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David G. Kiely1,2,6, Rob Van Der Geest8† and Andrew J. Swift1,2*†  

Abstract 

Background: Right atrial (RA) area predicts mortality in patients with pulmonary hypertension, and is recommended 

by the European Society of Cardiology/European Respiratory Society pulmonary hypertension guidelines. The advent 

of deep learning may allow more reliable measurement of RA areas to improve clinical assessments. The aim of this 

study was to automate cardiovascular magnetic resonance (CMR) RA area measurements and evaluate the clinical 

utility by assessing repeatability, correlation with invasive haemodynamics and prognostic value.

Methods: A deep learning RA area CMR contouring model was trained in a multicentre cohort of 365 patients with 

pulmonary hypertension, left ventricular pathology and healthy subjects. Inter-study repeatability (intraclass correla-

tion coefficient (ICC)) and agreement of contours (DICE similarity coefficient (DSC)) were assessed in a prospective 

cohort (n = 36). Clinical testing and mortality prediction was performed in n = 400 patients that were not used in the 

training nor prospective cohort, and the correlation of automatic and manual RA measurements with invasive haemo-

dynamics assessed in n = 212/400. Radiologist quality control (QC) was performed in the ASPIRE registry, n = 3795 

patients. The primary QC observer evaluated all the segmentations and recorded them as satisfactory, suboptimal or 

failure. A second QC observer analysed a random subcohort to assess QC agreement (n = 1018).

Results: All deep learning RA measurements showed higher interstudy repeatability (ICC 0.91 to 0.95) compared to 

manual RA measurements (1st observer ICC 0.82 to 0.88, 2nd observer ICC 0.88 to 0.91). DSC showed high agreement 

comparing automatic artificial intelligence and manual CMR readers. Maximal RA area mean and standard deviation 

(SD) DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs 

observer 2 is 92.4 ± 3.5  cm2, 91.2 ± 4.5  cm2 and 93.2 ± 3.2  cm2, respectively. Minimal RA area mean and SD DSC metric 

for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 was 

89.8 ± 3.9  cm2, 87.0 ± 5.8  cm2 and 91.8 ± 4.8  cm2. Automatic RA area measurements all showed moderate correlation 
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Introduction
Changes in the right atrium (RA) are important to rec-

ognise in the evaluation of patients with right ven-

tricular (RV) failure [1–5]. Right atrial pressure (RAP) 

measured at right heart catheterisation is fundamental 

to the haemodynamic assessment of RV failure [6, 7] 

and predicts mortality in patients with pulmonary artery 

hypertension (PAH) [8, 9].

Accurate and repeatable measurements of cardiac 

chamber size and function are important for patient 

management [10]. A number of studies have revealed the 

prognostic significance of cardiovascular magnetic reso-

nance (CMR) measurements in various cardiopulmonary 

diseases such as cardiomyopathies, pulmonary arterial 

hypertension (PAH), heart failure and ischaemic heart 

disease [11–15]. RA size and function measured by CMR 

can predict mortality [16–18] and the European Society 

of Cardiology (ESC) and European Respiratory Society 

(ERS) guidelines advocate the use of maximal (systolic) 

RA area for stratification of PAH patients [19].

RA measurements are often made manually on images 

viewed on patient archive and communication systems 

(PACS) or dedicated software packages with potential for 

observer variability. Image analysis tools differ between 

packages and the analysis does take a small but signifi-

cant amount of time. With the advent of artificial intel-

ligence (AI), deep learning using convolutional neural 

networks (CNNs), accurate cardiac chamber segmenta-

tions are possible [20–24]. Reference ranges for cardiac 

structure and function in healthy Caucasian adults from 

the UK Biobank population cohort were described for 

all four cardiac chambers using CMR [25]. Automated 

quality control (QC) in image segmentation was applied 

to the UK Biobank CMR study via the reverse classifi-

cation accuracy (RCA) approach to categorize between 

successful and failed segmentations. This previous work 

showed that RCA has the potential for accurate and fully 

automatic segmentation QC on a per-case basis [26]. A 

deep learning based framework for automated, quality-

controlled characterization of cardiac function from 

cine CMR has been established and reference values 

for cardiac function metrics were automatically derived 

from the UK Biobank cohort [27]. Fully automated CMR 

derived biventricular evaluation of function and mor-

phology in a real-world setting has achieved good results 

without any operator interaction [28]. However, in the 

case of unseen anatomic variations, such as severe car-

diac chamber shape changes and dilatation as in PAH, 

or significant artefact, then deep learning measurements 

may fail or be suboptimal [29].

Automation of RA area measurements may result in 

lower variability and assist clinicians to reach fast and 

robust clinical decisions. However, there are currently no 

studies that have automated CMR RA area metrics in the 

setting of PAH in which patients have varying degrees of 

RV failure, and the repeatability, correlation with invasive 

haemodynamics and success/failure rate in clinical popu-

lations remains unknown.

The aim of this study was to develop a quantitative 

CMR-based automated artificial intelligence (AI) analy-

sis of the RA in a large cohort of patients with heart fail-

ure and PAH with varying aetiology and disease severity, 

and (i) determine the failure rate of the model in a large 

clinical registry, (ii) evaluate interstudy repeatability, (iii) 

directly compare the association of manual RA area and 

AI RA area with invasive haemodynamics and (iv) evalu-

ate RA measurements as predictors of mortality.

Methods
Study population

A cohort of 365 subjects was used for training. This 

included a random selection of studies from 285 patients 

in the ASPIRE registry (several ASPIRE follow up scans 

were included with a total number of studies of 367). 

Sixty-six subjects from Leeds, including 29 healthy 

subjects and 37 patients with myocardial infarction of 

which 19 were acute and 18 were chronic. Fourteen 

healthy subjects from Leiden University Medical Centre 

(LUMC) were also included. The total number of studies 

included in the training cohort was 447. The demograph-

ics of the Leeds and Leiden subjects have been previously 

described [30, 31].

with invasive parameters (r = 0.45 to 0.66), manual (r = 0.36 to 0.57). Maximal RA area could accurately predict 

elevated mean RA pressure low and high-risk thresholds (area under the receiver operating characteristic curve arti-

ficial intelligence = 0.82/0.87 vs manual = 0.78/0.83), and predicted mortality similar to manual measurements, both 

p < 0.01. In the QC evaluation, artificial intelligence segmentations were suboptimal at 108/3795 and a low failure rate 

of 16/3795. In a subcohort (n = 1018), agreement by two QC observers was excellent, kappa 0.84.

Conclusion: Automatic artificial intelligence CMR derived RA size and function are accurate, have excellent repeat-

ability, moderate associations with invasive haemodynamics and predict mortality.

Keywords: Right atrial area, Cardiovascular magnetic resonance, Convolutional neural networks, Artificial 

intelligence, Deep learning training, Clinical testing, Repeatability assessment, Mortality prediction
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To test the model we used two populations. The first 

population included 36 patients CMR studies for pro-

spective repeatability testing from the RESPIRE study 

(ClinicalTrials.gov Identifier: NCT03841344) [32]. The 

second population contained 400 patients CMR studies 

for clinical testing from the ASPIRE registry (ASPIRE, 

ref: c06/Q2308/8). For quality control and failure rate 

we included 3795 patients (5756 CMR studies, as fol-

low up studies were included) from the ASPIRE registry 

(Fig.  1). Prospectively recruited patients provided writ-

ten informed consent. Consent was waived for analysis of 

retrospective cases.

CMR protocol

The training cohort included 1.5T (HDx, General Electric 

Healthcare, Chicago, Illinois, USA) and 1.5T (Ingenia, 

Philips Healthcare, Best, the Netherlands) studies. The 

testing cohort consisted of GE studies acquired in a clini-

cal setting in the ASPIRE registry. The RESPIRE prospec-

tive cohort consisted of GE studies [32]. CMR studies in 

the testing cohort were performed using a whole-body 

scanner at 1.5T (HDx (General Electric Healthcare) [33]. 

Cine CMR acquisitions were made using a balanced 

steady state free precession (bSSFP) sequence. Follow-

ing planning sequences, 4-chamber cine images were 

acquired. A stack of short axis images were acquired cov-

ering apex to base. Slice thickness and number of cardiac 

phases were 8 mm with 20 phases.

Leeds and Leiden CMR studies were performed on a 

1.5 T system (Ingenia, Philips Healthcare) equipped with 

a 28-channel flexible torso coil and digitization of the 

CMR signal in the receiver coil. Vertical long-axis, hori-

zontal long-axis, 3-chamber (left ventricular (LV) outflow 

tract-views), and the LV volume contiguous short axis 

stack cine imaging were defined using survey. All cines 

were acquired with a bSSFP, single-slice breath-hold 

sequence. Typical parameters for bSSFP cine were as fol-

lows: SENSE factor 2, flip angle 60°, TE 1.5 ms, TR 3 ms, 

field of view 320–420 mm according to patient size, slice 

thickness 8 mm and 30 phases per cardiac cycle.

Image analysis

Four observers SA, FA, KK and AJS (with 2, 3, 13 and 

11  years CMR experience, respectively) manually drew 

LV and RV and atrial contours in 4-chamber cine CMR 

views on all cardiac phases for the training and testing 

cohorts. All contours were drawn with observers blinded 

to the patient’s clinical information. All manual contours 

were reviewed by an expert CMR reader (AJS). RV endo-

cardial and epicardial surfaces were also manually traced 

from the stack of short-axis cine images to obtain RV 

volumetric and functional measurements as previously 

described [33]. MASS software (research version 2020; 

Leiden University Medical Center, Leiden, the Nether-

lands) was used for the manual contouring for developing 

the algorithm and repeatability testing).

Deep learning training

CMR studies including a random selection of patients 

from the ASPIRE registry, subjects from Leeds, and from 

LUMC were used for deep learning training. The train-

ing process was performed in two stages. We trained two 

CNN models with different numbers of manually anno-

tated 4-chamber view images in the training set. The val-

idation set and test set used were the same for both of 

the CNN models. Since no hyper parameter tuning was 

performed in the current experiments a relatively small 

validation set of 6 subjects (180 images) was deemed 

sufficient to confirm model convergence during train-

ing and to confirm that the models did not suffer from 

Fig. 1 Study flow chart. Max = maximal; Min = minimal; DSC = DICE similarity coefficient
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overfitting. The test set consisting of 20 cases was used to 

compare the model performance of the initial model with 

the final model. Following this strategy we maximised the 

number of studies available for training. The initial model 

was trained on a combination of Philips (Leeds/LUMC, 

n = 80) and GE (Sheffield, n = 184) data (total n = 264). 

The contours used for training were all generated with-

out the use of a CNN. For the final model 183 additional 

Sheffield GE scans were added. The contours for these 

additional cases were generated by reviewing and editing 

the contours generated using the base model. On average 

50% of the contours generated by the initial model were 

manually edited for this set of cases. These cases were 

separate from the test cohorts.

The CNNs used for the experiments had an UNET-

like architecture with 16 convolutional layers includ-

ing residual learning units and was implemented using 

Python and TensorFlow. Input images were resampled to 

a fixed pixel spacing of 1 mm and cropped to a 256 × 256 

image matrix size and zero filled when required. Dur-

ing training, data augmentation was performed on the 

fly by creating new training samples by randomly rotat-

ing, flipping, shifting and modifying image intensities of 

the original images. A total of 447 manually annotated 

4-chamber cine series were used for training correspond-

ing to 10,045 images. For training the Adam optimizer 

method was used, the learning rate was selected as 0.001 

and cross-entropy was used as loss function. Each train-

ing batch included a random selection of 20 images. 

The number of epochs was set at a fixed number of 50, 

with all images used once in every epoch. The raw out-

put of the CNNs is a labeled image, with the six possi-

ble label values corresponding to either one of the four 

cardiac cavities, the LV myocardium, or background. 

For each cardiac label, the largest connected component 

was extracted and a closed spatially smoothed contour 

around the extracted region generated. The area of the 

cardiac cavities was subsequently derived as the area sur-

rounded by the generated contours. All experiments were 

executed on a standard PC with Intel Core i7 CPU with 

64 GB of internal RAM memory equipped with an Nvidia 

GTX 1080 TI GPU with 12 GB of memory. The authors 

are happy to be contacted for research access to the Mass 

software and the AI segmentation tool upon request.

Quality control

All automatically AI segmented RA area contours across 

all cardiac phases and resultant volume-time curves were 

evaluated by AS and scored as satisfactory, suboptimal or 

failure. In addition, the quality of the image acquisition 

was assessed for artefacts and slice position error. The 

definitions for QC were assigned prior to image review. 

Satisfactory was defined as either perfect contouring or 

minor errors that were not thought to affect the volu-

metric results. Suboptimal was defined as contours with 

errors deemed significant enough to affect the volumetric 

results. Failure defined as either absent contours or gross 

failure of the algorithm to segment the cardiac structures.

Repeatability and agreement of the deep learning 

contours

To evaluate inter-study agreement two CMR scans were 

performed on the same day in two separate sittings as 

part of the RESPIRE study [32] for AI and manual meas-

urements. In addition, interobserver agreement assess-

ments, manual (AS) vs manual (FA), AI vs AS and AI 

versus FA were made. Agreement of the machine learn-

ing contouring model was evaluated by DSC. The DICE 

similarity for all cardiac cavities was computed in the 

20 subjects in the test set. This was both for the baseline 

model as well as the final model.

Association of manual and AI CMR measurements 

with invasive haemodynamics

Correlations with invasive haemodynamics were per-

formed in patients in the ASPIRE registry clinical testing 

cohort who underwent right heart catheterisation within 

48 h of CMR. The accuracy of RA CMR measurements to 

predict ESC/ERS mean RAP low and high-risk thresholds 

of 8 mmHg and 14 mmHg respectively, was assessed.

Statistical analysis

Continuous variables are presented as proportions 

and means ± standard deviations. Normal distribution 

assessed by visual inspection of histograms and using 

the Shapiro–Wilk test. Variables that were not normally 

distributed were correlated using Spearman correla-

tion coefficient. Univariate Cox regression Hazard ratios 

were calculated for AI and manual RA measurements 

to estimate the prognostic significance. Accuracy of RA 

measurements to predict RA thresholds performed using 

receiver operating characteristic analysis. Intraclass cor-

relation coefficients and Bland–Altman plots were used 

to assess repeatability of manual and AI CMR metrics. 

Inter-rater reliability of the two observers grading of seg-

mentation quality as satisfactory, suboptimal or failure 

was assessed using Cohen’s kappa testing in a subcohort. 

Statistical analysis was carried out using SPSS (version 

26, Statistical Package for the Social Sciences, Inter-

national Business Machines, Inc., Armonk, New York, 

USA) and RStudio (version 1.2.5033, RStudio, Boston, 

Massachusetts, USA), and p value of 0.05 was considered 

statistically significant. For data presentation, GraphPad 

Prism (version 9.1.0, GraphPad Software, San Diego, Cal-

ifornia, USA) software was used.
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Results
Patients

The ASPIRE registry in the training model included 

patients with left heart disease (15%), lung disease 

(12%), chronic thromboembolic PAH (21%), PAH 

(29%), other PAH (2%) and non-PAH (21%). The mean 

and standard deviation (SD) of the main haemody-

namics of the ASPIRE registry in the training model is 

10.4 ± 6.2  mmHg for mean RAP, 41.0 ± 15.5  mmHg for 

mean pulmonary arterial pressure, 13.4 ± 6.0 mmHg for 

pulmonary arterial wedge pressure, and 561 ± 466 dynes/

m2 for pulmonary vascular resistance. The characteris-

tics for the prospective repeatability, clinical testing and 

full cohort are presented in Table 1. In the clinical testing 

cohort, 218 of the 400 patients had died (54.5%) during a 

mean follow-up period of 1 year.

Quality control

Of 3795 patients (5756 studies) analysed by the AI model, 

16 (0.3%) failed. 108 (1.9%) had suboptimal contours sig-

nificant enough to be thought to affect the area meas-

urements. In 72/108 patients, the 4-chamber slice was 

Table 1 Demographics, CMR and invasive haemodynamics of patients in the (i) RESPIRE (ii) Clinical testing and (iii) full cohort

BSA, body surface area; CMR, cardiovascular magnetic resonance; CTEPH, chronic thromboembolic pulmonary hypertension; max, maximal; min, minimal; mRAP, 

mean right atrial pressure; mPAP, mean pulmonary arterial pressure; MvO2, mixed venous oxygen saturation; PAH, pulmonary arterial hypertension; PAWP, pulmonary 

arterial wedge pressure; PH, pulmonary hypertension; PVR, pulmonary vascular resistance; RHC, right heart catheterization; RVESVI, right ventricular end-systolic 

volume index; RVEDVI, right ventricular end-diastolic volume index; RVSVI, right ventricular stroke volume index; RVEF, right ventricular ejection fraction; RA, right 

atrial; WHO FC, World Health Organisation functional class. Data presented as mean ± standard deviation

RESPIRE repeatability (n = 36) Clinical testing (n = 400) Full cohort (n = 3795)

Demographics

 Age, yr 49.5 ± 15.9 55.4 ± 16.4 62.8 ± 15.3

 Sex, F/M (F %) 30/6 (83) 283/117 (71) 2355/1440 (62)

 BSA  (m2) 1.9 ± 0.2 1.8 ± 0.2 1.8 ± 0.2

 WHO FC I, n (%) 0 (0) 2 (1) 47 (1)

 WHO FC II, n (%) 2 (6) 21 (5) 441 (12)

 WHO FC III, n (%) 30 (83) 338 (85) 2743 (77)

 WHO FC IV, n (%) 4 (11) 36 (9) 336 (10)

Diagnosis, n (%)

 Left Heart Disease 0 (0) 0 (0) 611 (16)

 Lung Disease 0 (0) 0 (0) 632 (17)

 CTEPH 0 (0) 0 (0) 728 (19)

 PAH 36 (100) 400 (100) 1040 (28)

 Other PAH 0 (0) 0 (0) 84 (2)

 Other (not PAH) 0 (0) 0 (0) 677 (18)

Haemodynamics

 mRAP, mmHg 11 ± 7 10.4 ± 6.0 10.1 ± 6.0

 mPAP, mmHg 52 ± 13 48.0 ± 13.7 40.8 ± 14.2

 PAWP, mmHg 10 ± 3 10.3 ± 2.9 12.8 ± 5.9

 Cardiac output L/min 4.5 ± 1.7 4.9 ± 1.5 4.9 ± 1.9

 Cardiac index, L/min/m2 2.5 ± 0.9 2.8 ± 0.9 2.7 ± 1.0

 PVR, dynes/m2 899 ± 512 720 ± 419 562 ± 419

  MvO2, % 65.0 ± 9.1 63.5 ± 9.1 65.2 ± 9.3

CMR volumetric measurements

 RVESVI, ml/m2 25.4 ± 9.2 46.8 ± 28.2 37.3 ± 27.1

 RVEDVI, ml/m2 63.3 ± 27.6 72.7 ± 35.5 62.6 ± 35.5

 RVSVI, ml/m2 37.9 ± 20.7 25.9 ± 12.7 25.3 ± 15.4

 RVEF, % 43.3 ± 10.0 39.1 ± 14.1 44.6 ± 16.1

CMR area measurements

 Automatic max RA area,  cm2 22.6 ± 6.3 25.5 ± 9.8 25.8 ± 10.6

 Manual max RA area,  cm2 22.5 ± 6.3 26.0 ± 10.3 -

 Automatic min RA area,  cm2 15.0 ± 5.5 18.4 ± 9.4 18.5 ± 10.3

 Manual min RA area,  cm2 15.3 ± 5.7 19.3 ± 10.1 -
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off-plane, with the most frequent error being inclusion 

of the LV outflow tract and suboptimal view of the RA. 

In 36/108 severe image artefact, typically breathing arte-

fact or poor cardiac gating lead to suboptimal RA con-

tours. In a randomly selected subcohort of 1018 studies, 

the scoring of satisfactory, suboptimal and failure showed 

excellent agreement between observer 1 and observer 2, 

with a high kappa statistic of 0.84.

Segmentation agreement

Manual and automatic AI segmentation were assessed 

in the same day repeat studies from the prospective 

RESPIRE study. DSC showed high agreement (Fig.  2) 

comparing automatic AI and manual CMR readers, with 

a minimal bias towards either reader, validating similar-

ity in the resulting contours. Manual contours made by 

observer 1 and observer 2 were closely related for both 

maximal RA area and minimal RA area. The mean and 

SD DSC metric for observer 1 vs observer 2, AI measure-

ments vs observer 1 and AI measurements vs observer 

2 is 92.4 ± 3.5, 91.2 ± 4.5 and 93.2 ± 3.2 for maximal 

RA area. The mean and SD DSC metric for observer 1 

vs observer 2, AI measurements vs observer 1 and AI 

measurements vs Observer 2 is 89.8 ± 3.9, 87.0 ± 5.8 

and 91.8 ± 4.8 for minimal RA area. The DSC for all four 

cardiac chambers before and after refinement for the 20 

subjects in the test set are shown in Additional file  1: 

Table S1.

Repeatability and agreement assessment

All AI RA measurements showed higher interstudy 

(scan-rescan) repeatability ICC 0.91 to 0.95, compared 

to manual measurements (observer 1 ICC 0.82 to 0.88, 

observer 2 ICC 0.88 to 0.91). Similar repeatability was 

also found comparing both observers with AI RA con-

tours compared to observer 1 vs observer 2 ICC 0.96 to 

0.98, see Tables 2, 3. Minimal bias was found for AI RA 

measurements, Fig. 3.

Clinical testing cohort

In the clinical testing cohort (n = 400), RA area meas-

urements made by AI and observers were comparable 

(Table 1). In the clinical testing cohort both manual and 

AI maximal RA area predicted overall all-cause mortal-

ity with similar predictive value, (hazard ratio 1.02 (95% 

confidence interval 1.01 to 1.03) and 1.02 (95% confi-

dence interval 1.01 to 1.03) respectively, both p < 0.01). 

Fig. 2 Right atrial (RA) measurements and DICE similarity coefficient. 

Maximal and minimal RA area DICE similarity coefficient results for 

(i) observer 1 vs observer 2 contour agreement, (ii) automatic vs 

observer 1 and (iii) automatic vs observer 2. RA = right atrial

Table 2 Scan-rescan variability of automatic AI and manual right atrial CMR measurements

Interstudy (scan-rescan) variability (n = 36)

Automatic Observer 1 Observer 2

ICC 95% CI ICC 95% CI ICC 95% CI

Max RA area 0.91 0.82, 0.96 0.82 0.65, 0.91 0.88 0.76, 0.94

Min RA area 0.95 0.89, 0.97 0.88 0.75, 0.94 0.91 0.84, 0.96

Table 3 Interobserver variability of automatic AI and manual right atrial CMR measurements

AI, artificial intelligence; CMR, cardiovascular magnetic resonance; max, maximal; min, minimal; RA, right atrial

Interobserver variability (n = 36)

Automatic vs Observer 1 Automatic vs Observer 2 Observer 1 vs Observer 2

ICC 95% CI ICC 95% CI ICC 95% CI

Max RA area 0.99 0.97, 0.99 0.98 0.95, 0.99 0.98 0.94, 0.99

Min RA area 0.99 0.98, 0.99 0.97 0.92, 0.99 0.96 0.95, 0.99
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Manual and AI minimal RA area also showed a simi-

lar predicted mortality hazard ratio of 1.03 (95% con-

fidence interval 1.01 to 1.02) and 1.02 (95% confidence 

interval 1.01 to 1.03), respectively, both p < 0.01.

Of the 400 patients identified for the clinical testing 

cohort, 212 patients underwent CMR and right heart 

catheterization (RHC) within 48  h. Moderate positive 

correlations were found between RA area measure-

ments and mean RAP (mRAP) (AI, r = 0.64 and man-

ual, r = 0.57). Moderate correlations of AI maximal RA 

area measurements with all invasive haemodynamics 

were found, see Table 4. The strongest correlation was 

found between minimal RA area and mRAP, r = 0.66), 

see Table 5.

Maximal RA area could accurately predict mRAP 

low and high ESC/ERS risk thresholds (area under 

the receiver operating characteristic curve AI = 0.82 

vs manual = 0.78 to identify low-risk patients with 

mRAP ≤ 8 mmHg and AI = 0.87 vs manual = 0.83 to iden-

tify high-risk patients with mRAP > 14 mmHg). Minimal 

RA area had a marginally highest accuracy for predic-

tion of elevated mRAP, the strongest prediction was for 

mPAP > 14, area under the curve (AUC) 0.90, see Fig. 4. 

In comparison with manual measurements, automatic 

maximal RA area was not more accurate for detection of 

patients with mRAP > 8  mmHg and mRAP > 14  mmHg, 

Fig. 3 Bland–Altman plots and RA measurements. Bland–Altman plots showing CMR RA measurements scan-rescan results for (left) deep learning 

automatic AI measurements, (middle) observer 1 manual measurements, and (right) observer 2 manual measurements. CMR = cardiovascular 

magnetic resonance; AI = artificial intelligence; RA = right atrial

Table 4 Pearson correlation (r) for the relation of manual 

maximal RA area and automatic AI maximal RA area with RHC 

parameters.  mRAP, mean right atrial pressure; PVR, pulmonary 

vascular resistance

RHC parameters Manual maximal RA 
area (n = 212)

Automatic maximal 
RA area (n = 212)

r p r P

mRAP 0.57  < 0.001 0.64  < 0.001

mPAP 0.38  < 0.001 0.46  < 0.001

Cardiac index − 0.36  < 0.001 − 0.45  < 0.001

PVR 0.36  < 0.001 0.47  < 0.001

SvO2 − 0.41  < 0.001 − 0.48  < 0.001

Table 5 Pearson correlation (r) for the relation of manual 

minimal RA area and automatic AI minimal RA area with RHC 

parameters

RA, right atrial; AI, artificial intelligence; RHC, right heart catheterization; mRAP, 

mean right atrial pressure; mPAP, mean pulmonary arterial pressure; PVR, 

pulmonary vascular resistance; MvO2, mixed venous oxygen saturation

RHC parameters Manual minimal RA 
area (n = 212)

Automatic minimal 
RA area (n = 212)

r p r p

mRAP 0.57  < 0.001 0.66  < 0.001

mPAP 0.40  < 0.001 0.50  < 0.001

Cardiac index − 0.39  < 0.001 − 0.50  < 0.001

PVR 0.40  < 0.001 0.54  < 0.001

SvO2 − 0.44  < 0.001 − 0.55  < 0.001
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(p = 0.11) and (p = 0.13), respectively. Automatic con-

touring of minimal RA area trended to suggest higher 

accuracy for predicting elevated mRAP > 8  mmHg and 

mRAP > 14 mmHg than manual measurements (p = 0.05) 

(p = 0.06), respectively, however these results are not of 

statistical significance.

Discussion
This study shows that CMR RA area measurements 

can be fully automated using AI with a very low failure 

rate in a large clinical cohort with varying RA size and 

deformity. The variability of AI derived RA area measure-

ments is lower than manual measurements in a scan-res-

can cohort of patients with varying severities of RA size 

and function, and PAH. RA area measurements mod-

erately correlate with invasive haemodynamics, and AI 

measurements can identify mRAP prognostic thresholds 

with more confidence than manual measurements, finally 

RA area measurements predict mortality with similar 

accuracy to manual measurements.

This study shows that fully automated Al-based con-

touring of the RA has a very low AI failure rate of ~ 2% 

Fig. 4 ROC curves and RA area measurements. ROC curves showing the accuracy of RA area measurements to predict mPAP at ESC/ERS guidelines 

risk thresholds. ROC = receiver operating characteristic; RA = right atrial; mPAP = mean pulmonary arterial pressure; ESC/ERS = European Society of 

Cardiology and European Respiratory Society; AUC = area under the curve
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in a large clinical population of patients with varying 

degrees of breathlessness, exercise limitation and aetiol-

ogy of cardiac and pulmonary disease. The main reasons 

for failure were severe artefact, in particular poor cardiac 

gating, image noise and acquisition issues such as poor 

slice positioning of the 4-chamber slice, the latter the 

most common scenario. Such images cannot yield accu-

rate RA area measurements by an observer or AI.

Using CMR, reference ranges for cardiac structure and 

function in healthy adults were previously described for 

all four cardiac chambers [25]. Automation of the QC 

process can potentially assist in validating AI algorithms. 

The potential for accurate and fully automatic segmenta-

tion QC has been demonstrated and applied to the UK 

Biobank CMR study using the RCA approach [26]. Refer-

ence values for cardiac function metrics were automati-

cally derived from the UK Biobank and a deep learning 

based framework for automated, quality-controlled char-

acterization of cardiac function from cine CMR has been 

confirmed [27]. Although, we advocate use of observer 

review in the QC process to maintain oversight of the 

segmented contours.

Assessment of interstudy (scan-rescan) repeatability is 

crucial to evaluate the utility of imaging measurements 

[34]. Interstudy repeatability is especially important for 

the comparison of automatic AI measurements with 

manual measurements [35]. We utilised a prospective 

scan-rescan study with rigorous study design [32] and 

show AI measurements are highly repeatable with mar-

ginally higher repeatability than manual measurements. 

Lower variability has advantages for more precise evalu-

ation of changes in the RA following therapeutic inter-

vention in trials and clinical practice, where treatment 

decisions are impacted by progressive structural and 

functional changes in the heart.

The ASPIRE registry includes a wide range of pathol-

ogy including PAH, left heart failure, lung disease, 

chronic thromboembolic disease and patients found to 

have normal invasive haemodynamics. The AI ’seeing’ 

a wider range of pathology is of paramount importance 

[20]. This is the first study to compare AI and manual 

measurements with invasive haemodynamic measure-

ments of RAP. Here in this diverse population we iden-

tify a close correlation of AI RA area measurements with 

invasive mRAP, this combined with the low scan-rescan 

variability supports its potential use as a clinical tool. 

We show that RA area measurements are prognostic to 

a similar level as manual measurements. Further work 

to evaluate AI metrics in risk stratification is required as 

has been achieved for RV measurements [33]. In addition 

further work will be to clinically evaluate the range of 

physiological parameters that can be extracted from the 

AI segmentations, such as RA strain [36, 37] and poten-

tially reservoir and conduit function [38, 39]. RHC meas-

urements correlated strongly with AI RA measurements, 

indicating AI metrics may provide physiologically accu-

rate measure of pathophysiological changes in the heart 

given their high consistency and repeatability.

Limitations and future work
This is a single centre clinical testing of an AI algorithm 

developed in a multi-vendor multicentre cohort, with 

the clinical testing in the setting of a tertiary referral cen-

tre for patients with PAH. The imaging appearances and 

patient populations are likely representative of other PAH 

referral centres. The algorithm was generated in a mul-

ticentre setting, with single centre testing. Multicentre 

testing would be the next step to determine wider applica-

bility of the algorithm. The current approach uses manual 

QC which is advantageous from a regulatory standpoint 

and maintains expert oversight of the AI. Future work to 

automate QC is of interest, however we consider manual 

review an important component of the system. Further-

more, future work will include evaluation of the utility of 

such automatic QC approaches in clinical populations.

This study developed an AI model for RA area estima-

tion rather than volume. The rationale was to automate 

measurements made clinically and consistent with the 

ESC/ERS guidelines in PAH. Further work to develop 

and clinically evaluate a 3-dimensional or multislice RA 

volumetric model would be of value and work to extract 

physiological parameters previously suggested to be 

important [17] may be of benefit in future studies. Future 

work will be to explore the development of a four cham-

ber AI prognostic model in PAH.

Conclusion
In this study we have developed, tested and clinically vali-

dated an AI model to fully automate CMR RA area meas-

urements. The data suggests great clinical applicability of 

AI derived RA measurements, in addition to time saving 

benefits.
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