11,12]. 

Our group has published studies on a series of GaAsBi / GaAs MQWs 
with up to 63 wells [13,14,15,16]. Research into these devices identified 
severe strain relaxation in devices with 54 and 63 wells, and a lower- 
than-expected photocurrent due to holes becoming trapped inside the 
wells due to the large valence band offset of GaAsBi. These devices are 
referred to in this work as C3-C63, with the device name denoting the 
number of GaAsBi wells inside the nominally 600 nm thick i-region. 

A single GaAsBi well can achieve a band gap of 1 eV without 
exceeding the MBCT [17], therefore a GaAsBi based sub-cell is prom-
ising for multi-junction photovoltaics. Such a design could have the 
advantage of a simple structure compared to reference [3]; however, it is 
uncertain what optimisation is needed to incorporate many GaAsBi 
wells without undergoing strain relaxation. 

In this work, we describe the MBE growth and characterisation of a 
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series of GaAsBi / GaAs MQWs, referred to as G2-G120, with up to 120 
wells, which have a different but complementary architecture to the 
series discussed in references [13,14,15,16]. The devices grown in this 
work have varying numbers of wells with 30 nm barriers, a constant 
period, and different i-region thicknesses. The previous series (referred 
to as C3-C63) contained varying numbers of wells but different barrier 
thicknesses, to keep the i-region thickness constant. The new series of 
devices occupy a different area in the strain-thickness parameter space, 
with the advantage that the devices with many wells are not affected by 
miniband or digital alloy formation due to the thick barriers. We show 
that a large number of GaAsBi wells can be incorporated into GaAs by 
reducing the average strain per period of the MQW stack. We show PL 
and x-ray diffraction (XRD) measurements that highlight the reduced 
strain relaxation that is possible when using thicker barriers, despite the 
large numbers of wells (up to 120) that are incorporated. 

2. Experimental methods 

MBE growth was performed in an Omicron MBE-STM on GaAs (001) 
0.1◦ off cut substrates. Solid source effusion cells were used for Ga, Bi, Si, 
and Be, while a valved cracker effusion cell was used to produce As2 and 
As4. Growth temperatures quoted in this work were calibrated using 
RHEED transitions and have a precision of ± 3 ◦C, however the uncer-
tainty is approximately ± 10 ◦C. A Bruker D8 Discover was used to 
measure (004) ω-2θ scans and RADS Mercury was used to fit the data. 
Transmission electron microscopy (TEM) images were gathered using a 
Jeol 2000FX TEM. PL measurements were performed with a 532 nm 
laser (300 mW, estimated power density 120 W/cm2), an LN2 cooled Ge 
detector, phase sensitive detection, and a monochromator. 

2.1. Growth 

The GaAsBi/GaAs MQWs were grown inside the i-region of a p-i-n 
diode structure, see Fig. 1. The GaAsBi wells and GaAs barriers were 
grown at a rate of 0.59 monolayer/s at 375 ◦C using As4 [18] and an As: 
Ga atomic flux ratio of 1.8:1. Due to the incorporation dynamics of As4 
only half of the As atoms can incorporate, resulting in a small As flux 
deficit and Ga rich growth. However, a Ga rich RHEED reconstruction 
was not observed since the wells and barriers are thin, the As flux deficit 
is small, and 30 (60) second growth pauses were used after each well 
(barrier) was deposited to anneal the surface at the growth temperature 

of 375 ◦C [19]. 
The Bi beam equivalent pressure was 1.1 × 10-7 mBar as measured 

using an ion gauge in front of the substrate. A Bi wetting layer was built 
up by opening the shutter for 30 s prior to the growth of the first 
quantum well [20]. The RHEED pattern changed from As terminated c 
(4 × 4) to a Bi terminated (n × 3) reconstruction [21]. 

The GaAs layers were grown at 577 ◦C using As2 with an As:Ga 
atomic flux ratio of 1.5:1. The Be and Si doping in the 300 nm thick p and 
n-type GaAs layers was 3 × 1018 and 2 × 1018 cm−3, respectively. The 
100 nm thick GaAs cladding layers were used to prevent dopant atoms 
from diffusing into the MQW stack. The i-region of each device was 
annealed during the growth of the upper GaAs layers for around 1 h, 
including the time taken to change the As cracker temperature to pro-
duce As2. A list of the devices grown in this work is shown in Table 1. 

The average strain [22] is plotted against the MQW stack thickness in 
Fig. 2, for the devices grown in this work (series G) and the previous 
Sheffield grown MQWs (series C). The new devices allow the investi-
gation of the critical thickness in a different part of the parameter space. 

An example schematic band structure for device G2 under zero bias is 
shown in Fig. 3. From Fig. 3 one would expect the electrons are more 
loosely bound inside the wells, which has implications for the carrier 
collection efficiency. 

2.2. XRd 

XRD spectra are shown in Fig. 4. The MQW periods are comparable 
since satellite peaks are visible at similar angles in all the devices. 
Interference fringes are not visible for 15+ wells, corresponding roughly 
to the point where the MQW stack thickness exceeds the MBCT. The 
satellite peaks become broader as the number of wells increases due to 
strain relaxation and compositional inhomogeneity building up out-of- 
plane during the growth leading to a gradual reduction in the quality 
of the fitting. 

2.3. TEm 

Representative TEM images of G120 are shown in Fig. 5. The wells 
are easily identifiable in Fig. 5(a). Many defects are visible in well 109 
near the top of the stack, which corresponds closely to the estimated 
Drigo critical thickness. However, it is unlikely that such a sharp dis-
tribution of defects is related to the critical thickness, and this is prob-
ably a coincidence. The defects may be dislocation loops or Bi inclusions, 
caused by non-optimal growth conditions or high dopant levels. 

Fig. 5(b) shows a close-up of the defects and displays the uniformity 
of the well interfaces. The TEM measurements show that all the wells are 
7 ± 0.5 nm, except for the first well in the stack which was around 1 nm 
thicker, likely due to the Bi wetting layer. 

2.4. Photoluminescence 

PL measurements of selected devices are shown in Fig. 6, including 
previous devices grown in Sheffield for comparison. From Fig. 6, the 

Fig. 1. Device structure of G2 (2 periods). The GaAsBi 10 nm / GaAs 30 nm 
period is repeated up to 120 times in the other devices. 

Table 1 
List of GaAsBi/GaAs MQW devices grown in this work. The Bi content and layer 
thicknesses extracted from XRD simulations are shown, along with the magni-
tude of the average strain in the MQW stack |f|. The number in the device name 
corresponds to the number of wells in that device.  

Device 
name 

Bi content 
(%) 

Well thickness 
(nm) 

Barrier thickness 
(nm) 

|f| (%) 

G2  4.3 8 32.5  0.156 
G5  4.5 6.6 30.9  0.105 
G15  5.1 6.1 32.5  0.094 
G40  5.2 5.7 31.1  0.091 
G80  5.5 5.4 32  0.087 
G120  5.5 5.4 31.2  0.091  
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GaAsBi devices show PL peaks in the range 1.16–1.18 eV, with FWHM 
values around 75 meV. The exceptions are C53 and C64, which are red 
shifted to 1.11 and 1.12 eV, respectively, due to a combination of strain 
relaxation and/or a loss of carrier confinement as discussed in reference 
[14]. The series G devices show a prominent GaAs peak at 1.42 eV which 
originates from the GaAs capping layer. 

Since the two sets of MQWs have different periods and are in 
different parts of the strain/thickness parameter space, comparing their 
integrated PL intensity (IPL) based on the number of wells is not a fair 
comparison. The product of the average strain in the MQW stack and the 
stack thickness was used instead, see Fig. 7. 

From Fig. 7, the IPL is roughly linearly proportional to the strain- 

thickness product up to around 130 %nm. The GaAsBi is expected to 
have many non-radiative recombination centres due to the low growth 
temperature, which should lead to a super-linear relationship between 
IPL and carrier density and therefore a decrease in IPL as the number of 
wells increases due to the number of carriers per well decreasing as more 
wells are incorporated. However, the laser power may be high enough to 
ensure the carrier density is sufficiently high enough to saturate the non- 
radiative defects in the wells, at least in the devices with fewer wells. 
The high laser power may also lead to the ground state of the wells being 
fully occupied with carriers, causing the IPL to be proportional to the 
volume of GaAsBi available for recombination, i.e., proportional to the 
number of wells. We note that there is no obvious high energy shoulder 

Fig. 2. Average strain in the GaAsBi/GaAs MQW stack plotted against the stack thickness. The Matthews-Blakeslee and Drigo critical thicknesses are also plotted and 
correspond to the point at which the strain energy is high enough for dislocations to become mobile [23] or for the formation of new dislocations, respectively. The 
Drigo critical thickness [24] is based on an empirical fit to data published in reference [22], and the dashed black line is extrapolated. 

Fig. 3. Example schematic diagram of device G2 under zero bias, consisting of two GaAsBi quantum wells inside a GaAs p-i-n diode.  
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on the main peaks in Fig. 6: the absence of any higher order transitions is 
likely caused by the low conduction band offset in the wells. 

Above 130 %nm there is a rapid decrease in IPL for series C (constant 
stack thickness) and a slower decrease for series G (constant period). The 
rapid decrease for series C is caused by strain relaxation and a loss of 
carrier confinement, as discussed previously. 

There are several mechanisms that contribute to the decrease in IPL 
exhibited by series G. Firstly, there is some additional strain relaxation 
in G80 and G120 relative to G40. These devices are much thicker than 
the MBCT for dislocation mobilisation, so threading dislocations can 
move into the interface planes at the top and bottom of the MQW stack 
and become misfit dislocations leading to enhanced non-radiative 
recombination of carriers at the MQW interfaces. Secondly, as previ-
ously discussed, the number of carriers per well is reduced in the devices 

with more wells, so the defects may not be saturated and will instead 
lead to most of the carriers recombining non-radiatively. Thirdly, pho-
tons reabsorption by wells closer to the surface of the devices will limit 
the IPL of the thicker devices. The roughly 35x greater IPL of G80 and 
G120 compared to C54 and C63, despite the considerably larger number 
of wells and greater overall strain, shows the benefit of the lower 
average strain in the MQW stack caused by the thicker barriers. 

The incorporation of up to 120 GaAsBi wells into a test structure 
without any strain compensation is promising for multi-junction pho-
tovoltaics and shows clear advantages over InGaAs. This could lead to 
future test structures with more complicated structures. However, the 
use of thicker barriers reduces the built-in electric field and will result in 
a lower carrier collection efficiency. There is therefore a trade-off be-
tween the number of quantum wells that can be incorporated, and hence 

Fig. 4. XRD (004) ω-2θ scans of the GaAsBi/GaAs MQWs grown in this work.  

Fig. 5. Dark field TEM images of G120; (a) 5 k magnification, (b) 50 k magnification focussing on well 109.  
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the light absorption, and the carrier collection efficiency since the built- 
in electric field is dependent on the depletion region thickness. Reducing 
the ground state transition energy from the 1.16–1.18 eV shown in this 
work to the optimal 1 eV is challenging due to the growth difficulty of 
incorporating the required Bi content (~7%), however researchers have 
shown PL with up to 10.8% Bi [17]. Although GaAsBi suffers from larger 
linewidths than InGaAs due to the localised states in the valence band, 
we note that dilute nitride GaAsN devices also suffer from large 

linewidths due to localised states in the conduction band [25]. Dilute 
nitride containing layers have been present in several world record solar 
cell devices in recent years [26,27], so the large spectral broadening of 
GaAsBi will likely not prohibit it from proving useful for future photo-
voltaic devices. The radiative efficiency in GaAsBi is also lower than 
InGaAs, however our previous studies have indicated a moderate ~ 15x 
reduction in IPL between GaAsBi/GaAs 40 MQW and a strain- 
compensated InGaAs/GaAsP 65 MQW [28]. 

Fig. 6. Photoluminescence spectra of selected GaAsBi/GaAs MQWs. The solid and dashed lines represent MQWs with a constant period and constant stack thickness, 
respectively. 

Fig. 7. Integrated PL of GaAsBi/GaAs MQWs under 120 W/cm2 excitation at 532 nm as a function of the strain-thickness product of the MQW stack. The lines are 
drawn to guide the eye. Several of the devices are labelled for clarity. 
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We propose that future GaAsBi based photovoltaic research could 
focus on comparing GaAsBi/GaAs/GaAsP strain balanced quantum 
wells with strain balanced bulk GaAsBiN. The growth of GaAsBiN de-
vices is challenging due to the growth difficulty of incorporating both Bi 
and N [29,30,31,32], and the deleterious effect of the N on the electron 
mobility [33]. Meanwhile, GaAsBi / GaAs / GaAsP devices will require 
careful optimisation for efficient carrier collection, and the structure 
design may follow similar principles established for InGaAs / GaAs / 
GaAsP devices [34,35,36], with graded InGaAs layers to aid carrier 
escape and strain compensation via either thin GaAsP barriers (escape 
via tunnelling) or thicker GaAsP barriers with a lower P content (thermal 
escape). 

3. Conclusion 

We demonstrate the MBE growth of GaAsBi/GaAs multiple quantum 
well photovoltaic test structures with up to 120 periods. TEM mea-
surements highlight the relatively uniform periodicity and composition 
of the wells. However, XRD measurements show a gradual decrease in 
the accuracy of the fitting as the number of wells increases due to some 
strain relaxation and out-of-plane growth inhomogeneity. PL measure-
ments confirm that the 120 well device shows less severe strain relax-
ation than a previous 63 well device grown in our group. This is 
attributed to the thicker barriers and lower average strain in the MQW 
stack, despite the greatly increased number of quantum wells. These 
results should prove useful for the design of future strain-compensated 
GaAsBi/GaAs/GaAsP multiple quantum well structures, although sig-
nificant optimisation is needed to produce a competitive device. 
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