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Abstract—This paper introduces an effective modular design
solution for series-parallel hybrid propulsion systems (HPSs)
based on a battery electrothermal model and a sub-objective
related to temperature to concurrently consider both the battery
electrical and thermal behaviors. To ensure that more optimal
design options are provided, a Pareto-augmented collaborative
optimization (PACO) framework is proposed to integrate three
multi-objective evolutionary algorithms (MOEAs), aiming to
extend the range of the Pareto frontier. Furthermore, two real
driving cycles taken from worldwide harmonized light vehicles
are utilized to evaluate the performance of the optimized vehicle
systems. The modelling results show that the decomposed MOEA
(MOEA/D) within PACO is the main contributor to the
performance improvement in the modular design of HPSs, which
leads to the reduction of intergenerational distance by over 2.7%
and increase of the hypervolume by over 17.6%, in comparison
with two state-of-the-art evolutionary algorithms.

Keywords—Battery electrothermal dynamics; multi-objective
evolutionary algorithm; modular design; plug-in hybrid electric
vehicle.

I. INTRODUCTION
Rising concerns on the air pollution related to transportation

and air pollution is driving the vehicle industries to explore
alternative low-carbon solutions [1]. To achieve this, hybrid
prolusion systems (HPSs) are widely utilized as an effective
way to mitigate the increasing air quality issues of the off-gas
emission from conventional internal-combustion-engine (ICE)
vehicles [2]. In comparison with pure electric vehicles, HPSs
generally are driven over long distances and control emissions
more flexibly such as at the green district in a city, or to run at
a high-power mode when the emissions are of less concerns.
The speedy development of informatics provides a quicker

and effective way for intelligent vehicle modular design. In
this research field, heuristic algorithms are usually adopted to

handle NP-complete issues. Recently, University of
Birmingham proposed the improved evolutionary algorithm
with chaos attractive policy for the energy management
scheme design for on-road vehicles [3,4] and off-road vehicles
[5]. However, these single-objective optical solutions are
proven to be hard to build a Pareto frontier with good
distribution, particularly for two or more objectives which
need to be considered.
As one of the primary energy storage sources in HPSs,

battery may exhibit different thermal and electrical operated
dynamics [6]. Due to the merits such as the computational
efficiency, equivalent circuit model (ECM) [7-9] has been
extensively utilized to obtain real-time battery electrical
behavior. Regarding the battery thermal performance, by the
assumption of the evenly distributed heat generation within a
battery, a thermal model with two stages has widely used to
describe both the internal thermal dynamics and battery
surface [10-12]. Some coupled electrothermal models have
achieved the huge developments to reflect the strongly-
coupled relations between battery thermoelectricity dynamics
[13]. In addition, the lumped electrothermal models [14] with
a streamlined order and relatively fewer model parameters are
applied widely and practically. Even so, due to the heavily
increased system complexity, battery thermal dynamic would
be regularly unnoticed in the HPSs’ system-level modular
design.
In order to consider both battery thermoelectricity dynamics

in the modular design of HPSs, an optimized modular design
solution based on an efficient battery electrothermal model,
and a sub-objective related to temperature is proposed in this
study. Specifically, through coupling a RC sub-model with
second order and an additional thermal sub-model with two
statuses, the electrothermal model could efficiently obtain the
thermoelectricity dynamics of battery. For providing customer
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the further optimized allocation countermeasures, a Pareto-
augmented collaborative optimization (PACO) framework is
derived through integrating three multi-objective evolutionary
algorithms (MOEAs). In this context, this system is capable of
absorbing their merits in handle such multi-objective issue for
constructing a more realistic approximated Pareto frontier to
provide more design options.

The remaining parts of this paper is followed as: Section II
introduces the powertrain and scalable modules. Section III
formulates the optimization problem. Section IV describes the
enhanced modular design solution considering the
electrothermal dynamics. Detailed experimental studies
utilizing the driving cycle as well as the results of 1) many-
objective optimization; and 2) the robustness of vehicle
system is discussed in Section V. Section VI summarizes the
conclusions.

II. POWERTRAIN AND RELATEDMODULES

The HPS in this study consists of an internal combustion
engine (ICE), an integrated starter generator (ISG), and a
trans-motor such as the electric motor with float stator [15].
According to Fig. 1, the speeds of both the ICE and trans-
motor could be decoupled based on the topology of this
powertrain configuration, hence these speeds could be selected
freely. Here the vehicle data sourced from the ADVISOR
software is used for the analysis and design of this powertrain
system.

Fig. 1. The structure of the studied HPS

To be specific, a backward-facing vehicle model which takes
the vertical dynamics into account is adopted. Here the
demands of torque �� and rotation speed �� based on the bi-
level gear speed reducer are:�� = ��� + �����221.15 + ������ + ������� ∙ ��ℎ�0 ∙ ��0�� = 9.55 ∙ �3.6 ∙ ��ℎ (1)
where, � = 9.81�/�2 represents the gravitational constant;� = 1 and � = 0.015 stand for the equivalent mass inertia and
rolling friction coefficient, respectively; � represents the
vehicle speed with the unit of km/h; 21.15 is the
transformation coefficient under the windless environment;� = 0 stands for the slope level; 9.55 and 3.6 are two

conversion coefficients from curvature per second to rotation
per minute, and from meter per second to kilometer per hour,
respectively. For validation purpose, the HPS is assumed to
have an offered energy budget which focuses on a particular
journey.

A. Internal-Combustion-Engine Module
In this study, an experimental ICE model based on a 1.9 L

Saturn spark ignition engine [16] is adopted to design the
module. Using Willans approximation method [17], the
engine’s maximum power could be scaled based on the
consideration of its movement, and the equivalence power of
fuel consumption could be scaled based on the engine
movement as: ��,���� = �����∗ ∙ �� ∙ ��� ����, ���� (2)
where ���� and �∗ are the candidate engine displacement and
baseline engine displacement in liters, respectively; ��� and ��
are the instantaneous fuel consumption in g/s, and heat value
for gasoline oil (46 × 106 J/kg), respectively.
B. Li-ion Battery Electrothermal Coupled Module
For effectively capturing thermoelectricity dynamics of

batteries, a state-of-the-art coupled electrothermal model is
built, which consists of a RC sub-model with second order and
a concentrated thermal sub-model. For this coupled battery
model, both the state-of-charge (SoC) ��� � and RC voltages
(�1 � , �2 � ) of battery versus time � can be represented by
(3a) to (3c) separately, whilst the surface as well as internal
core temperatures �� � and �� � versus � can be formulated
by (3d) and (3e), respectively.���� ��� = � ��� (3�)��1 ��� = �1 ��1 � �1(�) + � ��1 � (3�)��2 ��� = �2 ��2 � �2(�) + � ��2 � (3�)��� ��� = ���� − �� ����� − �� � − �� ����� (3�)��� ��� = �� � − �� ����� + � ��� (3�)
where � � , �1 � �1(�) , �2 � �2(�) represent the existing
parameters of first RC pair and second RC pair versus � ,
separately. �� and ���� represent battery nominal capacity
and ambient temperature, respectively. �� , �� , �� , �� reflect
the parameters of thermal sub model. Here the heat
generation � � in (3�) can be calculated as:� � = � � �� � ����(�)���(�) + � � � � − ��� � (4)
It should be known that open circuit voltage (OCV) usually

displays a nonlinear relationship related to battery SoC, while
the battery terminal voltage � � is described as:� � = ��� ��� � + �0 � � � + �1 � + �2 � (5)

This battery coupled model has been well-validated for
A123 26650 battery, while its exact parameter values can be
found in [18].



C. Energy Management Module
In this study, a typical state machine [20] is adopted in the

energy management module to control the transition among
three operation modes. Here three input parameters: vehicle
torque requirement, �� , speed requirement, �� , and battery
charge status, ��� is input parameter of the state machine
controller, while the output is a split power vector defined as:� = ���� ���� ���� ���� ���� (6)
where ���� and ���� represent trans-motor torque requirement
and speed requirement, separately, while ���� stands for the
ISG power demand.
For the EV mode ( ��� > 0.5 or �� < 0 ), HPS would be

operated like a battery-based EV, leading the split power
vector under EV mode becomes:� = �� �� 0 0 0 (7)
For the series and parallel modes (��� ≤ 0.5 and �� ≥ 0),

power demand �� with the control parameter ����� decides
the switching series and parallel modes. Here the vehicle runs
parallel mode when �� > ����� . Besides, the vehicle will run
the series mode. The power-flow vector of the series mode
becomes:� = �� �� ����' ���� ����' ���� ����+ ∙ �2 (8)
The power-flow vector for parallel mode is:� = �� �� ∙ 1 − �1 �� �� ∙ �1 0 (9)

where, ����' and ����' are ICE’s optimal torque and speed,
respectively. ����+ reflects the ISG’s maximum power; �� (�=1
or 2) is a SoC-dependent factor mentioned below, while �1
and �2 represent the control of ICE and ISG, respectively [2].�� ��� =

= 1, ��� ∈ 0,0.21 + exp ������∗ + ��,� ��,� −1, ��� ∈ 0.2,0.50, ��� ∈ 0.5,1 (10)
where, ���∗ is a scaling factor for the SoC of the battery to
improve the searching efficiency for parameters ��,� and ��,� .
Here ��,� (�=1 or 2) ∈ [0.01,50] and ��,� (�=1 or 2) ∈ [ − 6,6]
are the control parameters for allowing the cut-in timing and
transformation speed optimization of both ICE and ISG, while
both the curve and position in this logistical function are
defined separately.

III. PROBLEM FORMULATION

Three optimization objectives are considered in this study: 1)
the consumption of fuel from both fuel storage as well as
electricity storage; 2) sum cost of both ICE and battery
modular; and 3) the integral-squared-error (ISE) of batteries’
mean and ambient temperature. Detailed description of each
objective is shown as follows. The first objective is derived by
considering the energy-saving efficiency as:�1 = 0

� ��,���� + Num�� ∙ ���(���) ∙ ��� ��� (11)
where, ��,���� means the equivalence power of the sum
consumption; Num�� means the count of battery cells; ��� and��� are open circuit voltage and current, respectively. The sum
cost of both ICE and battery modular as the second objective

could directly affect the acceptance of customers and be
described by:�2 = 12������� ���� + 424 + ����� ∙ Num�� (12)
where, ���� is the engine cost (USD) with a maximum power
of ������� ; 424 (USD) represents the baseline coefficient of
standard engine cost; ����� stands for the battery cell cost while
the count of all battery cells is Num��.
To ensure the safety and efficiency of battery modular, the

third objective is the ISE of battery cells’ mean and ambient
temperatures. Since large errors will be penalized by ISE, the
control system designed to minimize the ISE of battery cells’
mean and ambient temperatures would tendency to remove
large exceedances above safety thresholds rapidly but also
endure small oscillations persevering for a long period.�3 = 0

���� ���� � − ���� 2��� (13)
where, ���� and ���� are battery cells’ ambient temperature
and average temperature, respectively. In this context, the
multi-objective design issue of HPS can be described as:�����∗ ����∗ = argmin �1 �2 �3 (14)
in which �����∗ = ����∗ Num��∗����∗ = �1,�∗ �1,�∗ �2,�∗ �2,�∗ �����∗ (15)
where, �����∗ and ����∗ are vectors of component sizing
parameters and split power control parameters, respectively.
To confirm the convergence speed, the input variable needs to
be normalized first. The following constraints also need to be
satisfied in the optimization process:

�. �.
��� ∈ 0.2,0.8���� ∈ 0, ����+���� ∈ ����− , ����+���� ∈ 0, ����+���� ∈ 0, ����+

(16)
where battery SoC needs to be confined within the range
[0.2,0.8] for the safe and efficient utilization; ����+ reflects
the traction motor’s maximum speed; ����− and ����+ stand
for the traction motor’s minimum and maximum torques,
respectively. ����+ and ����+ represent the ICE’s and ISG’s
maximum powers, respectively. All power sources need to be
operated within their permittable ranges.

IV. ELECTROTHERMALLY-AWAREMULTI-OBJECTIVE
MODULAR DESIGN

In this study, the electrothermal dynamics-conscious multi-
objective module design is driven by PACO framework with
three multi-objective evolutionary algorithms (MOEAs).

A. Pareto-Augmented Collaborative Optimization
In theory, combining optimization algorithms especially the

ones with significantly different computation mechanisms is
capable of improving the resultant Pareto frontier [21]. In this
paper, three multi-objective evolutionary algorithms (MOEAs)
are integrated within a PACO framework to expand the Pareto
frontier’s distribution. These MOEAs are the elitist non-
dominated sorting genetic algorithm (NSGA-II), improved



strength Pareto evolutionary algorithm (SPEA-II), and MOEA
based on decomposition (MOEA/D). With help of the PACO
framework, the approximated PF could be found through
arranging three PFs obtained via NSGA-II, SPEA-II, and
MOEA/D, separately.

B. Desirability Function Approach
For the determination of modular specification and control

parameters, the desirability function is applied to extract the
optimal compromise solution based on the Pareto frontier.
From the work of Pasandideh et al., an approach is introduced
to calculate a penalty score α for each objective vector in a
collection of estimated PFs. Within this context, the solution
with a min α becomes the best compromised one. Here the
desirability function can be described as:min�∈��� � � = min�∈�� �=13 �� �� � − ��min��max − ��min� (17)� = �1 �2 �3� = �����∗ ����∗

�=13 ��� = 1 and �� ≥ 0 (18)
where ��max and ��min represent the max and min values of �� on
the approximated PF, respectively. � and �� stand for the
variable vector and weight factor, respectively.

V. RESULTS AND DISCUSSION

In this study, two genuine WLTCs replicated by two human
drivers on an undercarriage dynamometer from China
Automotive Technology & Research Center are adopted for
evaluating the proposed method. Here the comparison of
acceleration-velocity distributions between the original (Cycle
A) and other replicated cycles (Cycle B and Cycle C) are
displayed in Fig. 2. Within both the medium and fast range
(70-130km/h), the acceleration of replication cycles becomes
further offensive, particular for cycle C.

Fig. 2. Velocity-acceleration distribution of realistic WLTCs

A. Multi-objective Optimization Performance
Fig. 3(a) shows the approximate PFs using PACO that

integrates NSGA-II, SPEA-II, and MOEA/D, where an
estimated PF is captured from the non-dominated group of all
approximate PFs. According to the desirability function
method with weight factors � = [0.4 0.4 0.2] , a needed
method (a light blue circle represented) can be obtained. To
ensure the fairness of comparison, all algorithms for the
optimization are set with the same species size � =20, 50, 100, same record scale, i.e., � = 50, same probability

of the cruciate and variation ratios, i.e., ���� = 0.7 and ���� =0.3 , as well as same ending criteria with less than 100
iterations.

Fig. 3. Pareto frontier comparison based on different evolutionary
optimization algorithms: a) expected Pareto frontiers; and b) range of count of
non-dominated solutions.

According to the scatter plot, the approximate PFs from
NSGA-II (blue points) has the smaller propagates and
distribution in comparison with those received from SPEA-II
and MOEA/D. As shown in Fig. 3(b), more non-dominated
solutions can be collected by PACO, which presents at least
28% increase in comparison with the individual algorithms.
Besides, 72% non-dominated solutions are obtained by
MOEA/D, while the remaining 28% are produced by SPEA-II.
However, NSGA-II does not produce any non-dominated
solutions in this experiment. Among different population sizes,
a population with 50 individuals could generate around 66%
dominion in the estimated PF, while the population size of 20
and 100 generates 23% and 31% dominions, respectively.

TABLE I
OPTIMIZATION PERFORMANCE COMPARISON OVER THREE EVOLUTIONARY

ALGORITHMS

Population Optimization GD HV
algorithm Mean SD Mean SD

20
NSGA-II 3.42e+7 9.91e+14 2.00e-3 3.27e-6
SPEA-II 5.88e+6 2.98e+13 2.36e-1 4.87e-2
MOEA/D 1.02e+6 9.40e+11 3.11e-1 8.56e-2

50
NSGA-II 1.28e+7 1.43e+14 1.30e-2 1.46e-6
SPEA-II 1.82e+6 3.07e+12 2.62e-1 6.18e-2
MOEA/D 1.77e+6 2.82e+12 3.08e-1 8.67e-2

100
NSGA-II 4.63e+6 1.97e+13 6.10e-2 3.30e-3
SPEA-II 3.47e+6 1.14e+13 2.82e-1 1.06e-1
MOEA/D 1.63e+6 2.51e+12 3.34e-1 7.51e-2

In order to quantify the converge and expected PF group
distribution of the methods mentioned above, two widely-
applied indicators including the generational distance (GD)



[22] and hypervolume (HV) [23] are used, as summarized in
Table I. In comparison with NSGA-II and SPEA-II, MOEA/D
with better converge and better PF group distribution produces
the lower average value of GD and the higher average value of
HV for different species scale. According to Fig. 3(a), there
are orders of magnitude gap of NSGA-II’s performance in
terms of the average value of HV from the other two. In
comparison with NSGA-II and SPEA-II, MOEA/D achieved
at least 2.7% reduction in the generational distance and at least
17.6% increase in hypervolume. Therefore, it is evident that
MOEA/D is a satisfactory solver for this complicated
nonlinear optimization problem.

B. Vehicle System Performance and Robustness
Driver behavior is an essential factor which affects the fuel

economy [24,25]. The robustness of the vehicle system
enhanced by PACO is examined in this subsection. Each case
is repeatedly run under the standard Worldwide Harmonized
Light Vehicle Test Cycle (WLTC) for two rounds with an
original SoC of 0.8. Then the optimized outcome is adopted in
the HPS for various driving scenes such as Cycle A to Cycle C.
Table II shows the performance of the vehicle system as

four parts: 1) cost functions weighted value; 2) cost of the ICE
and battery cells; 3) sum consumption of energy; and 4) ISE of
battery cell temperature. Three ambient temperature levels
including 15°C, 25°C, 35°C are investigated. For the HPS
robustness measurements against Cycle B and Cycle C, using
the parameters improved by MOEA/D produces a cost
function value reduced by 31.0%. That is significantly lower
than that using the parameters optimized by NSGA-II (62.9%)
and SPEA-II (77.1%). In conjunction with Fig. 2, as the
driving becomes more offensive (such as Cycle A to Cycle C),
the vehicle allocation deduced from MOEA/D is able to better
curb the growth of the sum consumption of energy. In
comparison with this consumption growth deduced from
NSGA-II (able to 101.7%) and SPEA-II (able to 224.7%),
while MOEA/D can limit the growth within 10.6%. It is worth
noting that for the offensive Cycle C, the vehicle system
designed by MOEA/D keep being capable of regulating cell
temperature ISE efficiently under different ambient
temperature conditions, while other two methods are difficult
to curb the energy consumption.

Fig. 4. Real time performance under Cycle C with ambient temperature,���� = 25°C
For further exploration of the underlying reasons to this, the

illustrative variables of the vehicle system dependent on time
over Cycle C at ���� = 25°C illustrated in Fig. 4. It is evident
that the energy-flow trends of HPSs improved by NSGA-II,
SPEA-II, and MOEA/D become similar in the hybrid mode.
The exhaustive instantaneous performance in one of the peak
power requirements � ∈ [3400,3600] are shown in Figs. 7(d)-
(e), while the detected overshooting of the battery cell current
within the HPS optimized by SPEA-II could lead to two
hidden issues. The first is that the continuous battery high
temperature could speed up aging and diminish the charge or
discharge efficiency. The second one is that the low SoC could
cause the reduction of the allocation’s flexibility related to
energy flow hence further decreases the entire hybrid system’s
efficiency. Obviously, HPS optimized by MOEA/D (����max =28.8℃, ������ = 0.46 ) is capable of better addressing these

TABLE II
VEHICLE SYSTEM PERFORMANCE COMPARISON

Testing
cycle

Optimization
algorithm

Cost functions weighted
value

Cost of the ICE and battery
cells (104 USD) Energy consumption

(107J) ISE of battery cell
temperature (104℃2)

15°C 25°C 35°C 15°C 25°C 35°C 15°C 25°C 35°C 15°C 25°C 35°C
NSGA-II 0.614 0.687 0.602 2.021 2.403 2.329 3.234 2.499 2.930 17.27 1.668 0.496

Cycle A SPEA-II 0.496 0.646 0.507 1.616 2.361 2.223 2.656 2.288 1.795 4.675 1.081 0.625
MOEA/D 0.434 0.604 0.506 1.600 2.354 1.768 1.776 1.900 2.860 15.79 0.971 1.378
NSGA-II 0.654 0.692 0.648 2.021 2.403 2.329 3.835 2.692 3.627 11.27 0.969 0.357

Cycle B SPEA-II 0.538 0.692 0.551 1.616 2.361 2.223 3.288 2.756 3.504 3.505 1.027 1.600
MOEA/D 0.483 0.688 0.539 1.600 2.354 1.768 2.510 2.703 2.285 24.47 1.141 0.417
NSGA-II 1 0.983 0.818 2.021 2.403 2.329 6.037 3.884 5.909 69.77 9.449 2.784

Cycle C SPEA-II 0.518 0.906 0.898 1.616 2.361 2.223 2.960 3.970 5.827 54.99 5.350 30.677
MOEA/D 0.563 0.791 0.601 1.600 2.354 1.768 3.722 3.501 3.164 31.77 1.805 0.832

Note: 15°C, 25°C, 35°C mean the ambient temperature, ����. All optimized parameters are captured by a weight factor � = [0.4 0.4 0.2] under Cycle A.



issues than NSGA-II ( ����max = 34.8℃, ������ = 0.41 ) and
SPEA-II (����max = 40.0℃, ������ = 0.40).

VI. CONCLUSIONS
This paper has proposed an optimized modular design

method considering the battery electrothermal dynamics for a
Sequence-Parallel HPSs. Using a state-of-the-art
electrothermal battery model and a derived sub-objective
related to temperature, both battery thermoelectricity
dynamics in the design of HPS module can be considered
simultaneously. Through extensive numerical simulations with
lab made WLTCs for validation purpose, the performance of
the introduced method is assessed according to multi-objective
optimization, vehicle system robustness, and modular
adaptation for various cases. Several conclusions can be
summarized as:
1) In the HPS modular design, PACO framework can

produce more non-dominated solutions, further leading to
at least 28% increase of non-dominated solutions in
comparison with individual algorithms.

2) In the PACO, MOEA/D plays a key role in achieving at
least 2.7% reduction in generational distance and at least
17.6% increase in the hypervolume, in comparison with
NSGA-II and SPEA-II.

3) In the robustness experiments based on Cycle B and
Cycle C, the HPS adopting the parameters obtained from
MOEA/D is able to produce the cost function value within
only 31.0% increase, which is much lower than those
adopt parameters from NSGA-II (62.9%) and SPEA-II
(77.1%).
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