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The processing of sequential and temporal data is essential to computer vision and speech

recognition, two of the most common applications of artificial intelligence (AI). Reservoir

computing (RC) is a branch of AI that offers a highly efficient framework for processing

temporal inputs at a low training cost compared to conventional Recurrent Neural

Networks (RNNs). However, despite extensive effort, two-terminal memristor-based

reservoirs have, until now, been implemented to process sequential data by reading

their conductance states only once, at the end of the entire sequence. This method

reduces the dimensionality, related to the number of signals from the reservoir and thereby

lowers the overall performance of reservoir systems. Higher dimensionality facilitates the

separation of originally inseparable inputs by reading out from a larger set of

spatiotemporal features of inputs. Moreover, memristor-based reservoirs either use

multiple pulse rates, fast or slow read (immediately or with a delay introduced after the

end of the sequence), or excitatory pulses to enhance the dimensionality of reservoir

states. This adds to the complexity of the reservoir system and reduces power efficiency. In

this paper, we demonstrate the first reservoir computing system based on a dynamic three

terminal solid electrolyte ZnO/Ta2O5 Thin-film Transistor fabricated at less than 100°C. The

inherent nonlinearity and dynamic memory of the device lead to a rich separation property

of reservoir states that results in, to our knowledge, the highest accuracy of 94.44%, using

electronic charge-based system, for the classification of hand-written digits. This

improvement is attributed to an increase in the dimensionality of the reservoir by

reading the reservoir states after each pulse rather than at the end of the sequence.

The third terminal enables a read operation in the off state, that is when no pulse is applied

at the gate terminal, via a small read pulse at the drain. This fundamentally allows multiple

read operations without increasing energy consumption, which is not possible in the

conventional two-terminal memristor counterpart. Further, we have also shown that

devices do not saturate even after multiple write pulses which demonstrates the

device’s ability to process longer sequences.
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INTRODUCTION

Artificial neural networks (ANNs) are computational models
inspired by biological neural networks that have witnessed
remarkable progress in real-world applications such as pattern

recognition, classification, and forecasting time series events
(Emmert-Streib et al., 2020). The network architectures of
ANNs can be mainly grouped as feedforward neural networks
(FNNs) (Schmidhuber, 2015) and recurrent neural networks
(RNNs) (Güçlü and van Gerven, 2017; Hopfield, 2018). FNNs
pass the data unidirectionally forward from the input to the
output. The widely used convolutional neural network (CNN), a
type of FNN, is mainly used for static (non-temporal) data
processing. On the other hand, in RNNs, hidden neurons have
cyclic connections, making the outputs dependent upon both the
current inputs as well as the internal states of the neurons, thus

making RNNs suitable for dynamic (temporal) data processing.
The commonly known problem of exploding and vanishing
gradients, arising in very deep FNNs and from cyclic
connections in RNNs, results in network instability and less
effective learning, making the training process complex and
expensive. Vanishing gradients get smaller and approach zero
as the backpropagation algorithm advances from the output layer
towards the input, or past inputs in the case of RNN after the
cyclic connections are unfolded in time, which eventually leaves
the weights farthest from the output nearly unchanged. Whereas
in exploding gradients, the gradients get larger, which ultimately
causes huge weight updates. As a result, the gradient descent

algorithm fails to converge to the optimum in both cases.
The concept of reservoir computing was proposed to address

these problems. Initially, RC was introduced as RNN models of
echo state networks (ESNs) (Jaeger, 2001) and liquid state
machines (LSMs) (Maass et al., 2002). A conventional RC
system consists of three sections: input, reservoir, and output
consisting of a readout function. The role of the reservoir is to
transform nonlinear sequential inputs into a high-dimensional
feature space, consisting of spatiotemporal patterns, which are
features of the input (or reservoir states). These patterns are
subsequently used to train the readout section by a learning

algorithm that maps every recorded reservoir state to an output.
In an RC system, only the weights of the output layer need
training, whereas weights connecting the input layer to the
reservoir and the internal sparsely connected reservoir nodes
are random and fixed, resulting in a significantly reduced cost,
and avoiding the vanishing/exploding gradients, compared to a
conventional RNN. Recently, the learning of the RC system was
improved through sparse representations, where the dynamics of
the reservoir was sampled across time to enhance its
dimensionality see, for instance (Manneschi et al., 2021a;
Manneschi et al., 2021b).

Other nonlinear dynamical systems can be used as reservoirs
instead of the traditional model of RNNs. Their framework is
called physical reservoir computing (PRC). One of the

motivations for PRC systems is a desire to develop fast
information processing with minimal learning costs.
Traditional hardware implementations of reservoirs often
demand power-hungry neuromorphic hardware (Misra and
Saha, 2010; Hasler and Marr, 2013). On the other hand, an

implementation of a reservoir can also be accomplished by
physical phenomena. Inherent nonlinearity of a dynamic
physical memory maps the input signal onto a higher
dimensional spatio-temporal feature space similar to a
reservoir of artificial neurons. These features can be read out
linearly to solve non-linearly separable problems. The essential
requirements of the physical reservoir are a high dimensionality
arising from the number of unique reservoir states (separation
property) and short-term memory (fading memory) required to
establish a temporal relationship of its sequential inputs. This
determines the dependence of the reservoir state upon recent past

inputs within a specified time interval (Nakajima and Fischer,
2021). This basic principle of PRC is versatile: One can solve
many temporally dependent or temporally-independent tasks via
converting it into a sequential task (i.e., providing spatial
information over time) such as recognition of the spoken digit
(Vandoorne et al., 2014), waveform generation and classification
(Sillin et al., 2013; Torrejon et al., 2017), chaotic time-series
forecasting (Moon et al., 2019), Hénon map (Zhong et al., 2021),
classification of hand-written digits (Du et al., 2017) and short
sentences (Sun et al., 2021).

The framework of PRC remains the same for different

temporal input-output tasks. Only the representation of
sample data before feeding into the reservoir varies from
application to application. For example, in the classification of
sine and square waveforms (Paquot et al., 2012) the goal is to
classify each point of the input either as part of a sine or a square
wave. Each period of the wave is discretized into eight points
(before feeding into the reservoir) giving 16 different cases for
classification. The temporal input is composed of 1,280 points
(160 randomly arranged periods of sine or square). The first half
of the input is used for training (to find the optimum weights of
the readout function) and the second half for testing.

On the other hand, in the more complex and widely used

“benchmark” case of voice recognition, the goal is to recognize
digits from audio waveforms produced by different speakers. This
task also requires the representation of sample data: for example,
inputs for the memristor-based reservoir (Moon et al., 2019) are
sound waveforms of isolated spoken digits (0–9 in English) from
the NIST TI46 database (Texas Instruments, 1991). These are
pre-processed into a set of 50 frequency channels with 40-time
steps using Lyon’s passive ear model based on human cochlear
channels (Lyon, 1982). The output of Lyon’s passive ear model,
which is the firing probability, is then converted into digitized
spike trains before applying to the reservoir. However, to increase

the efficiency of a particular reservoir system, it is essential to
properly represent the sample data and optimize the design of the
RC system (Lukoševičius and Jaeger, 2009).
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Temporal behaviour in image classification can be enforced by
converting the pixel value (input) into spatio-temporal patterns
by dividing the entire image into groups of pixels that are
sequentially input into the reservoir. This approach was used

to demonstrate the classification of hand-written digits from the
MNIST dataset (LeCun et al., 1998) with an accuracy of 88% (Du
et al., 2017) and 83% (Midya et al., 2019), respectively. (Du et al.,
2017), used two different pulse rates to double the reservoir states
for the same input sequence. Midya et al. (2019) demonstrated a
diffusive memristor-based reservoir with a drift memristor-based
readout function. In this case, a fast and slow read (done
immediately around 5 and 300 μs after the end of the input
sequence), respectively, along with an excitatory pulse applied at
the start of all sequences to pre-set the devices to a low resistance
state were used to increase the dimensionality of reservoir states.

In another demonstration (Sun et al., 2021) used memristors to
demonstrate the classification of short Korean sentences with an
accuracy of 91%. In these implementations, sequences consisting
of 4 (Midya et al., 2019) or 5 bits (Du et al., 2017; Sun et al., 2021)
were successfully demonstrated, ideally each resulting in a
distinguishable state of the reservoir. Thus, a higher number
of unique sequences representable in the reservoir adds to the
dimensionality of reservoir states at the cost of complexity.
Increasing the sequence length can result in complexity due to
an inordinate number of input combinations that need to be
recorded.

In all the above implementations, the dimensionality of the
reservoir was restricted by reading the states of the reservoir only
once at the end of each sequence, typically of sizes up to 4–5 bits.
For example, an image with dimension 24 × 20 fed into a
reservoir, column-wise will reduce the dimension of the image
to 4 × 20 for a 6-bit sequence length. This reduces the
dimensionality of the reservoir by extracting a smaller number
of features, i.e., 80 = (4 × 20) in this case, which is far less than the
original 480 (24 × 20). The readout network with reduced features
results in poor accuracy of recognition. In comparison, a
conventional network that is similarly down-sampled for

comparison with an RC system (for example in a ratio of 6 to
1 bits), results in a reduction of the dimensions of an image to the
same extent as that of a reservoir. In such a case, the RC system
performs better only for longer sequence lengths, which equates
to a smaller size of the readout network. This outperformance of
an RC system, for longer sequence lengths (and smaller readout
networks) is due to the preservation of temporal information by
the short-term memory of the device. The disadvantage of down
sampling, however, is poorer accuracy. To improve accuracy, as
sequence lengths reduce, there is less down-sampling of the
image, which results in an RC system having no benefit

compared to that of a conventional network (Du et al., 2017).
The schematic of this approach of down-sampling and
comparison of results of a down-sampled feature using RC
system versus a conventional approach are shown in
Supplementary Figures S1 and S2, respectively. This example
highlights that the objective should not be the size of the readout
network for comparison, but the richness of the reservoir.

Most memristors are two-terminal, never-the-less, three-
terminal memory devices that can facilitate an immediate

enrichment of reservoir states, via the gate electrode. Such
thin-film transistors have wide applicability in upcoming
applications of smart and seamlessly integrated sensors,
capable of measurement and processing not on the cloud but

on the edge (edge intelligence). Edge intelligence enables
instantaneous decision-making and reduces the energy
consumption of the system by minimizing data
communication to and from the cloud. Typically, Ferroelectric
field-effect transistors (FEFETs) have been widely touted as
multi-state weight cells/analog synapses for deep neural
network accelerators. The plasticity of ferroelectric polarization
with sub-coercive voltages leads to multiple conductance states in
FEFETs. Up to 100-fold modulation of conductance with 5 ns
update pulses have been demonstrated (Ni et al., 2018). Typically,
however, FEFETs are non-volatile, and do not have an inherent

property of temporal behaviour which would imply that the
ferroelectric mechanism is not naturally compatible with the
concept of PRC.

METHODOLOGY

An alternative to a ferroelectric FET is a Solid-Electrolyte FET,

first proposed for neuromorphic computing applications (Pillai
and De Souza, 2017; Yang et al., 2018; Park et al., 2020; Qin et al.,
2020). Our earlier study of the ZnO/Ta2O3 solid electrolyte FET
(SE-FET) (Pillai and De Souza, 2017) shows versatility in terms of
the number of conductance states, an inherently gradual and
nonlinear conductance, which is an advantage in RC systems. Its
short-term memory, due to an inherent mechanism based on
diffusion of ions within the insulator of the device (Kumar et al.,
2018), ensures the fading memory required to establish a
temporal relationship needed for reservoir computing
(Appeltant et al., 2011).

Our SE-FET (W × L = 100 μm × 1.5 μm) is a bottom-gated
thin film transistor, (schematically illustrated in Supplementary

Figure S3), fabricated via RF sputtering at room temperature and
fully compatible with BEOL processing. A conducting Indium
Tin Oxide (ITO, 20Ω/square) is used as the gate electrode.
275 nm of tantalum oxide (Ta2O5) acts as a bottom gate
insulator, over which 40 nm of ZnO is sputtered as a channel.
Al contacts are evaporated over the ZnO as the top contact.
Electrical characterization is undertaken using Keysight B2902A.
In this paper, we experimentally demonstrate our new approach
to generate high dimensionality by reading the response of the
SE-FET after each pulse. The gate terminal is used for the write

operation, whereas the drain terminal is used to perform read
operations independently when the device is off, further reducing
power consumption (Song et al., 2019). The use of the separate
control terminal makes the RC system efficient and
straightforward compared to any two-terminal-based artificial
neural network. Moreover, its ease of fabrication, typically at
room temperature, favours a wide range of wearable applications.

Our framework and process flow of the SE-FET based
reservoir system is described in Figure 1. The connection
between each temporal input pulse stream un(t) to each SE-
FET is fixed. SE-FETs inside our reservoir are not interconnected,
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unlike in a conventional software-based RC system (Tanaka et al.,
2019) because the inherent short-term memory of the device
suffices to process temporal input consisting here of a sequence of
voltage pulses un(t) applied at the gate of the SE-FET. A small
read voltage of −1 V is applied after each pulse to the drain
terminal to read the conductance denoted by Idsn (drain to source
current), while the gate voltage is 0 V. Explicitly, an input pulse

stream consisting of four pulses also results in 4 “read” current
values. This process is repeated for all the input sequences, and
after each input sequence, a reset pulse is applied to set the device
back to the initial state. A negative read voltage is used for longer
retention of the device state (conductance value). When using a
positive read voltage (>0 V), when the gate of the device is off
(0 V), this effectively puts the gate at a lower potential than the
drain-source. This has a similar impact as applying a negative
voltage on the gate, and for the high conductance state, the
natural decay of the SE-FET reduces the retention time of the
device memory. On the other hand, a small negative read voltage

helps the device to hold its conductance state, but not too strong
that it would write the device itself.

We used the measured and recorded read current values for
training and testing the readout network offline. Only the weight
matrix Wout connecting the reservoir states, and the output were
trained using logistic regression. Logistic Regression (LR) is a
supervised Machine Learning (ML) algorithm used in
classification. The training algorithm uses the one-versus-rest
scheme by splitting the multi-class dataset into multiple binary
classification problems. For example, a multi-class classification
problem with each class label as “0”, “1”, and “2” can be divided

into three binary classification datasets as follows: Problem 1: “0”
vs. [1, 2], Problem 2: “1” vs. [0, 2], and Problem 3: “2” vs. [0, 1].
The class index with the largest score is then used to predict a
class. The probabilities describing the possible outcomes of a
single trial are modelled using a logistic function, a common
S-shaped curve defined as f(x) � L

1+e−k(x−x0 )
, where L is the curve’s

maximum value, k is logistic growth rate or steepness of the curve,
x0 is the x value of the sigmoid midpoint, and x is a real number.
The Logistic Regression with the liblinear Solver (Library for

Large Linear Classification) from Python’s scikit-learn library
(Scikit-Learn, 2021) was used, which uses a gradient descent
algorithm. Gradient descent minimizes a multivariate function
(involving multiple dependent variables), resulting in a single
outcome.

We trained our readout network using 60,000 image samples
from the MNIST database, and to test the network, a separate

10,000 image sample set, not used in training was fed into the
reservoir. Classification was performed from the readout network
based on the reservoir state for each test case. To avoid the system
from being overfitted to certain selections of the training and
testing data, 7-fold cross-validation was used. In particular,
training and testing were repeated seven times using 70,000
samples (60,000 samples for training and 10,000 samples for
testing), with a different assignment for training and testing
samples, every time. The classification accuracy was defined as
the mean accuracy of all the test samples across the 7-fold cross-
validation. Before feeding the MNIST image into the reservoir,

the unused area of an original greyscale MNIST image was
cropped and converted into binary. The actual 28 × 28
MNIST image and the pre-processed 24 × 24 binary images of
digit 5, as an example, are shown in Supplementary Figure S4.

RESULTS AND DISCUSSION

The measured conductance values of the SE-FET with ±1 V/

60 ms pulses applied at the gate terminal are shown in Figure 2A.
Positive write pulses gradually increase the conductance, whereas
negative erase pulses gradually reduce it. This gradual change
results in multiple conductance states, technically infinite, but for
the present case, 100 write pulses of 1 V/60 ms were used to
generate 100 conductance states. To demonstrate temporal
dynamics, write pulses of different amplitude were applied to
the device, and the read current is recorded as shown in
Figure 2B. Two properties can be observed: 1) If multiple
pulses are applied at short intervals, the conductance gradually
increases (as indicated by the green arrow) 2) If no pulse or small

FIGURE 1 | Framework and process flow of dynamic SE-FET-based reservoir system.
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voltage pulse (i.e., 0.8 V), is applied to achieve bit 0, then the

conductance decays towards the original resting state, as
indicated by the red arrow. This temporal response of the SE-
FET is attributed to the polarity-induced motion of oxygen
vacancies in the gate insulator (Pillai and De Souza, 2017).
The potentiation of conductance was further investigated at a
frequency from 0.1 to 1 Hz with a VGS (write pulse) of 4 V at 60%
duty cycle, and Vread at −1 V. The devices do not saturate even
after multiple write pulses as shown in Figure 2C. At 1 Hz, the
SE-FET can process 50 write pulse without saturation as shown

by the green triangle in Figure 2C. The average change in

conductance per pulse remains low at ~25% at a higher
frequency, whereas it is ~200% at a lower frequency as shown
in the Supplementary Figure S5. Therefore, the right balance is
required in terms of speed of processing and conductance change
per pulse to get an enhanced separation property of the reservoir.
The conductance decay in a SE-FET is shown in Figure 2D. The
device is first programmed by five write pulses of 4 V at 0.4 Hz
with 60% duty cycle, subsequently, its conductance is monitored
by read pulses of −1 V. In this case, a decay time of τ ≈ 11 s is

FIGURE 2 | (A) Measured conductance values of the SE-FET, showing gradual changes of conductance upon application of positive write pulses (+1 V, 60 ms)

and negative erase pulses (−1 V, 60 ms). (B) Response of a SE-FET to a pulse stream with different time intervals between pulses. (C) Potentiation in a SE-FET at

different frequencies shows devices do not get saturated even after multiple write pulses. (D) Conductance decay in the SE-FET. The device was first programmed by

five write pulses of 4 V at 0.4 Hz with 60% duty cycle, subsequent to its conductance, measured by read pulses of −1 V. (E) The SE-FET response when subjected

to the first eight temporal inputs, shows the uniqueness of the output. For input “1”, a 3 V pulse at 0.4 Hz with 60% duty cycle and for input “0” no pulse was used. (F)

Uniqueness of the output response to the streaming of a combination of eight inputs with identical setup.
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observed for devices to revert to the initial state as shown by the
green arrow. Further, we have also monitored the device’s short-
term memory with variable read voltage as shown in the
Supplementary Figure S6. These results show that negative
read voltage can be used to adjust the time constant of
memory fading. In case a higher reading current is required, a
higher reading voltage can be applied for a shorter duration.
Further, the response of a SE-FET device to all possible 16
temporal input combinations of 4-bit sequences is shown in
Figures 2E,F. To carry out these tests, four input gate pulses,
each of width (2.5 s), containing a write pulse of width (1.5 s),

have been applied within a timeframe of 10 s. For input “1”, a
pulse of 3 V and for input “0” no pulse is applied (0 V). The SE-
FET response when subject to all 16 combinations of temporal
inputs reveals the uniqueness of the output, leading to distinct
reservoir states.

Dynamic SE-FET Based RC System
The dynamic SE-FET-based RC system is tested for recognition
of handwritten digits using the MNIST database initially with a

single device to demonstrate our new approach. Pre-processing
has been performed as shown in Figure 3A. If the entire row is
used as one input pulse stream, then, in theory, there can be 224

different input patterns which may be too difficult for one SE-
FET to distinguish. Therefore, to improve the ability of the
reservoir, we have divided each row into six sub-sections, each
containing four pixels, to allow better separation of the inputs.
After each input sequence, a small reset pulse of −3 V with pulse
width of (0.5 s) is applied to avoid impact from the previous
sequence. Example of one such reset operation is shown in the
Supplementary Figure S7. With these considerations, the image

has been fed into the reservoir in 4-pixel sub-sections as input
voltage pulse streams, and their output response is recorded after
each input pulse, as shown by the red dot in Figure 3B.

Similarly, to extract features, each row of the image is fed
into the reservoir by converting it into a pulse stream (as
exemplified in Figure 3B for row number 8). As an example, all
reservoir states corresponding to digit 5 are shown in
Figure 3C. The different magnitudes of the read current ranging
from (0 - ~60 µa) add tomore levels of information than just 0 and 1,

FIGURE 3 | Dynamic SE-FET-based RC system, for recognition of hand-written digits. (A) Pre-processed image of digit 5 as an example; the original grayscale

image was first converted into a binary image and the unused border area was deleted to reduce the size of the original 28 × 28 image to 24 × 24 pixels. (B) The temporal

response of SE-FET to an input pulse stream for row number 7 is shown as an example. The entire binary sequence of length 24 was sub-divided into 6 4-bit sequences

which were converted into voltage pulse streams. Output response recorded upon application of the voltage pulse stream applied to the gate of the SE-FET after

each input pulse as shown by the red dot. The device was reset to the initial state before the next sequence was fed. (C) The heatmap shows the complete recorded

output response of digit 5. The magnitude of the read current ranging from (0- ~60 µa) adds to more levels of information than just 0 and 1, as in the case of the

conventional approach. (D) Confusion matrix showing the experimentally obtained classification results of the SE-FET-based reservoir versus the correct outputs. An

overall mean recognition of 91.19% is achieved.
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as in the conventional approach. This shows the ability of our
reservoir to solve linearly non-separable problems via mapping of
the input signal into a higher dimensional space in a nonlinear
relationship, which can be further decoded by a simple linear logistic
regression machine learning algorithm (as discussed in the
methodology section). For this implementation, an overall mean
accuracy of 91.19% is achieved across 7-fold cross-validation of the
test set. The performance of the readout network is summarized using
a confusion matrix showing the experimentally obtained

classification results of the 10,000-test image from the SE-FET-
based RC system vs the target outputs digit as shown in
Figure 3D. The occurrence of the predicted output for each test
case is represented.

Further improvement in accuracy is obtained by using
multiple devices (3 in our case) in two possible approaches
for a reservoir with 3-bit sequence lengths. The first is to use
each device with the same gate voltage pulse for input “1” and
“0”. The second is to study the influence of gate voltage to
achieve bit 1 with different devices. The response of each SE-
FET to all possible combinations of eight temporal inputs for a

3-bit sequence is shown in Figure 4A (for the same gate
voltage pulse). The complete recorded output response of
digit 0 from all three devices is shown in Figure 4B. Similarly,
it is done for all the train and test images. The complete
recorded output response from three different devices for an
image was concatenated in vector form of length 3 × 576 (24 ×
24) and is then used to train or test the readout function. An
overall mean recognition of 92.97% is achieved for the
implementation with the same gate voltage, whereas, an

overall mean recognition of 92.44% is achieved for
different gate voltages for bit “1”, with different devices.

The complete recorded output response of digit 0, as well as
temporal response from all three devices, is shown in
Supplementary Figures S8 and S9A–C. These results show
that multiple devices increase dimensionality due to device-to-
device variability. Moreover, the natural device-to-device
variability can be kept intact using the same gate voltage. In
contrast, different voltage levels either boost the conductance at a

higher voltage compared to another device or suppress it at a
lower voltage. This shows that the high dimensionality is mainly
due to the natural device-to-device variability rather than the use
of multiple gate voltages. Therefore, it is essential to properly
represent the sample data and optimize the system design to allow
a better separation of the inputs.

Further optimization has been undertaken by combining the
horizontal (row-wise) and the vertical scan (column-wise). With
this representation of sample data, a maximum mean accuracy of
94.44% using all three SE-FET devices with the same gate voltage
(as shown in Supplementary Figure S9D) is achieved.

The performance of our dynamic SE-FET-based RC system is
benchmarked to that of a fully connected conventional network,
without any hidden layer, trained via logistic regression, whose
schematic is shown in Supplementary Figure S10. An identically
sized input is fed to the conventional network as the dynamic SE-
FET-based RC system. The overall mean recognition accuracy of
90.82% is achieved across a 7-fold cross-validation for the test set
using a fully connected conventional network. A comparison of
the different approaches of the RC system to that of the fully

FIGURE 4 | SE-FET response to temporal input. (A) The response of three different SE-FET devices, when subjected to all possible eight combinations of temporal

inputs, show similar trends as well as a device-to-device variability with the same gate voltage for each device. (B) The heatmap shows the complete recorded output

response of digit 0 for three different devices. The scale on the right of each figure shows the difference in magnitude of the read current for the same input for different

devices. This variability increases the reservoir dimensionality.
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connected conventional network is shown in Supplementary

Table S1. Our dynamic SE-FET-based RC system outperforms
the conventional network by 3.62% for the same task of
recognition of handwritten digits and does not depend on

down-sampling.
In previous reports of classification of hand-written digits (Du

et al., 2017; Midya et al., 2019), only one read pulse was applied at
the end of the sequence to read the reservoir states, which
restricted the dimensionality of these reservoirs. In contrast,
we demonstrated that the dimensionality of the reservoir was
increased significantly by reading the reservoir states after each
pulse by operating the device in the off-state without increasing
the energy consumption, which is not possible in the
conventional two-terminal memristor counterpart for which
we achieved a higher accuracy of 94.44%, compared to 88.1%

(Du et al., 2017) and 83% (Midya et al., 2019) in two terminal
memristor-based reservoir systems. Another work, which
exploits magnetic domain wall dynamics for reservoir
computing by modulating the amplitude of the applied
magnetic field to inject time-multiplexed input signals into the
reservoir, has also demonstrated an accuracy of ~87% (Ababei
et al., 2021). Whereas large-scale spatiotemporal photonic RC
systems have demonstrated an overall accuracy of ~97%
attributed to a larger reservoir of 1,024 nodes (Nguimdo et al.,
2020), and ~92% for a photonic extreme learning machine
implemented by using an optical encoder and coherent wave

propagation in free space (Pierangeli et al., 2021).

CONCLUSION

We experimentally showed that by reading out spatiotemporal
dependencies of input pulses, after each pulse, significantly
improves the dimensionality of a SE-FET-based reservoir. The

spatiotemporal dependencies of inputs were captured by utilizing
the device’s inherent short-term memory based on diffusion
kinetics of ions in the oxide. At the same time, the device
nonlinearity allowed the reservoir to solve linearly non-
separable problems via mapping the input signal into higher
dimensional feature space in a nonlinear relationship, which
was further decoded by a simple linear logistic regression

machine learning algorithm. Our classification speed is
currently ~24 bit/min because we use only one device in this
work. Speed can be improved by an input sequence supplied to
multiple devices. This would facilitate processing all the rows or the

sequence simultaneously. The current device can also be further
optimized significantly by scaling. In a practical implementation of
the readout function we would expect to use an ADC with
additional circuits to implement logistic functionality. Device-to-
device variability and multiple voltages on the RC system give
added dimensionality to the reservoir. We find that multiple
devices with the same pulse significantly improves performance.
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