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Sparsity-Aware Robust Normalized Subband

Adaptive Filtering algorithms with Alternating

Optimization of Parameters
Yi Yu, Member, IEEE, Zongxin Huang, Hongsen He, Member, IEEE, Yuriy Zakharov, Senior Member, IEEE,

and Rodrigo C. de Lamare, Senior Member, IEEE

Abstract—This paper proposes a unified sparsity-aware robust
normalized subband adaptive filtering (SA-RNSAF) algorithm
for identification of sparse systems under impulsive noise. The
proposed SA-RNSAF algorithm generalizes different algorithms
by defining the robust criterion and sparsity-aware penalty.
Furthermore, by alternating optimization of the parameters
(AOP) of the algorithm, including the step-size and the sparsity
penalty weight, we develop the AOP-SA-RNSAF algorithm, which
not only exhibits fast convergence but also obtains low steady-
state misadjustment for sparse systems. Simulations in various
noise scenarios have verified that the proposed AOP-SA-RNSAF
algorithm outperforms existing techniques.

Index Terms—Impulsive noises, subband adaptive filters,
sparse systems, time-varying parameters.

I. INTRODUCTION

FOR highly correlated input signals, the normalized sub-

band adaptive filtering (NSAF) [1] algorithm provides

faster convergence than the normalized least mean square

(NLMS) algorithm and retains comparable complexity. The

NSAF algorithm was proposed based on the multiband struc-

ture of subband filters [2], which adjusts the fullband filter’s

coefficients to remove the aliasing and band edge effects of the

conventional subband structure [2]. However, in practice the

non-Gaussian noise with impulsive samples could commonly

happen such as in echo cancellation, underwater acoustics,

audio processing, and communications [3], [4], and in this sce-

nario, the NSAF performance degrades. To deal with impulsive

noises, several robust subband algorithms based on different

robust criteria were proposed, see [5]–[10] and references

therein, and most of them can be unified as the NSAF update

with a specific scaling factor.

Furthermore, it is interesting to improve the adaptive filter

performance by exploiting the system sparsity. For example,
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the impulse responses of propagation channels in underwater

acoustic and radio communications are usually sparse [11],

[12], only a few coefficients of which are non-zero. Aiming

at sparse systems, existing examples are classified into the

proportionate type and sparsity-aware type. The family of

proportionate NSAF (PNSAF) algorithms [13] assigns an

individual gain to each filter coefficient, which has faster

convergence than the NSAF algorithm. Later, robust PNSAF

algorithms were also presented [10], [14] to deal with im-

pulsive noises. On the other hand, the family of sparsity-

aware algorithms incorporates the sparsity-aware penalty into

the original NSAF’s and PNSAF’s cost functions; as a result,

sparsity-aware NSAF (SA-NSAF) [15], [16] and sparsity-

aware PNSAF [17] algorithms were developed. In sparse sys-

tem identification, these sparsity-aware algorithms can obtain

better convergence and steady-state performance than their

original counterparts.

However, the superiority of sparsity-aware algorithms de-

pends mainly on the sparsity-penalty parameter, which is often

chosen in an exploratory way thus reducing the practicality

of the algorithms. Besides, they encounter the problem of

choosing the step-size, which controls the tradeoff between

convergence rate and steady-state misadjustment. Hence, adap-

tation techniques for the sparsity-penalty and the step-size

parameters are necessary. In the literature, they are rarely

discussed simultaneously regardless of the Gaussian noise

or impulsive noise scenarios. In [18], the variable parameter

SA-NSAF (VP-SA-NSAF) algorithm was proposed for the

Gaussian noise, in which these two parameters are jointly

adapted based on a model-driven method, but it requires

knowledge of variances of the subband noises. In [19], by

optimizing the parameters in the sparsity-aware individual-

weighting-factors-based sign subband adaptive filter (S-IWF-

SSAF) algorithm with the robustness in the impulsive noise,

the variable parameters S-IWF-SSAF (VP-S-IWF-SSAF) algo-

rithm was presented, while it lacks the generality in sparsity-

aware subband algorithms.

In this paper, we propose a unified sparsity-aware robust

NSAF (SA-RNSAF) framework to handle impulsive noises,

which can result in different algorithms by only changing

the robustness criterion and the sparsity-aware penalty. We

then devise adaptive schemes for adjusting the step-size and

the sparsity-aware penalty weight, and develop the alternating

optimization of the parameters based SA-RNSAF (AOP-SA-

RNSAF) algorithm, with fast convergence and low steady-state
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misadjustment for sparse systems.

II. STATEMENT OF PROBLEM AND SA-RNSAF

ALGORITHM

Consider a system identification problem. The relationship

between the input signal u(n) and desired output signal d(n)
at time n is given by

d(n) = uT(n)wo + ν(n), (1)

where the M × 1 vector wo is the impulse response of the

sparse system that we want to identify, u(n) = [u(n), u(n −
1), ..., u(n −M + 1)]T is the M × 1 input vector, and ν(n)
is the additive noise independent of u(n). For estimating wo,

the SAF with a coefficient vector w(k) is used, shown in

Fig. 1 with N subbands, where k denotes the sample index in

the decimated domain. The input signal u(n) and the desired

output signal d(n) are decomposed into multiple subband

signals ui(n) and di(n) via the analysis filters {hi}
N
i=1,

respectively. For each subband input signal ui(n), the cor-

responding output of the fullband filter w(k) is yi(n). Then,

both di(n) and yi(n) are critically decimated to yield signals

di,D(k) and yi,D(k), respectively, with lower sampling rate,

namely, di,D(k) = di(kN) and yi,D(k) = u
T
i (k)w(k), where

ui(k) = [ui(kN), u(kN − 1), ..., u(kN − M + 1)]T. By

subtracting yi,D(k) from di,D(k), the decimated subband error

signals are obtained:

ei,D(k) = di,D(k)− u
T
i (k)w(k), i = 1, 2, ..., N, (2)

which are used to adjust the coefficient vector w(k) 1.
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Fig. 1. Multiband structure of subband adaptive filter.

In practice, the additive noise ν(n) can be non-Gaussian

consisting of Gaussian and impulsive components. Hence,

for the identification of a sparse vector wo in the presence

of impulsive noise, we define the following minimization

problem:

arg min
w(k+1)

[
||w(k + 1)−w(k)||22 + ρf(w(k + 1))

]
, (3)

1In some applications, we could also eventually need the output error e(n)
in the original time domain. To this end, we obtain w(n) by copying w(k)
for every N input samples, and then compute the output error by e(n) =
d(n)− u

T(n)w(n).

subject to

ep,i(k) = [1− µφi(k)] ei,D(k), (4a)

φi(k) =
ϕ′(ei,D(k))

ei,D(k)
, (4b)

for subbands i = 1, ..., N , where ep,i(k) = di,D(k) −
uT
i (k)w(k + 1) denotes the a posteriori decimated subband

error, µ > 0 will be called the step-size in the sequel, and

φi(k) is called the scaling factor of the i-th subband. In (3),

f(w) is a sparsity-aware penalty function and ρ > 0 is the

weight of this penalty term. In (4b), ϕ′(e) ,
∂ϕ(e)
∂e

, where

ϕ(e) ≥ 0 is an even function of variable e, defining the

robustness to impulsive noise.

By using the Lagrange multiplier method, we obtain the

solution of (3) subject to (4a) as

w(k + 1) = w(k) + µ

N∑

i=1

φi(k)
ei,D(k)ui(k)

||ui(k)||22
−

ρ

[
f ′(w(k + 1))−

N∑

i=1

ui(k)u
T
i (k)

||ui(k)||22
f ′(w(k + 1))

]
.

(5)

Note that the derivation of (5) also uses an approximation

in the SAF, that is uT
i (k)uj(k) ≈ 0 for i 6= j [1]. Then,

by introducing an intermediate estimate ψ(k), we propose to

implement (5) in two steps:

ψ(k) =w(k) + µ

N∑

i=1

φi(k)
ei,D(k)ui(k)

||ui(k)||22
, (6a)

w(k + 1) =ψ(k)− ρP (k), (6b)

where

P (k) = f ′(ψ(k))−
N∑

i=1

ui(k)u
T
i (k)

||ui(k)||22
f ′(ψ(k)). (7)

This completes the derivation of the update for the SA-RNSAF

algorithm. In this algorithm, the steps (6a) and (6b) have their

own roles. The former behaves like the RNSAF algorithm

to obtain a coarse estimate ψ(k) of the sparse vector wo in

impulsive noise. Subsequently, the step (6b) forces the inactive

coefficients in ψ(k) to zero, thus obtaining a more accurate

sparse estimate w(k + 1).
It is noteworthy that the parameters µ and ρ control the SA-

RNSAF’s performance. Specifically, the step-size µ controls

the convergence rate and steady-state misadjustment of the al-

gorithm. Moreover, the SA-RNSAF algorithm can be superior

to the RNSAF algorithm when dealing with sparse systems,

but ρ must be chosen within a theoretically existed range while

this range is unpredictable actually (see Remark 1 below). As

such, we will derive adaptive recursions for adjusting µ and

ρ. However, it is challenging to solve the global optimization

problem on µ and ρ, as (6a) and (6b) depend on each other.

Interestingly, µ and ρ mainly affect the steps (6a) and (6b),

respectively, thus we can use alternating optimization [20] to

solve this global optimization problem. Accordingly, the adap-

tations of µ and ρ will be designed independently according

to (6a) and (6b), respectively.
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III. PROPOSED AOP-SA-RNSAF ALGORITHM

By using the band-dependent variable step-size (VSS) µi(k)
and ρ(k) instead of some fixed values, we rearrange (6a) and

(6b) as follows:

ψ(k) =w(k) +

N∑

i=1

µi(k)φi(k)
ei,D(k)ui(k)

||ui(k)||22
, (8a)

w(k + 1) =ψ(k)− ρ(k)P (k). (8b)

A. Adaptation of the step-size

By subtracting (8a) from wo, we obtain

ψ̃(k) =w̃(k)−

N∑

i=1

µi(k)φi(k)
ei,D(k)ui(k)

||ui(k)||22
, (9)

where w̃(k) = wo − w(k) and ψ̃(k) = wo − ψ(k) define

the deviation vectors for the final estimate w(k) and the

intermediate estimate ψ(k) with respect to the true value.

By pre-multiplying uT
i (k) on both sides of (9) and applying

the approximation uT
i (k)uj(k) ≈ 0 for i 6= j again, it is

established that

eε,i(k) = [1− µi(k)φi(k)] ei,D(k) (10)

for i = 1, 2, ..., N , where eε,i(k) = di,D(k) − u
T
i (k)ψ(k)

defines the intermediate a posteriori error at the i-th subband

resulting from the step (6a). By squaring both sides of (10)

and taking the expectations over all the terms, the following

relation is obtained:

E{e2ε,i(k)} = [1− µi(k)φi(k)]
2

E{e2i,D(k)}, (11)

where E{·} denotes the mathematical expectation. In (11), a

common assumption is used that the step-size µi(k) and the

scaling factors {φi(k)}
N
i=1 are deterministic at iteration k in

contrast with the randomness of ei,D(k) [7], [21].

Motivated by [21], we wish to compute the subband step-

sizes in such a way that E{e2ε,i(k)} = σ2
ν,i, i = 1, 2, ..., N ,

which means that the powers of the intermediate a posteriori

subband errors always equal those of the subband noises,

where σ2
ν,i , E{ν2i,D(k)} denotes the power of the i-

th subband noise excluding impulsive interferences. on this

requirement, then from (11) we can obtain the following

equation:

µi(k)φi(k) = 1−

√
σ2
ν,i

σ2
ei,D

(k)
, (12)

where σ2
ei,D

(k) , E{e2i,D(k)} indicates the power of ei,D(k)
without impulsive noises. For robust adaptive algorithms with

the scaling factors, there is a common property [6], [7] that

when impulsive noises happen, the scaling factors φi(k) will

become very small (close to zero), thereby preventing the

adaptation (8a) from the interference caused by impulsive

noises. If the impulsive noise is absent, φi(k) will approxi-

mately equal one to ensure fast convergence. As such, we can

change (12) to

µi(k) = 1−

√
σ2
ν,i

σ2
ei,D

(k)
. (13)

To implement (13), the statistical quantities σ2
ei,D

(k) and σ2
ν,i

are replaced with their estimates σ̂2
ei,D

(k) and σ̂2
ν,i(k), respec-

tively. Specifically, σ̂2
ei,D

(k) is calculated in an exponential

window way as

σ̂2
ei,D

(k) = ζσ̂2
ei,D

(k − 1) + (1− ζ)φ2i (k)e
2
i,D(k), (14)

where ζ is a weighting factor often chosen as ζ = 1−1/(κM)
with κ ≥ 1. Similar to [21], σ̂2

ν,i(k) is calculated by the

following equations:

σ̂2
ui
(k) = ζσ̂2

ui
(k − 1) + (1− ζ)u2i (kN), (15a)

r̂uei(k) = ζr̂uei(k − 1) + (1− ζ)φi(k)ei,D(k)ui(k), (15b)

σ̂2
ν,i(k) = σ̂2

ei,D
(k)−

||r̂uei(k)||
2
2

σ̂2
ui
(k) + ǫ1

, (15c)

where ǫ1 is a small positive number (e.g., 10−5). Note that,

we introduce the scaling factor φi(k) in (14) and (15b) for

each subband to suppress impulsive noises.

Accordingly, (13) can be rewritten as

µi(k) = 1−

√
σ̂2
ν,i(k)

σ̂2
ei,D

(k) + ǫ2
, (16)

where ǫ2 is also a small positive number. It is stressed that

the estimated values of multiple statistical quantities are used

in (15c), and thus σ̂2
ν,i(k) could be negative at some iterations.

To avoid this, we add the step σ̂2
ν,i(k)← σ̂2

ν,i(k−1) after (15c).

B. Adaptation of the sparsity penalty weight

By subtracting (8b) from wo, we obtain

w̃(k + 1) = ψ̃(k) + ρ(k)P (k). (17)

By pre-multiplying both sides of (17) by their transpose, we

obtain

||w̃(k + 1)||22 = ||ψ̃(k)||22 +△(k), (18)

where

△(k) = 2ρ(k)ψ̃T(k)P (k) + ρ2(k)||P (k)||22. (19)

Remark 1: (18) clearly reveals that the proposed SA-

RNSAF algorithm will outperform the RNSAF algorithm for

identifying sparse systems, if and only if △(k) < 0 holds2. It

follows that ρ(k) should satisfy the inequality

0 < ρ(k) < 2
[ψ(k)−wo]TP (k)

||P (k)||22
. (20)

Moreover, since △(k) is the quadratic function of ρ(k), there

is an optimal ρ(k) such that △(k) arrives at the negative

maximum value. Consequently, the optimal ρ(k) is given as

ρopt(k) =
[ψ(k)−wo]TP (k)

||P (k)||22
. (21)

Although Remark 1 states that the relations (20) and (21)

are existing in sparse systems, they are incalculable due to

the fact that the sparse vector wo is unknown. To solve this

2Following a derivation similar to that in Appendix D in [19], △(k) < 0
is likely to be true as long as w

o is sparse.
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problem, we use the previous estimate w(k) to approximate

wo, then (21) can be reformulated as

ρ̂opt(k) = max

{
[ψ(k)−w(k)]TP (k)

||P (k)||22
, 0

}
, (22)

where ρ̂opt(k) is set to zero at k = 0.

The recursion (8) equipped with µi(k) in (16) and ρ̂opt(k)
in (22) constitutes the proposed AOP-SA-RNSAF algorithm.

Remark 2: The proposed AOP-SA-RNSAF update gener-

alizes different algorithms, depending on the choice of ϕ(e)
in (4b) and f(w) in (3). In the literature, several robust criteria

against impulsive noises [6], [7], [9], [10], [14] defined by

ϕ(e) and sparsity-aware penalties [15], [16], [18], [19], [22]

defined by f(w) have been studied, which can be applied

in the AOP-SA-RNSAF. Nevertheless, this paper does not

consider the effect of different choices of ϕ(e) and/or f(w),
which is worth studying in future work. Note that, when setting

ϕ(e) = 1
2e

2, the proposed algorithm is called the alternating

optimization of parameters based SA-NSAF (AOP-SA-NSAF)

suited for Gaussian noise environments, which is a sparsity-

aware variant of the VSS-NSAF algorithm presented in [21].

Remark 3: By firstly computing the inner

product uT
i (k)f

′(ψ(k)) in P (k), and then calculating P (k)
only requires 2M multiplications, 2M − M/N additions,

and 1 division. Therefore, the complexity of the proposed

AOP-SRNSAF algorithm is still low with O(M) arithmetic

operations per input sample.

IV. SIMULATION RESULTS

To evaluate the proposed AOP-SA-RNSAF algorithm, sim-

ulations are conducted to identify the acoustic echo paths

with M = 512 taps. The sparsenesses, defined as χ(wo) =
M

M−
√
M

(
1− ||wo||1√

M ||wo||2

)
, of two echo paths are χ(wo

1) =

0.9357 (sparse) [19] and χ(wo
2) = 0.3663 (dispersive or non-

sparse) [14], respectively. The length of the adaptive filters

is the same as that of wo. The correlated input signal u(n)
is a first-order autoregressive (AR) process with the pole at

0.9, generated by filtering a white Gaussian noise with zero-

mean and unit variance. The analysis filters {hi}
N−1
i=0 for

decomposing signals d(n) and u(n) are obtained by cosine-

modulated filter banks, where the length of the prototype

filter for N = 4 subbands is 33 to obtain 60 dB stopband

attenuation. The high stopband attenuation is to guarantee

that adjacent analysis filters have almost no overlap and the

cross-correlation of nonadjacent subbands is negligible [2].

The normalized mean square deviation (NMSD), defined as

E{||w(n) −wo||22/||w
o||22}, is the performance measure. All

the results are the average over 50 independent runs.

For the AOP-SA-RNSAF algorithm, we use the modi-

fied Huber (MH) function for ϕ(e) and the log-penalty for

f(ψ(k)). The MH function is formulated as ϕ(ei,D(k)) =
e2i,D(k)/2 if |ei,D(k)| < ξi and ϕ(ei,D(k)) = 0 if

|ei,D(k)| ≥ ξi [10], where ξi is the threshold. Accordingly,

when |ei,D(k)| ≥ ξi (usually impulsive noises occur), then

the scaling factor in (4b) is φi(k) = 0, which makes the

adaptation step (8a) freeze to suppress impulsive interfer-

ences; otherwise, φi(k) = 1, which retains fast conver-

gence. Note that, the threshold ξi for each subband i is

set to ξi = 2.576σ̂ε,i(k), where σ̂2
ε,i(k) is the variance of

ei,D(k) excluding impulsive samples. σ̂2
ε,i(k) is computed

by σ̂2
ε,i(k) = λσ̂2

ε,i(k − 1) + cσ(1 − λ)med(aε,i), where

λ ∈ (0.9, 1) is the forgetting factor (but λ = 0 at k = 0),

med(·) denotes the median operator to remove outliers in the

data window aε,i = [e2i,D(k), e
2
i,D(k−1), ..., e

2
i,D(k−Nw+1)]

with a length of Nw, and cσ = 1.483(1 + 5/(Nw − 1)) is

the correction factor. The log-penalty is given as f(ψk) =∑M
m=1 ln(1+ |ψm,k|/θ) [19] which characterizes the sparsity

of systems, where ψm,k is the m-th element of ψk, and

the shrinkage factor θ > 0 cuts apart inactive and active

entries in ψk. Thus, f ′(ψm,k) in (7) is computed element-wise

as f ′(ψm,k) =
sgn(ψm,k)
θ+|ψm,k| ,m = 1, ...,M . In our simulations, the

additive noise ν(n) is described by the symmetric α-stable

process, also called the α-stable noise, whose characteristic

function is formulated as φ(t) = exp(−γ|t|α) [3]. The

parameter α ∈ (0, 2] represents the impulsiveness of the noise

that for smaller α leads to stronger impulsive noises, and γ > 0
behaves like the variance of the Gaussian density. In particular,

it reduces to the Gaussian noise for the case of α = 2. In the

following simulations, we set γ = 0.02.

Example 1: the impulsive noise is absent, i.e., α = 2. The

proposed AOP-SA-NSAF algorithm in Remark 2 is compared

with the NSAF, VP-SA-NSAF [18], VSS-NSAF, and VSS-

PNSAF algorithms in Fig. 2, where both VSS-NSAF and

VSS-PNSAF are obtained from [10] but in the Gaussian noise

we reset ϕ(e) = 1
2e

2 instead of using the MH function.

For a fair evaluation, we select the log-penalty parameter

θ = 0.005 for all the sparsity-aware algorithms. As can be

seen, the VSS-NSAF algorithm obtains fast convergence and

low steady-state misadjustment, which overcomes the trade-off

problem in the NSAF algorithm. By considering the sparsity of

the underlying system, both VP-SA-NSAF and VSS-PNSAF

algorithms further improve the convergence rate. As compared

to the VSS-PNSAF algorithm, the proposed AOP-SNSAF

algorithm shows slower initial convergence, but it achieves

higher reduction in the steady-state misadjustment.

0 2 4 6 8 10 12 14 16

input samples (n) 104
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NSAF( =1)
NSAF( =0.15)
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dispersive casesparse case

Fig. 2. NMSD performance of NSAF-type algorithms in the Gaussian noise.
The parameters of algorithms are listed as follows: η = 0.99, λ = 0.95, and
µmax = 1 for VP-SA-NSAF; τ = 3 for VSS-NSAF; τ = 5 and ζ = 0 for
VSS-PNSAF; κ = 6 for AOP-SA-NSAF.

Example 2: α = 1.6 displays the presence of impulsive

noises. Fig. 3 depicts the NMSD performance of the NSAF,
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M-NSAF [10], VSS-M-NSAF [10], VSS-M-PNSAF [10], VP-

IWF-SSAF with RA [19], and the proposed AOP-SA-RNSAF

algorithms3. For the M-estimate based algorithms, we choose

the common M-estimate parameters λ = 0.99 and Nw = 20.

It is seen that the NSAF algorithm shows poor misadjustment

in the α-stable noise, and other algorithms exhibit robust

convergence. Among these robust algorithms, the proposed

AOP-SA-RNSAF algorithm is the best choice for identifying

sparse systems, due to the fact that it has lower steady-state

misadjustment than the VSS-M-PNSAF and VP-S-IWF-SSAF

with RA algorithms, even if it has a slightly slower initial

convergence than the VSS-M-PNSAF algorithm.
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dB
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M-NSAF( =0.15)
VSS-M-NSAF
VP-S-IWF-SSAF with RA
VSS-M-PNSAF
AOP-SA-RNSAF

sparse case dispersive case

Fig. 3. NMSD performance of NSAF-type algorithms in the α-stable noise.
The parameters of algorithms are listed as follows: µmin = 10−5, τ = 2,
and χ = 1 for VP-S-IWF-SSAF; τ = 3 for VSS-M-NSAF; τ = 5 and ζ = 0
for VSS-M-PNSAF; κ = 6 for AOP-SA-RNSAF.

It can be seen in Figs. 2 and 3 that, after wo becomes

dispersive at the middle of input samples, the proportionate-

type (i.e., VSS-PNSAF, VSS-PNSAF) and sparsity-aware

type (i.e., VP-SA-NSAF, AOP-SA-NSAF, AOP-SA-RNSAF)

algorithms still show almost the same performance as the

competing algorithms (i.e., VSS-NSAF and VSS-M-NSAF)

in both Gaussian and α-stable noise scenarios. In addition, as

α decreases from 2 to 1.6, the steady-state misadjustment of

the proposed AOP-SA-RNSAF algorithm increases, but this

algorithm is still convergent.

V. CONCLUSION

In this paper, a unified SA-RNSAF framework for algo-

rithms was developed for identifying sparse systems in impul-

sive noise environments. By replacing directly the specified

robustness criterion and sparsity-aware penalty, it can yield

different SA-RNSAF algorithms. We then developed adaptive

techniques for the step-size and the sparsity penalty weight

in the SA-RNSAF algorithm, thus arriving at the AOP-SA-

RNSAF algorithm with a further performance improvement

in terms of the convergence rate and steady-state misadjust-

ment. Simulations for the sparse system identification have

demonstrated the effectiveness of the proposed algorithms.

3Since the variance of the α-stable noise is nonexistent, here we do not
show the performance of the VP-SA-NSAF algorithm.
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