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It is well known that in dimension one the set of Dirichlet 
improvable real numbers consists precisely of badly approx-
imable and singular numbers. We show that in higher dimen-
sions this is not the case by proving that there exist continuum 
many Dirichlet improvable vectors that are neither badly ap-
proximable nor singular. This is a consequence of a stronger 
statement that involves very well approximable points. In the 
last section we formulate the notion of intermediate Dirichlet 
improvable sets concerning approximations by rational planes 
of every intermediate dimension and show that they coincide. 
This naturally extends a classical theorem of Davenport &
Schmidt (1969) which states that the simultaneous form of 
Dirichlet’s theorem is improvable if and only if the dual form 
is improvable. Consequently, our main “continuum” result is 
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equally valid for the corresponding intermediate Diophantine 
sets of badly approximable, singular and Dirichlet improvable 
points.
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1. Introduction

1.1. Background and motivation

The main goal of this paper is to investigate the relation between three basic sets 

arising from Dirichlet’s fundamental theorem in the classical theory of Diophantine ap-

proximation. It is therefore natural to start with the statement of the theorem and in 

turn describe the associated sets. For x ∈ R, let 〈x〉 := min{|x − m| : m ∈ Z} denote the 

distance from x to the nearest integer and for x = (x1, . . . , xn) ∈ Rn let

〈x〉 := max
1≤i≤n

〈xi〉 .

Theorem 1.1 (Dirichlet). For any x ∈ Rn and N ∈ N, there exists q ∈ Z such that

〈qx〉 < N− 1
n and 1 ≤ q ≤ N . (1.1)

An important consequence of Dirichlet’s theorem is the following statement.

Corollary 1.1 (Dirichlet). For any x ∈ Rn there exist infinitely many q ∈ N such that

〈qx〉 < q− 1
n . (1.2)

The above foundational theorem from the theory of simultaneous Diophantine ap-

proximation prompts the following natural question:

Question I. Can Dirichlet’s theorem be improved?

The following notions help make the question more precise. Following Davenport &

Schmidt [11], for a particular x ∈ Rn we say that improvement in Dirichlet’s theorem is 

possible if there exists a constant ε ∈ (0, 1) such that, for all N > N0(x, ε) sufficiently 

large there exists q ∈ Z such that

〈qx〉 < εN− 1
n and 1 ≤ q ≤ N . (1.3)

For obvious reasons such an x is referred to as Dirichlet improvable and we let DIn

denote the set of Dirichlet improvable points in Rn. Furthermore, we say that x ∈ Rn is 

singular if it is Dirichlet improvable with ε > 0 arbitrarily small; that is, for any ε > 0
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for all sufficiently large N there exists q ∈ Z satisfying (1.3). We let Singn denote the 

set of singular points in Rn. By definition, we clearly have that

Singn ⊆ DIn

and it is easily verified that Singn contains every rational hyperplane in Rn. Thus

n − 1 ≤ dim Singn ≤ n .

Here and throughout, dim X will denote the Hausdorff dimension of a subset X of Rn. 

In the case n = 1, a nifty argument due to Khintchine [17] dating back to the twenties 

shows that a real number is singular if and only if it is rational; that is

Sing1 = Q . (1.4)

Recently, Cheung & Chevallier [7], building on the spectacular n = 2 work of Cheung 

[6], have shown that

dim Singn =
n2

n + 1
for all n ≥ 2 .

Note that since n2

n+1 > n − 1, this immediately implies that in higher dimensions Singn

does not simply correspond to rationally dependent x ∈ Rn as in the one-dimensional 

case – the theory is much richer.

In [11], Davenport & Schmidt established various results concerning the set DIn of 

Dirichlet improvable points and the set Badn of simultaneously badly approximable 

points. In particular they showed (see [11, Theorem 2]) that

Badn ⊆ DIn . (1.5)

Recall, x ∈ Rn is said to be badly approximable if there exists a constant ε = ε(x) ∈ (0, 1)

so that

〈qx〉 > εq− 1
n ∀ q ∈ N . (1.6)

In other words, Badn corresponds to those x ∈ Rn for which the right hand side of the 

inequality appearing in Dirichlet’s corollary, namely (1.2), cannot be improved by ε > 0

arbitrarily small. By definition, we clearly have that Badn ∩ Singn = ∅. It is worth 

mentioning the well known fact that Badn is a set of n-dimensional Lebesgue measure 

zero but of full dimension; i.e.

dim Badn = n .

In view of (1.5) it thus follows that
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dim DIn = n .

In a follow-up paper [12], Davenport & Schmidt showed that DIn is a set of n-dimensional 

Lebesgue measure zero and thus in terms of measure and dimension it has the same 

properties as the set Badn. In the case n = 1, much more is true: any irrational x ∈ R

is Dirichlet improvable if and only if it is badly approximable. This for example follows 

directly from [11, Theorem 1] and together with (1.4) implies that

DI1 = Bad1 ∪ Sing1 . (1.7)

Thus, in view of (1.7) we have a complete characterisation in dimension one. In higher 

dimensions, we know that

DIn ⊇ Badn ∪ Singn

but surprisingly it seems unknown whether or not equality is possible. In other words, 

the answer to the following basic problem seems unknown. As far as we are aware, it 

first appeared in print in Fabian Süess’ beautifully written PhD thesis [28, Section 4.1].

Problem 1.1. Is the set DIn � (Badn ∪ Singn) empty when n ≥ 2?

The key goal of this paper is to show that it is not. Maybe it is “folklore” that in 

higher dimensions there exist Dirichlet improvable points that are neither badly approx-

imable nor singular. However, we would like to stress that we are unaware of any such a 

statement.

Theorem 1.2. For n ≥ 2, the set

FSn := DIn � (Badn ∪ Singn)

has continuum many points.

We suspect that our theorem is far from the truth. Indeed, it may well be the case 

that for n ≥ 2

dim FSn = n .

As we shall see in the next section, we actually prove a more general and effective version 

of Theorem 1.2. Unfortunately, the effective Theorem 1.5 sheds no light on the dimension 

of FSn. However, it does imply various natural strengthenings of Theorem 1.2 such as 

the following in which we also remove the set VWn of very well approximable numbers. 

Recall, x ∈ Rn is said to be very well approximable if there exists a constant ε = ε(x) > 0

such that
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〈qx〉 < q−( 1
n

+ε) for infinitely many q ∈ N .

Theorem 1.2∗. For n ≥ 2, the set

FSn := DIn � (Badn ∪ Singn ∪ VWn)

has continuum many points.

Remark 1.1. Following the appearance of the first pre-print version of this paper on the 

arXiv, Nikolay Moshchevitin kindly pointed out the work of Akhunzhanov and Shatskov 

[2]. For n = 2, they compute the Dirichlet spectrum for simultaneous approximation 

by rational points with respect to the Euclidean norm. In short, their method uses the 

theory of best approximations and can be adapted to construct Dirichlet improvable 

points in R2 that are not simultaneously singular or badly approximable. At the point 

of revising this paper for publication, the details of the adaptation have since appeared 

in the paper [1] involving Akhunzhanov and Moshchevitin – see the “in particular” 

statement following [1, Theorem 1].

1.2. The setup, further background and main results

Recall that from the classical point of view there are two forms of Diophantine approx-

imation in Rn; one corresponding to (simultaneous) approximation by rational points as 

considered in the previous section and the other corresponding to (dual) approximation 

by rational hyperplanes. Concerning the latter, the dual version of Dirichlet’s theorem 

states that for any x ∈ Rn and N ∈ N there exists q ∈ Zn�{0} such that

〈q · x〉 ≤ N−n and ‖q‖ ≤ N. (1.8)

Here and elsewhere q · x := q1x1 + · · · + qnxn is the standard inner product and ‖q‖ :=

max{|q1|, . . . , |qn|} is the supremum norm of q. Also, recall that 〈x〉 = min{|x −m| : m ∈
Z}. In [12, Theorem 2], Davenport & Schmidt proved that the dual form of Dirichlet’s 

theorem is improvable if and only if the simultaneous form of Dirichlet’s theorem (The-

orem 1.1) is improvable. So it follows that x ∈ DIn if and only if there exists ε ∈ (0, 1)

such that, for all N > N0(x, ε) sufficiently large there exists q ∈ Zn�{0} such that

〈q · x〉 ≤ εN−n and ‖q‖ ≤ N. (1.9)

Indeed, the same transference between the simultaneous and dual forms of approximation 

is true when considering the set of singular points Singn. However, this dual versus 

simultaneous equivalence for singular points (and indeed badly approximable points) 

holds in a much wider context. This we now describe since it will be the setting of our 

main result.
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Let d be integer satisfying 0 ≤ d ≤ n − 1. The setup we now consider is one in which 

we approximate points x ∈ Rn by d-dimensional rational affine subspaces L ⊂ Rn. With 

this in mind, we let

d(x, L) := min
y∈L

‖x − y‖ = min
y∈L

max
1≤i≤n

|xi − yi| (1.10)

denote the minimal distance between x and L. We also let H(L) denote the height 

of L. In short, H(L) is the co-volume of the sub-lattice Zn+1 ∩ L0 where L0 is the 

unique (d + 1)-dimensional subspace of Rn+1 containing the d-dimensional embedding 

{(y1, . . . , yn, 1) : y ∈ L} of L into Rn+1. This notion of height is relatively standard 

and is usually referred to as the projective or Weil height of L – see [8,20,24] for more 

details. Note that when d = 0, L reduces to a rational point p

q :=
(

p1

q , . . . pn

q

)
for some 

(p, q) ∈ Zn × Z � {0}. In turn, we have that

H(L) ≍ max{‖p‖, |q|} and d(x, L) = max
1≤i≤n

|qxi − pi|
|q| .

Also note that when d = n − 1, L reduces to a rational affine hyperplane {y ∈ Rn :

q · y = p} for some (q, p) ∈ Zn�{0} × Z. In turn, we have that

H(L) ≍ max{|p|, ‖q‖} and d(x, L) ≍ |q1x1 + . . . + qnxn − p|
‖q‖ .

To simplify notation the symbols ≪ and ≫ will be used to indicate an inequality with 

an unspecified positive multiplicative constant. If a ≪ b and a ≫ b we write a ≍ b, and 

say that the quantities a and b are comparable. In the above, the implied ‘comparability’ 

constants are dependent on n. Thus, up to some multiplicative constants, the extreme 

cases d = 0 and d = n − 1 correspond to the standard simultaneous and dual forms of 

Diophantine approximation. We now consider the natural analogues of the sets Badn

and Singn introduced within the framework of simultaneous Diophantine approximation 

in §1.1. With this in mind, we start by stating a Dirichlet type theorem for approximation 

by d-dimensional rational subspaces. Throughout, given n ∈ N and d ∈ {0, 1, . . . , n − 1}, 

we let

ωd :=
d + 1

n − d
.

Theorem 1.3. Let n ∈ N and d be integer satisfying 0 ≤ d ≤ n − 1. Then for any 

x ∈ Rn there exists a constant c = c(n, d, x) > 0, such that for any N ∈ N there exists 

a d-dimensional rational affine subspace L ⊂ Rn, such that

d(x, L) ≤ c H(L)−1N−ωd and H(L) ≤ N. (1.11)

The above statement is a consequence of standard tools from the geometry of numbers 

such as Minkowski’s second convex body theorem and Mahler’s theory for compound 
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bodies. For completeness, the details are given in §4 (see Proposition 4.1 in §4.1.2 and 

Proposition 4.3 in §4.2.1). In turn, the theorem gives rise to the following statement.

Corollary 1.2. Let n ∈ N and d be integer satisfying 0 ≤ d ≤ n − 1. Then for any 

x ∈ Rn with at least (d + 1)-rationally independent coordinates, there exists a constant 

c = c(n, d, x) > 0 and infinitely many d-dimensional rational affine subspaces L ⊂ Rn

such that

d(x, L) ≤ c H(L)−1−ωd . (1.12)

Remark 1.2. Proposition 4.3 in §4.2.1 together with the remark immediately preceding 

it, enables us to explicitly compute the constant c = c(n, d, x) appearing in the above 

results. Observe that if we restrict x to a bounded subset of Rn, then the constant c can 

be made to be independent of x. In particular, if x ∈ [0, 1]n then in the simultaneous 

(resp. dual) case we can replace H(L) by |q| (resp. ‖q‖) in the theorem and corollary, and 

the inequalities corresponding to (1.11) and (1.12) remain valid if we translate x by an 

integer vector. Thus, up to a constant dependent only on the dimension n, Theorem 1.3

and its corollary coincide with the classical simultaneous and dual forms of Dirichlet 

theorem and its corollary.

Taking our lead from the classical simultaneous and dual settings, we say that a point 

x ∈ Rn is d-singular if for any given ε ∈ (0, 1) and N > N0(x, ε, d) sufficiently large, 

there exists a d-dimensional rational affine subspace L ⊂ Rn such that

d(x, L) ≤ ε H(L)−1N−ωd and H(L) ≤ N. (1.13)

On the other hand, we say that a point x ∈ Rn is d-badly approximable if there exists a 

constant ε = ε(x) ∈ (0, 1) so that

d(x, L) > ε H(L)−1−ωd (1.14)

for all d-dimensional rational affine subspaces L ⊂ Rn. Finally, we let Singd
n (resp. 

Badd
n) denote the set of d-singular (resp. d-badly approximable) points in Rn.

The following shows that the well known classical equivalence between the simultane-

ous and dual singular points (and indeed badly approximable points) holds in the general 

context of approximation by d-dimensional rational affine subspaces. We provide a proof 

in §2.2.

Proposition 1.1. Let n ∈ N and d be integer satisfying 0 ≤ d ≤ n − 1. Then,

Singn := Sing0
n = Singd

n and Badn := Bad0
n = Badd

n .
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Remark 1.3. Note that for the purpose of defining d-singular and d-badly approximable 

points it makes no difference whether the minimal distance d(x, L) is defined via the max-

imum norm (as in (1.10)) or some other norm (such as the Euclidean norm). The point 

is that these notions are not sensitive to the actual value of the constant c = c(n, d, x)

appearing in Theorem 1.3 and its corollary. Thus, most importantly, the set Singd
n (resp. 

Badd
n) coincides with the classical simultaneous singular (resp. badly approximable) set 

when d = 0 and the dual singular (resp. badly approximable) set when d = n − 1. How-

ever, when it comes to defining the ‘right’ notion of d-Dirichlet improvable points it is 

paramount that c is optimal and that (an appropriate version of) Theorem 1.3 coincides 

with the classical simultaneous and dual forms of Dirichlet theorem. Clearly, in its cur-

rent form it fails to do so. In the last section of this paper we shall propose two versions 

(algebraic and geometric) of Theorem 1.3 leading to corresponding notions of Dirichlet 

improvable points that rectify this issue. Although it is not particularly relevant within 

the context of our main result, we hope the last section is of independent interest. In 

short, we show that within either setting the corresponding d-Dirichlet improvable sets 

DId
n are all equivalent and coincide with the classical set DIn; that is, the set of Dirichlet 

improvable points in Rn defined via either the classical simultaneous (d = 0) or dual 

(d = n − 1) form of Dirichlet’s theorem (both gives rise to the same set thanks to the 

aforementioned statement of Davenport & Schmidt). It thus follows that the d-Dirichlet 

improvable sets defined via the algebraic and geometric settings also coincide.

In order to state our main result, it is convenient to introduce the notion of exponents 

of Diophantine approximation.

Definition 1.1. Let d be an integer with 0 ≤ d ≤ n − 1 and let x ∈ Rn. We define the d th

ordinary exponent ωd(x) (resp. the d th uniform exponent ω̂d(x)) as the supremum of 

the real numbers ω for which there exist d-dimensional rational affine subspaces L ⊂ Rn

such that

d(x, L) ≤ H(L)−1N−ω and H(L) ≤ N,

for arbitrarily large real numbers N (resp. for every sufficiently large real number N).

Remark 1.4. By definition, whenever ωd(x) is finite, there exists infinitely many d-

dimensional rational affine subspaces L ⊂ Rn such that

d(x, L) ≤ H(L)−1−ω

if ω < ωd(x), and if ω > ωd(x) there are at most finitely many such subspaces L ⊂ Rn.

Remark 1.5. In [10] a point x ∈ Rn satisfying ω̂0(x) > 1/n (equivalently ω̂n−1(x) > n) 

is called very singular and the set of such points is denoted by VSingn. In the context 

of approximation by d-dimensional rational affine subspaces, it is natural to define the 

notion of d-very singular points as points in the set
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VSingd
n := {x ∈ Rn : ω̂d(x) > ωd} .

As is the case of badly approximable and singular sets, it turns out that the sets VSingd
n

(0 ≤ d ≤ n − 1) are the same – see Remark 1.6 below. By definition, a d-very singular 

point is d-singular and since both notions are independent of d we can simply write 

VSingn ⊆ Singn.

Within the classical simultaneous and dual forms of Diophantine approximation, the 

above exponents were introduced by Khintchine [17,18] and Jarník [16] in the nineteen 

twenties and thirties. For n ≥ 3, the intermediate exponents (i.e., those corresponding 

to 1 ≤ d ≤ n − 2) were formally introduced by Laurent [20] in 2009 but had implicitly 

been studied by Schmidt [24] some fifty years earlier. Clearly, for any x ∈ Rn we have 

that ωd(x) ≥ ω̂d(x) and a direct consequence of Theorem 1.3 is that

ωd(x) ≥ ω̂d(x) ≥ ωd :=
d + 1

n − d
.

Observe that ω0 = 1
n and ωn−1 = n. Thus, when d = 0 (resp. d = n − 1) the quantity ωd

coincides with the exponent appearing in the classical simultaneous (resp. dual) form of 

Dirichlet’s theorem. Another reasonably straightforward consequence, this time of the 

Borel-Cantelli lemma from probability theory, is that

ωd(x) = ωd for almost all x ∈ Rn . (1.15)

The following elegant transference principle enables us to transfer information between 

the ordinary Diophantine exponents ωd(x) associated with approximating points in x ∈
Rn by d-dimensional rational subspaces of Rn. It makes sense to include the statement 

at this point since one of the conditions turns up in the statement of our main theorem.

Theorem 1.4 (Laurent & Roy). Let n ≥ 2. For any point x ∈ Rn with 1, x1, . . . , xn

linearly independent over Q, we have that ω0(x) ≥ ω0 and

d ωd(x)

ωd(x) + d + 1
≤ ωd−1(x) ≤ (n − d) ωd(x) − 1

n − d + 1
(1 ≤ d ≤ n − 1) . (1.16)

If ωd(x) = ∞, the left hand side in (1.16) is replaced by d. Furthermore, given any 

τ0, . . . , τn−1 ∈ [0, ∞] with τ0 ≥ ω0 and

d τd

τd + d + 1
≤ τd−1 ≤ (n − d) τd − 1

n − d + 1
(1 ≤ d ≤ n − 1) , (1.17)

there exists a point x ∈ Rn with 1, x1, . . . , xn linearly independent over Q such that 

ωd(x) = τd and ω̂d(x) = ωd for 0 ≤ d ≤ n − 1.
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The transference inequalities (1.16) are due to Laurent [20]. Equivalently, they can be 

re-written in the language of Schmidt [24] as the Going-up transfer

ωd+1(x) ≥ (n − d) ωd(x) + 1

n − d − 1
(0 ≤ d ≤ n − 2) (1.18)

and the Going-down transfer

ωd−1(x) ≥ d ωd(x)

ωd(x) + d + 1
(1 ≤ d ≤ n − 1) . (1.19)

As pointed out [20], on iterating (1.18) and (1.19) we obtain Khintchine’s classical trans-

ference principle [17]:

ωn−1(x)

(n − 1)ωn−1(x) + n
≤ ω0(x) ≤ ωn−1(x) − n + 1

n
.

Thus the transference inequalities (1.16) of Laurent naturally split those of Khintchine 

relating the simultaneous and dual exponents ω0(x) and ωn−1(x). The furthermore part 

of Theorem 1.4, shows that transference inequalities of Laurent are optimal and was 

proved by Roy [23]. It extends the classical work of Jarník [16] showing that Khintchine’s 

transference principle is optimal.

Remark 1.6. The Laurent transference inequalities (1.16) are equally valid for the uni-

form exponents. Indeed, Laurent’s proof for the ordinary exponents can be naturally 

adapted to the uniform setting – see for example [13]. With (1.16) for uniform expo-

nents at hand, it is easily seen that for any x ∈ Rn and 1 ≤ d ≤ n, the statement that 

ω̂d(x) = ωd is equivalent to ω̂d−1(x) = ωd−1. Hence, it follows that the very singular sets 

VSingd
n (0 ≤ d ≤ n − 1) discussed within Remark 1.5 are equivalent.

As usual let d be an integer with 0 ≤ d ≤ n − 1. Then given a real number τ ≥ 0, 

consider the Diophantine sets

Wd
n(τ) := {x ∈ Rn : ωd(x) ≥ τ}

and

Ed
n(τ) := {x ∈ Rn : ωd(x) = τ} .

In dimension one, the latter corresponds to the exact order sets first studied by Güting 

within the context of Mahler’s classification of transcendental numbers – see [3] and 

references within for further details. Note that by definition, for any 0 ≤ d ≤ n − 1 we 

have that

Wd
n(τ) = Rn if τ ≤ ωd
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and

Badn ∩ Wd
n(τ) = ∅ if τ > ωd .

Note that in view of (1.15), the set Ed
n(ωd) is of full n-dimensional Lebesgue measure 

and since Ed
n(τ) ⊆ Wd

n(τ), it follows that Badn ∩ Ed
n(τ) = ∅ if τ > ωd.

Using the parametric geometry of numbers a la Schmidt & Summerer [25,26] and Roy 

[22], we prove a stronger version of Theorem 1.2 that involves the exact order sets Ed
n(τ)

and the following quantitative form of the set of Dirichlet improvable points DIn. Given 

ε ∈ (0, 1), let DIn(ε) denote the set of x ∈ Rn such that, for all N > N0(x, ε) sufficiently 

large there exists q ∈ Zn�{0} such that (1.9) holds.

Remark 1.7. By definition, it follows that

DIn =
⋃

ε∈(0,1)

DIn(ε) .

Recall, that in view of Davenport & Schmidt [12, Theorem 2] we can define DIn via 

either the ‘simultaneous’ inequality (1.3) or the ‘dual’ inequality (1.9) – both give rise to 

the same set. However, if we fix ε > 0 and a point x ∈ DIn(ε), then it is not necessarily 

true that for all N sufficiently large there exists q ∈ Z such that (1.3) holds (for the 

same ε). In view of this, we emphasise the fact that when referring to the quantitative 

Dirichlet improvable set DIn(ε) it will always be via the ‘dual’ inequality (1.9).

The following theorem constitutes our main result.

Theorem 1.5. Let n ≥ 2 and ε ∈ (0, 1). Then, given any n-tuple of real numbers 

τ0, . . . , τn−1 ∈ [0, ∞] with τ0 ≥ ω0 and τd (1 ≤ d ≤ n − 1) satisfying (1.17), the set

(
n−1⋂

d=0

Ed
n(τd) ∩

(
DIn(ε) � DIn(εκn)

))
� (Badn ∪ Singn)

where

κn := e−20(n+1)3(n+10)

has continuum many points. In particular, for any 0 ≤ d ≤ n − 1 and τ ≥ ωd, the set 

(DIn ∩ Ed
n(τ)) � (Badn ∪ Singn) has continuum many points.

Note that on taking τ = ωd in the ‘in particular’ part of the Theorem 1.5, we immedi-

ately obtain the statement of Theorem 1.2* which in turn clearly implies Theorem 1.2.

It is worth mentioning that the constant κn appearing in the statement of the theorem 

is far from optimal. Indeed, our proof can be tightened to yield a larger but more com-

plicated expression. Nevertheless, we feel there is not much gained in doing so and for 
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the sake of aesthetics we are content with κn as defined. Also, we should point out that 

if we had defined the quantitative Dirichlet improvable set DIn(ε) via the ‘simultaneous’ 

inequality (1.3) then the statement of the theorem remains completely unchanged apart 

from the choice of the κn. The modified constant can be directly deduced from [12].

2. Preliminaries

In this section we start by recalling aspects of the theory of parametric geometry of 

numbers that will be used in establishing Theorem 1.5. We then use this to essentially 

reformulate the Diophantine sets appearing in the statement of Theorem 1.5 in terms 

of successive minima. Moreover, we will see that the proof of Proposition 1.1 is a pretty 

straightforward application of this reformulation.

2.1. The parametric geometry of numbers

Fix n ∈ N and x ∈ Rn. For each real number t ≥ 0, consider the convex body

Cx(et) :=

{
y ∈ Rn+1 : |yi| ≤ 1 (1 ≤ i ≤ n),

∣∣∣
n∑

i=1

yixi + yn+1

∣∣∣ ≤ e−t

}
. (2.1)

Then, for each i = 1, . . . , n + 1 and t > 0, let

λx,i(t) := λi

(
Zn+1,Cx(et)

)
(2.2)

denotes the i-th successive minima of the convex body Cx(et) with respect to the lattice 

Zn+1. In other words, λi

(
Zn+1, Cx(et)

)
is the smallest real number λ such that the 

rescaled convex body λ Cx(et) contains at least i linearly independent points of Zn+1. In 

turn, we let

Lx,i(t) := log λx,i(t) = log λi

(
Zn+1,Cx(et)

)
(t ≥ 0, 1 ≤ i ≤ n + 1) (2.3)

and consider the map

Lx : [0, ∞) → Rn+1 : t → Lx(t) :=
(
Lx,1(t), . . . , Lx,n+1(t)

)
. (2.4)

The following notion was introduced by Roy in [23, Definition 4.5]. It generalises 

the (n + 1)-systems of Schmidt & Summerer [26]. In short, these ‘systems’ incorporate 

desirable behaviour of the maps Lx that in turn lead to desirable approximation results.

Definition 2.1. Let I be an subinterval of [0, ∞) with non-empty interior. A Roy (n + 1)-

system on I is a continuous piecewise linear map P = (P1, . . . , Pn+1) : I → Rn+1 with 

the following properties:
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• For each t ∈ I, we have 0 ≤ P1(t) ≤ · · · ≤ Pn+1(t) and P1(t) + · · · + Pn+1(t) = t.

• If I ′ ⊂ I is a nonempty open subinterval on which P is differentiable, then there are 

integers r1, r2 with 1 ≤ r1 ≤ r2 ≤ n + 1 such that the functions Pr1
, Pr1+1, . . . , Pr2

coincide on the whole interval I ′ and have slope 1/(r2 − r1 + 1) on I ′, while all other 

components Pi of P have slope 0 on I ′.

• If t is an interior point of I at which P is not differentiable and if r1, r2, s1, s2 are 

integers for which

P ′
i (t−) =

1

r2 − r1 + 1
(r1 ≤ i ≤ r2) and P ′

i (t+) =
1

s2 − s1 + 1
(s1 ≤ i ≤ s2) ,

and if r1 ≤ s2, then we have that Pr1
(t) = Pr1+1(t) = · · · = Ps2

(t).

Note that, for any piecewise linear function F : R → R, the left derivative F ′(t−) and 

the right derivative F ′(t+) always exist and the points at which F is not differentiable 

are just the points with different left and right derivatives.

Remark 2.1. The (n + 1)-systems of Schmidt & Summerer correspond to taking r1 = r2

and s1 = s2 in Definition 2.1.

A Roy (n + 1)-system has the following useful approximation property. It essentially 

represents an amalgamation of [22, Theorems 1.3 & 1.8] and [23, Corollary 4.7] adapted 

for our purposes.

Theorem 2.1. Let n ∈ N and t0 ≥ 0. For each x ∈ Rn, there exists a Roy (n + 1)-system 

P : [t0, ∞) → Rn+1 such that the function Lx − P is bounded on [t0, ∞). Conversely, for 

each Roy (n + 1)-system P : [t0, ∞) → Rn+1, there exists x ∈ Rn such that the function 

Lx − P is bounded on [t0, ∞) with

‖Lx(t) − P(t)‖ ≤ 5(n + 1)2(n + 10) . (2.5)

Proof of Theorem 2.1. As already mentioned, Theorem 2.1 draws upon the works [22,

23] of Roy and it is important to note that there, the convex body is defined slightly 

differently from the one given by (2.1). Indeed, for a fixed u ∈ Rn+1�{0} and each real 

number t ≥ 0, Roy works with the convex body

C̃u(et) :=
{

y ∈ Rn+1 : ‖y‖2 ≤ 1, |y · u| ≤ e−t
}

.

Here and elsewhere ‖y‖2 is the Euclidean norm of y. Now for any fixed x ∈ Rn, let 

x′ := (x, 1) ∈ Rn+1 and so by definition

C̃x′(et) =

{
y ∈ Rn+1 : ‖y‖2 ≤ 1,

∣∣∣
n∑

i=1

yixi + yn+1

∣∣∣ ≤ e−t

}
.
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Furthermore, let L̃x′ denote the function corresponding to (2.4) with Cx(et) replaced by 

C̃x′(et) within (2.3). It is not difficult to see that our convex body and the associated 

map, which are convenient for what we have in mind, are closely related to those of Roy 

and indeed Schmidt & Summerer: for any fixed x ∈ Rn and any t ≥ 0

C̃x′(et) ⊂ Cx(et) ⊂ (
√

n‖x‖ +
√

n + 1) C̃x′(et)

and thus it follows that

‖Lx(t) − L̃x′(t)‖ ≤ log((
√

n‖x‖ +
√

n + 1)) . (2.6)

We now proceed with establishing the theorem. On combining [22, Theorem 1.3]

and [22, Lemma 2.10], we find that for any x ∈ Rn there exists a (n + 1)-system (see 

Remark 2.1) P̃ such that the function L̃u
x

′
− P̃ is bounded for all t ≥ t0. Here ux′

denotes the unit vector with respect to the Euclidean norm associated to x′ ∈ Rn+1. 

Note that L̃u
x

′
and L̃x′ only differ by a bounded function and so the first part of the 

theorem follows on using (2.6) and the fact that by definition any (n +1)-system is a Roy 

(n +1)-system. Regarding the converse part, it follows via [23, Corollary 4.7] that for any 

given Roy (n + 1)-system P : [t0, ∞) → Rn+1 and any ε > 0, there is a (n + 1)-system 

P̃ such that

‖P(t) − P̃(t)‖ ≤ ε for all t ≥ t0. (2.7)

In view of [22, Theorem 8.1], there exists a unit vector (with respect to the Euclidean 

norm) u ∈ Rn+1 such that

‖P̃(t) − L̃u(t)‖ ≤ 3(n + 1)2(n + 10) for all t ≥ t0. (2.8)

As a reordering of the coordinates of u does not affect the function L̃u, we can assume 

that |un+1| = ‖u‖ := max{|u1|, . . . , |un+1|} and so (n + 1)−1/2 ≤ |un+1| ≤ 1. Now let

x := (u1u−1
n+1, . . . , unu−1

n+1) ∈ Rn .

Then, ‖x‖ ≤ 1 and

‖L̃x′(t) − L̃u(t)‖ ≤ 1

2
log(n + 1) for all t ≥ t0. (2.9)

The upshot is that on using (2.7) with ε := log(n + 1)/2, (2.6), (2.9) and (2.8) in that 

order, we obtain that

‖Lx(t) − P(t)‖ ≤ 1

2
log(n + 1) + log(2

√
n + 1) +

1

2
log(n + 1) + 3(n + 1)2(n + 10)
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< 5(n + 1)2(n + 10) for all t ≥ t0. (2.10)

This completes the proof of Theorem 2.1. �

The following notion of non-equivalent systems will prove to be useful.

Definition 2.2. Two Roy (n + 1)-systems P1 and P2 defined on the same subinterval I

of [0, ∞) are said to be non-equivalent if there exists some t ∈ I such that

|P1(t) − P2(t)| > 10(n + 1)2(n + 10) .

By definition, it follows that no point in Rn can be close (in the sense of Theorem 2.1) 

to two non-equivalent Roy (n + 1)-systems defined on [t0, ∞) at the same time.

2.2. Expressing Diophantine sets via successive minima

We give a reformulation of the Diophantine sets associated with Theorem 1.5 in terms 

of the function Lx. This is at the heart of its proof – it brings into play the parametric 

geometry of numbers. Also, we shall see that the equivalence of the d-badly approximable 

sets Badd
n (resp. the d-singular sets Singd

n) is in essence a direct consequence of the 

reformulation. Indeed, we start with this in mind.

Let n ≥ 2 and 0 ≤ d ≤ n − 1. It can be verified, by using the lemma appearing in [5, 

Section 4] and appropriately adapting the proof of the proposition in [5, Section 4], that

• x ∈ Badd
n if and only if there exists a constant δ > 0 such that for all sufficiently 

large t

(n − d)t

n + 1
− (Lx,1(t) + · · · + Lx,n−d(t)) ≤ δ. (2.11)

• x ∈ Singd
n if and only if for any δ > 0 there exists a constant t0 = t0(δ) > 0 such 

that for all t ≥ t0

(n − d)t

n + 1
− (Lx,1(t) + · · · + Lx,n−d(t)) ≥ δ. (2.12)

For the sake of completeness, in §4, we will provide the details of how these equivalences 

follow from [5, Section 4]. We can now swiftly show that

Badd
n = Badn−1

n and Singd
n = Singn−1

n (0 ≤ d ≤ n − 2) ;

that is to say that any d-badly approximable set (resp. d-singular set) is equivalent to 

the dual set. This will of course establish Proposition 1.1.
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Proof of Proposition 1.1. For simplicity, given x ∈ Rn we let

gx,i(t) :=
t

n + 1
− Lx,i(t) (0 ≤ i ≤ n + 1) .

By definition the quantity Lx,i is increasing with i and so it follows that

gx,1(t) ≥ gx,2(t) ≥ · · · ≥ gx,n+1(t). (2.13)

In view of Minkowski’s second convex body theorem, for any x ∈ Rn we have that

Lx,1(t) + Lx,2(t) + · · · + Lx,n+1(t) = t + O(1) .

Thus, there exists a positive constant c = c(n) > 0 depending only on n such that

gx,1(t) + gx,2(t) + · · · + gx,n+1(t) ≥ −c . (2.14)

Now suppose x ∈ Badd
n. Then in view of (2.11) and (2.14), it follows that

n+1∑

i=n−d+1

gx,i(t) ≥ −δ − c

which together with (2.13) implies that

gx,i(t) ≥ 1

d + 1

d+1∑

j=n−d+1

gx,j(t) ≥ − δ + c

d + 1
(1 ≤ i ≤ n − d) .

In turn, on using (2.13) again, we find that

gx,1(t) =

n−d∑

i=1

gx,i(t) −
n−d∑

i=2

gx,i(t) ≤ δ + (n − d − 1)
δ + c

d + 1

<
n

d + 1
(δ + c).

In other words, (2.11) holds with d = n −1 and so x ∈ Badn−1
n . For the converse, simply 

observe that if (2.11) holds with d = n − 1 then for any other 0 ≤ d ≤ n − 2

n−d∑

i=1

gx,i(t)
(2.13)

≤ (n − d) gx,1(t) ≤ (n − d)δ .

In other words, x ∈ Badd
n and this thereby completes the proof of the badly approx-

imable part of the proposition. The proof of the singular part is similar with the most 

obvious modifications (namely, using (2.12) instead of (2.11)) and will be left for the 

reader. �
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Remark 2.2. In §4, apart from providing details of the statements associated with (2.11)

and (2.12), we give a ‘dynamical’ proof of Proposition 1.1. In addition to providing 

an alternative insight, it has the advantage of being self-contained in that it avoids 

appealing to (2.11) and (2.12) which rely on the lemma and the arguments appearing in 

[5, Section 4].

The following statement summarises the above findings concerning the badly approx-

imable and singular sets and deals with the other remaining Diophantine sets associated 

with Theorem 1.5.

Lemma 2.1. Let x ∈ Rn. Then

1. x ∈ DIn(ε) if and only if for all sufficiently large t

t

n + 1
− Lx,1(t) ≥ − log ε

n + 1
. (2.15)

2. x ∈ Badn if and only if there exists δ > 0 such that

lim sup
t→∞

(
t

n + 1
− Lx,1(t)

)
≤ δ.

3. x ∈ Singn if and only if for any δ > 0

lim inf
t→∞

(
t

n + 1
− Lx,1(t)

)
≥ δ.

4. x ∈ Wd
n(τ) if and only if

lim inf
t→∞

Lx,1(t) + · · · + Lx,n−d(t)

t
≤ 1

1 + τ
(0 ≤ d ≤ n − 1).

5. x ∈ Ed
n(τ) if and only if

lim inf
t→∞

Lx,1(t) + · · · + Lx,n−d(t)

t
=

1

1 + τ
(0 ≤ d ≤ n − 1).

Proof of Lemma 2.1. Parts 4) and 5) are a direct consequence of [23, Proposition 3.1]. 

The proof of parts 2) and 3) are a direct consequence of (2.11) and (2.12) respectively 

together with Proposition 1.1. It remains to prove part 1). Thus, let x ∈ DIn(ε) for some 

ε ∈ (0, 1). Then by definition, for all sufficiently large t′

|x · q − p| ≤ ε e−nt′

and ‖q‖ ≤ et′

always has a solution (p, q) ∈ Z × (Zn � {0}). This is equivalent to saying that for all 

sufficiently large t′
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λ1(Zn+1,Cx(et)) ≤ et′

, where t = (n + 1)t′ − log ε.

The latter is equivalent to

t

n + 1
− Lx,1(t) ≥ − log ε

n + 1

for all sufficiently large t, as desired. �

Remark 2.3. It is relatively straightforward to see that the proof of part 1) given above 

can be easily adapted to establish (2.11) and (2.12) when d = n − 1.

Remark 2.4. For the sake of completeness, it worth mentioning that in §4.2 we formulate 

the notion of d-Dirichlet improvable sets via successive minima. The approach taken is 

in line with that of this section in which the d-badly approximable and d-singular sets 

are expressed via (2.11) and (2.12).

3. Proof of Theorem 1.5

Let n ≥ 2, ε ∈ (0, 1) and τ0, . . . , τn−1 be as in Theorem 1.5 and let

γ := − log ε

n + 1
+ 2Cn where Cn := 5(n + 1)2(n + 10) . (3.1)

Thus, Cn is simply the right hand side of inequality appearing in Theorem 2.1. Then, 

on making use of Theorem 2.1 and Lemma 2.1, it is easily verified that the proof of 

Theorem 1.5 is reduced to constructing appropriate Roy (n + 1)-systems given by the 

following statement.

Lemma 3.1. There exists continuum many mutually non-equivalent Roy (n + 1)-systems 

P : [0, ∞) → Rn+1, such that

lim inf
t→∞

(
t

n + 1
− P1(t)

)
= γ , (3.2)

lim sup
t→∞

(
t

n + 1
− P1(t)

)
= ∞ , (3.3)

and

lim inf
t→∞

P1(t) + · · · + Pd(t)

t
=

1

1 + τn−d
(1 ≤ d ≤ n) . (3.4)

Proof of Theorem 1.5 modulo Lemma 3.1. Let us assume Lemma 3.1 and let P :

[0, ∞) → Rn+1 be a Roy (n + 1)-system coming from the lemma. In view of the converse 

part of Theorem 2.1, there exists a point x ∈ Rn such that
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‖Lx(t) − P(t)‖ ≤ Cn .

Then this together with Lemma 2.1 and

• (3.2) implies x ∈ DIn(ε) � DIn(εe−4(n+1)Cn) and x /∈ Singn,

• (3.3) implies x /∈ Badn,

• (3.4) implies x ∈ ∩n−1
d=0 Ed

n(τd).

The upshot of this is that

x ∈
(

n−1⋂

d=0

Ed
n(τd) ∩

(
DIn(ε) � DIn(εe−4(n+1)Cn)

))
� (Badn ∪ Singn) .

Furthermore, Lemma 3.1 implies the existence of continuum many such Roy (n + 1)-

systems that are mutually non-equivalent. Thus, in view of the latter (see Definition 2.2) 

each such system gives rise to a different point x ∈ Rn and this completes the proof of 

Theorem 1.5. �

The proof of Lemma 3.1 will occupy the rest of this section. It will comprise of three 

steps. We start by constructing Roy (n + 1)-systems on certain finite intervals which 

will serve as building blocks for the construction of the desired systems associated with 

Lemma 3.1.

3.1. Building blocks

Let [T−, T+] be a subinterval of [0, ∞) with non-empty interior and let (aj
−)1≤j≤n+1, 

(aj
+)1≤j≤n+1 be sequences of increasing positive numbers satisfying:

a1
+T+ = an+1

− T− − (n + 1)γ (3.5)

∑

1≤j≤n+1

aj
∗ = 1 (3.6)

(aj+1
∗ − aj

∗)T∗ ≥ 4n2γ ∀ 1 ≤ j ≤ n , (3.7)

where γ is as in (3.1) and throughout

∗ := − or + .

We now construct a Roy (n + 1)-system

P = (P1, . . . , Pn+1) : [T−, T+] → Rn+1
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on [T−, T+] associated with the sequences (aj
−) and (aj

+). With this in mind, let

Rd :=
(
an+1

− + · · · + ad+1
− + dad

−

)
T− ∀ 1 ≤ d ≤ n

Rn+1 := (n + 1)an+1
− T− − n(n + 1)γ

Rn+2 := (n + 1)an+1
− T− − (n + 1)γ

S0 := (n + 1)a1
+T+ + (n2 + n)γ

Sd :=
(
a1

+ + · · · + ad
+ + (n + 1 − d)ad+1

+

)
T+ ∀ 1 ≤ d ≤ n.

In view of (3.5), it is easily seen that S0 = Rn+2. Also, (3.6) ensures that T− = R1 and 

Sn = T+ while (3.7) gives that Rn+1 ≥ Rn and S1 ≥ S0. Since (aj
∗) is strictly increasing, 

it thus follows that

T− = R1 < R2 < · · · < Rn+2 = S0 < S1 < · · · < Sn = T+.

Now set

Pj(T−) := aj
−T− ∀ 1 ≤ j ≤ n + 1 .

For 1 ≤ d ≤ n − 1, on the interval [Rd, Rd+1], let the d components P1, . . . , Pd coincide 

and have slope 1/d while the components Pd+1, . . . , Pn+1 have slope 0 and

Pj(Rd+1) :=

⎧
⎨
⎩

ad+1
− T− if 1 ≤ j ≤ d

aj
−T− if d + 1 ≤ j ≤ n + 1 .

On the interval [Rn, Rn+1], let the n components P1, . . . , Pn coincide and have slope 1/n

while the component Pn+1 has slope 0 and

Pj(Rn+1) :=

⎧
⎨
⎩

a1
+T+ if 1 ≤ j ≤ n

an+1
− T− if j = n + 1 .

On the interval [Rn+1, Rn+2], let the n − 1 components P2, . . . , Pn coincide and have 

slope 1/(n − 1) while the components P1, Pn+1 have slope 0 and

Pj(Rn+2) :=

⎧
⎨
⎩

a1
+T+ if j = 1

an+1
− T− if 2 ≤ j ≤ n + 1 .

On the interval [S0, S1], let the n components P2, . . . , Pn+1 coincide and have slope 1/n

while the component P1 has slope 0 and
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Pj(S1) :=

⎧
⎨
⎩

a1
+T+ if j = 1

a2
+T+ if 2 ≤ j ≤ n + 1 .

Finally, for 1 ≤ d ≤ n − 1, on the interval [Sd, Sd+1], let the n − d components 

Pd+2, . . . , Pn+1 coincide and have slope 1/(n − d) while the components P1 . . . , Pd+1

have slope 0 and

Pj(Sd+1) :=

⎧
⎨
⎩

aj
+T+ if 1 ≤ j ≤ d + 1

ad+2
+ T+ if d + 2 ≤ j ≤ n + 1 .

In particular, since Sn = T+ it follows that

Pj(T+) = aj
+T+ ∀ 1 ≤ j ≤ n + 1 .

Fig. 1 below represents the combined graph of the functions P1, . . . , Pn+1 over the interval 

[T−, T+]. The lower graph represents P1 while the upper most graph represents Pn+1. 

Note that if we set γ = 0 and aj
+ = aj

− for j = 1, . . . , n + 1, our construction reduces to 

Roy’s construction in [23, Section 5] – in particular, see [23, Figure 5].

a1
−

T−

a2
−

T−

an−1
−

T−

an
−

T−

a1
+T+

an+1
−

T−

a2
+T+

an−1
+ T+

an+1
+ T+

an
+T+

T− = R1

R2 Rn−1 Rn

Rn+1

Rn+2 S1 Sn−2 Sn−1

T+ = Sn

Fig. 1. The constructed Roy (n + 1)-system on [T−, T+].



22 V. Beresnevich et al. / Advances in Mathematics 401 (2022) 108316

We conclude this section with the following statement. It provides keys estimates for 

P(t) with t ∈ [T−, T+].

Lemma 3.2. The Roy (n + 1)-system P : [T−, T+] → Rn+1 constructed above satisfies:

min
t∈[T−,T+]

(
t

n + 1
− P1(t)

)
= γ (3.8)

max
t∈[T−,T+]

(
t

n + 1
− P1(t)

)
≥

(
1

n + 1
− a1

+

)
T+ (3.9)

min
t∈[T−,T+]

P1(t) + · · · + Pd(t)

t
= min

⎧
⎨
⎩

d∑

j=1

aj
−,

d∑

j=1

aj
+

⎫
⎬
⎭ (1 ≤ d ≤ n). (3.10)

Proof. By construction the derivative of the function P1 is strictly greater than 1/(n +1)

on the interval [T−, Rn+1] and is 0 on the interval [Rn+1, T+]. Here and throughout, by 

the derivative of a piecewise linear function on a given interval, we mean the derivative 

on the union of subintervals on which the derivative exists. It follows that on the interval 

[T−, T+], the local minimum of the function f : t → f(t) := t/(n + 1) − P1(t) is achieved 

at t = Rn+1. In other words, the minimum of f(t) on [T−, T+] is equal to

Rn+1

n + 1
− P1(Rn+1) = an+1

− T− − nγ − a1
+T+

(3.5)
= γ .

This shows that P satisfies (3.8). On the other hand, it is easily seen that the maximum 

of f(t) on [T−, T+] is achieved at either t = T− or t = T+. Thus,

l.h.s. of (3.9) ≥ T+

n + 1
− P1(T+) =

T+

n + 1
− a1

+T+

and this shows that P satisfies (3.9). It remains to prove (3.10). For simplicity, we let 

Qd := P1 + · · · + Pd (1 ≤ d ≤ n) and note that to determine when Qd(t)/t attains its 

minimum on [T−, T+], it suffices to study the function

D : t → D(t) := Q′
d(t)t − Qd(t) .

The point is that on each connected open interval I where P is differentiable, the deriva-

tive of Qd(t)/t equals D(t)/t2. Now, it can be verified that on any such interval I the 

derivative D′(t) = 0 and so D(t) is constant which in turn implies that the function 

Qd(t)/t is monotonic on I and thus it obtains its minimum at the end points.

Hence, it suffices to study the quantities D∗(Rj) and D∗(Sj) for 1 ≤ j ≤ n. This we 

now do systematically. Recall that for a piecewise continuous function D,
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D+(t) := lim
s→t,
s>t

D(s), and D−(t) := lim
s→t,
s<t

D(s).

• For 1 ≤ j ≤ d, on the interval (Rj , Rj+1), the derivative of Qd equals 1. Hence 

D(t) = t − Qd(t) = Pd+1(t) + · · · + Pn+1(t) is positive on this interval.

• For d + 1 ≤ j ≤ n, on the interval (Rj , Rj+1), the derivative of Qd equals d/j. 

A direct computation shows that

jD+(Rj) = dRj − jQd(Rj)

= d
(

an+1
− + · · · + aj+1

− + jaj
−

)
T− − jdaj

−T−

> 0

Hence D(t) is positive on this interval.

• For 0 ≤ j ≤ d − 1, on the interval (Sj , Sj+1), the derivative of Qd equals (d − j −
1)/(n − j). A direct computation shows that

(n − j)D−(Sj+1) = (d − j − 1)Sj+1 − (n − j)Qd(Sj+1)

= (d − j − 1)
(

a1
+ + · · · + aj+1

+ + (n − j)aj+2
+

)
T+

− (n − j)
(

a1
+ + · · · + aj+1

+ + (d − j − 1)aj+2
+

)
T+

= (d − n − 1)
(

a1
+ + · · · + aj+1

+

)
T+

< 0

Hence D(t) is negative on this interval.

• For d ≤ j ≤ n − 1, on the interval (Sj , Sj+1), the derivative of Qd equals 0. Hence 

D(t) is negative on this interval.

In conclusion, the function Qd(t)/t increases on the interval (R1, Rn+1) and decreases 

on the interval (S0, Sn). As Qd(t)/t is monotonic on (Rn+1, S0), the minimum is thus 

attained at either t = T− or t = T+. Hence,

l.h.s. of (3.10) = min

{
Qd(T−)

T−

,
Qd(T+)

T+

}
= min

⎧
⎨
⎩

d∑

j=1

aj
−,

d∑

j=1

aj
+

⎫
⎬
⎭

and this shows that P satisfies (3.10) which in turn completes the proof of the lemma. �
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3.2. The local construction on blocks

In this section, we will exploit the generic construction presented in §3.1 to essentially 

prove a ‘local’ version of Lemma 3.1. More precisely, we will construct a family of Roy 

(n + 1)-systems Pδ on certain subintervals I of [0, ∞) all satisfying the properties of 

Lemma 3.2. Here δ ∈ [0, 1/(40 n2)) is a parameter and for δ′ �= δ, we show that the 

intervals I can be chosen so that the Roy (n + 1)-systems Pδ and Pδ′

on I are mutually 

non-equivalent. The construction consists of five short steps. Throughout, n ≥ 2 and 

τ0, . . . , τn−1 ∈ [0, ∞] are the quantities appearing in Theorem 1.5 satisfying (1.17).

Step 1. For 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n + 1, let

αi,j :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

i−1(1 + τn−i)
−1 if j ≤ i

(1 + τn−i−1)−1 − (1 + τn−i)
−1 if j = i + 1

(n − i)−1τn−i−1(1 + τn−i−1)−1 if j > i + 1

where (1 +τj)−1 = 0 and τj(1 +τj)−1 = 1 if τj = ∞. The following statement summarises 

useful properties of the associated sequence (αi,j) that we shall later exploit.

Lemma 3.3. Let (αi,j) be given as above, then

(a) for any 1 ≤ i ≤ n − 1, 
∑

1≤j≤n+1 αi,j = 1,

(b) for any 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ j′ ≤ n + 1, αi,j ≤ αi,j′

,

(c) αi,1 + · · · + αi,j ≥ (1 + τn−j)−1 with equality holds when j = i, i + 1.

Proof. Part (a) follows directly from the definition. To prove the other parts, for 1 ≤
i ≤ n let

θi = (1 + τn−i)
−1 .

Then it follows that (1.17) is equivalent to

(n − d + 1) θn−d

n − d
≤ θn−d+1 ≤ 1 + dθn−d

d + 1
∀ 1 ≤ d ≤ n − 1,

which in turn is equivalent to

θi

i
≤ θi+1

i + 1
and

1 − θi

n + 1 − i
≤ 1 − θi+1

n − i
∀ 1 ≤ i ≤ n − 1. (3.11)

To prove part (b), it suffices to show that

θi

i
≤ θi+1 − θi ≤ 1 − θi+1

n − i
∀ 1 ≤ i ≤ n − 1 .
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This follows directly from (3.11). It remains to part (c). When j ≤ i, on appropriately 

iterating the first inequality of (3.11), it follows that

αi,1 + · · · + αi,j =
j θi

i
≥ θj .

When j = i or j = i + 1, the statement with equality is easily checked. When j > i + 1, 

on appropriately iterating the second inequality of (3.11), it follows that

αi,1 + · · · + αi,j = θi+1 +
(j − i − 1)(1 − θi+1)

n − i
= 1 − (n + 1 − j)(1 − θi+1)

n − i

≥ 1 − (1 − θj) = θj .

This completes the proof of the lemma. �

Step 2. Having chosen the sequence (αi,j) as above, the second step involves choosing a 

sequence of positive real numbers

{
βi,j

k : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n + 1, k ≥ 1
}

(3.12)

such that for any k ≥ 1 and 1 ≤ i ≤ n − 1:

∑

1≤j≤n+1

βi,j
k = 1 (3.13)

βi,j+1
k − βi,j

k ≥ 1

4n2k
for all 1 ≤ j ≤ n, (3.14)

βi,1
k ∈

[
1

(k + 1)(n + 1)
,

k

(k + 1)(n + 1)

]
, (3.15)

βi,n+1
k ∈

[
k + 3

(k + 1)(n + 1)
, 1 − 1

(k + 1)(n + 1)

]
(3.16)

lim
k→∞

βi,j
k = αi,j ∀ 1 ≤ j ≤ n + 1. (3.17)

Note that parts (a) and (b) of Lemma 3.3 guarantees the existence of such a sequence. 

For instance, they imply that for any 1 ≤ i ≤ n − 1

αi,1 ≤ 1/n and αi,n+1 ≥ 1/n .

Thus the conditions (3.15), (3.16) and (3.17) are compatible.
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Step 3. Now, the third step is to let

T1 := 128n4γ (3.18)

and then define inductively T i
k for k ≥ 1 and 1 ≤ i ≤ n as follows:

T 1
k := Tk , βi+1,1

k T i+1
k := βi,n+1

k T i
k − (n + 1)γ , T n

k := Tk+1, (3.19)

where we set

βn,j
k := β1,j

k+1 ∀ k ≥ 1 and 1 ≤ j ≤ n + 1. (3.20)

We claim that for any k ≥ 1:

Tk ≥ 32 n4(k + 1)2γ (3.21)

and

T i+1
k > T i

k (3.22)

for all 1 ≤ i ≤ n − 1. To prove the claim we argue by induction. However, first note that 

given k ≥ 1 and 1 ≤ i ≤ n −1, if we know that (3.21) holds and furthermore that if i ≥ 2

then (3.22) also holds (with i replaced by l) for all 2 ≤ l ≤ i, then by (3.16) it follows 

that

βi,n+1
k T i

k − (n + 1)γ ≥ βi,n+1
k Tk − (n + 1)γ > 0. (3.23)

Now by (3.15) and (3.20), for any k ≥ 1

min
1≤i≤n−1

(βi+1,1
k )−1 = (βn,1

k )−1 = (β1,1
k+1)−1 ≥ (k + 2)(n + 1)/(k + 1)

which together with (3.23) implies that

T i+1
k = (βi+1,1

k )−1
(

βi,n+1
k T i

k − (n + 1)γ
)

≥ (k + 2)(k + 3)

(k + 1)2
T i

k − (n + 1)2(k + 2)γ

k + 1

>
(k + 2)2

(k + 1)2
T i

k +

(
T i

k − (n + 1)2(k + 2)γ

k + 1

)
. (3.24)

It is important to stress that (3.23) and thus (3.24) hold for i = 1 without appealing to 

(3.22). We are now in the position to start the induction argument.
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Let k = 1. Then (3.21) holds in view of (3.18). To prove (3.22) for all 1 ≤ i ≤ n − 1

we use induction on i. With this and (3.24) in mind, when i = 1 it follows via (3.21) and 

the fact that T 1
1 := T1, that

T 1
1 − (n + 1)23γ ≥ 128n4γ − 3(n + 1)2γ > 0 . (3.25)

Hence, (3.24) which recall does not rely on (3.22) for i = 1 implies that T 2
1 > T 1

1 . In 

other words, (3.22) holds for i = 1. So suppose (3.22) holds for i with i ≤ n − 2. Then, 

it follows via (3.25) that

T i+1
1 − (n + 1)23γ > T 1

1 − (n + 1)23γ > 0

and so (3.24) implies that T i+2
1 > T i+1

1 . This shows that (3.22) holds for k = 1 and all 

1 ≤ i ≤ n − 1. Now assume that (3.21) and (3.22) holds for some k and all 1 ≤ i ≤ n − 1. 

Then, it follows via (3.24) with i = n − 1 and the fact that T n
k := Tk+1 and T 1

k := Tk, 

that

Tk+1 >
(k + 2)2

(k + 1)2
T n−1

k +

(
T n−1

k − (n + 1)2(k + 2)γ

k + 1

)

>
(k + 2)2

(k + 1)2
Tk +

(
Tk − (n + 1)2(k + 2)γ

k + 1

)

> 32n4(k + 2)2γ .

This shows that (3.21) holds for k + 1 and we now use this to show that (3.22) holds for 

k + 1 and all 1 ≤ i ≤ n − 1. With this in mind, when i = 1 it follows that

T 1
k+1 − (n + 1)2(k + 3)γ ≥ 32n4(k + 2)2γ − (n + 1)2(k + 3)γ > 0 (3.26)

and so (3.24) implies that T 2
k+1 > T 1

k+1 := Tk+1. In other words, (3.22) holds for k + 1

with i = 1. So suppose (3.22) holds for k + 1 with i ≤ n − 2. Then it follows via (3.26)

that

T i+1
k+1 − (n + 1)23γ > T 1

k+1 − (n + 1)2(k + 3)γ > 0

and so (3.24) implies that T i+2
k+1 > T i+1

k+1. This thereby completes the inductive step and 

hence establishes (3.21) and (3.22) for all k ≥ 1 and all 1 ≤ i ≤ n − 1.

Now, with the generic construction of §3.1 in mind, for each k ≥ 1, 1 ≤ i ≤ n − 1, let

T− = T i
k and T+ = T i+1

k ,

and for 1 ≤ j ≤ n + 1, let
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aj
− = βi,j

k and aj
+ = βi+1,j

k .

Then, it is readily verified on using (3.13), (3.14), (3.17), (3.19), (3.22) and (3.21) that 

conditions (3.5), (3.6) and (3.7) are satisfied. The upshot is that the construction de-

scribed within §3.1 is applicable and gives rise to a Roy (n + 1)-system P : [T i
k, T i+1

k ] →
Rn+1 associated with the sequences (βi,j

k ) defined via (3.12) and (T i
k) defined via (3.19). 

Moreover, for each k ≥ 1, 1 ≤ i ≤ n − 1, the Roy (n + 1)-system P on the interval 

[T i
k, T i+1

k ] satisfies Lemma 3.2.

Remark 3.1. As we shall see in the next section, it is not difficult to extend this local 

statement to a Roy (n + 1)-system P on the interval [0, ∞) that satisfies Lemma 3.1. 

Note that this would suffice if all we wanted to show was that the sets appearing in 

Theorem 1.5 are non-empty rather than continuum. In the remaining two steps, we 

introduce a new parameter δ and focus on the construction of mutually non-equivalent 

Roy (n + 1)-systems on the interval [T i
k, T i+1

k ].

Step 4. The fourth step involves perturbing the above construction of the Roy (n + 1)-

system P on [T i
k, T i+1

k ] by a parameter δ in such a way that:

• the properties of Lemma 3.2 are satisfied for the perturbed Roy (n + 1)-system 

Pδ : [T i
k, T i+1

k ] → Rn+1, and

• for δ′ �= δ, the perturbed Roy (n +1)-systems Pδ and Pδ′

are mutually non-equivalent 

(see Definition 2.2).

With this in mind, let (βi,j
k ) and (T i

k) be the sequences given by (3.12) and (3.19)

respectively, and let

δ ∈
[
0, 1/(40n2)

)
. (3.27)

Now define the new sequence

{
βi,j

k (δ) : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n + 1, k ≥ 1
}

(3.28)

by setting, for any k ≥ 1 and 1 ≤ i ≤ n − 1:

β1,1
1 (δ) := β1,1

1 , (3.29)

βi,n+1
k (δ) := βi,n+1

k +
δ

k
, (3.30)

βi+1,1
k (δ)T i+1

k := βi,n+1
k (δ)T i

k − (n + 1)γ, (3.31)

βi,1
k (δ) + βi,2

k (δ) + βi,n+1
k (δ) := βi,1

k + βi,2
k + βi,n+1

k , (3.32)
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βi,j
k (δ) := βi,j

k ∀ 3 ≤ j ≤ n . (3.33)

Also, in line with (3.20), we let

βn,j
k (δ) := β1,j

k+1(δ) ∀ k ≥ 1 and 1 ≤ j ≤ n + 1.

Clearly, the sequences (βi,j
k (δ)) and (βi,j

k ) coincide when δ = 0. An immediate conse-

quence of (3.13), (3.32) and (3.33) is that

n+1∑

j=1

βi,j
k (δ) = 1. (3.34)

Also note that in view of (3.19), (3.30) and (3.31), we have that

(
βi+1,1

k (δ) − βi+1,1
k

)
T i+1

k =
(

βi,n+1
k (δ) − βi,n+1

k

)
T i

k =
δ

k
T i

k ,

from which it follows that

βi,1
k ≤ βi,1

k (δ) ≤ βi,1
k +

δ

k
∀ 2 ≤ i ≤ n − 1

and

β1,1
k+1 ≤ β1,1

k+1(δ) ≤ β1,1
k+1 +

δ

k
. (3.35)

To sum up, for all k ≥ 1 and 1 ≤ i ≤ n − 1 we have that

βi,1
k ≤ βi,1

k (δ) ≤ βi,1
k +

2δ

k
. (3.36)

Combining (3.36) and (3.32), we get for all k ≥ 1 and 1 ≤ i ≤ n − 1,

βi,2
k − 3δ

k
≤ βi,2

k (δ) ≤ βi,2
k . (3.37)

Now, with the generic construction of §3.1 in mind, for k ≥ 1, 1 ≤ i ≤ n − 1, let

T− = T i
k and T+ = T i+1

k ,

and for 1 ≤ j ≤ n + 1, let

aj
− = βi,j

k (δ) and aj
+ = βi+1,j

k (δ) .

Then, it is readily verified that condition (3.5) follows from (3.31) and that condition (3.6)

follows from (3.17) and (3.34). To show (3.7), first note that for all k ≥ 1, 1 ≤ i ≤ n − 1

and j �= 1, on using (3.30), (3.33) and (3.37), it follows that
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(
βi,j+1

k (δ) − βi,j
k (δ)

)
Tk ≥

(
βi,j+1

k − βi,j
k

)
Tk .

We have already shown that the right hand side satisfies (3.7). When j = 1, it is readily 

verified, on using (3.14), (3.21), (3.27), (3.36) and (3.37), that for all k ≥ 1 and 1 ≤ i ≤
n − 1

(
βi,2

k (δ) − βi,1
k (δ)

)
T i

k ≥
(

βi,2
k − βi,1

k − 5δ

k

)
T i

k ≥ Tk

8n2k
≥ 4n2γ.

The upshot is that the construction described within §3.1 is applicable and gives rise to 

a Roy (n + 1)-system Pδ : [T i
k, T i+1

k ] → Rn+1 associated with the constant δ satisfying 

(3.27) and sequences (βi,j
k (δ)) defined via (3.28) and (T i

k) defined via (3.19). Moreover, 

for each k ≥ 1, 1 ≤ i ≤ n − 1, the Roy (n + 1)-system Pδ on the interval [T i
k, T i+1

k ]

satisfies Lemma 3.2.

Step 5. It remains to show that the Roy (n + 1)-systems constructed in Step 4 are 

mutually non-equivalent. This is easily done. Let δ and δ′ satisfy (3.27) and suppose 

δ′ �= δ. Then it is readily verified, that

∣∣∣P δ′

n+1(Tk) − P δ
n+1(Tk)

∣∣∣ (3.30)
=

|δ′ − δ| Tk

k

(3.21)

≥ |δ′ − δ|32n4kγ > 2Cn

for all k > k0 sufficiently large. By definition, this implies that for any k > k0, the Roy 

(n + 1)-systems Pδ and Pδ′

on the interval [Tk, Tk+1] are mutually non-equivalent.

3.3. Proof of Lemma 3.1

The proof of the Lemma 3.1 will follow on extending the local construction of the Roy 

(n + 1)-systems Pδ on the intervals [T i
k, T i+1

k ] presented in §3.2 to the interval [0, ∞). 

With this in mind, for δ satisfying (3.27) and k ≥ 1, 1 ≤ i ≤ n − 1, let us denote by Pδ
k,i

the Roy (n + 1)-system on [T i
k, T i+1

k ]. Now observe that

[T1, ∞) =
⋃

k≥1

⋃

1≤i≤n−1

[T i
k, T i+1

k ] ,

where T1 is given by (3.18); that is, the intervals [T i
k, T i+1

k ] give a partition of [T1, ∞). 

It therefore follows that the continuous piecewise linear map Pδ = (P δ
1 , . . . , P δ

n+1) :

[T1, ∞) → Rn+1 given by

Pδ(t) := Pδ
k,i(t) ∀ t ∈ [T i

k, T i+1
k ] (for each k ≥ 1 and 1 ≤ i ≤ n − 1) ,

is a Roy (n +1)-system on [T1, ∞). Indeed, by construction the first two properties within 

Definition 2.1 are automatically satisfied. It thus remains to check the final property at 
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the common boundary points T i
k for each k ≥ 1 and 1 ≤ i ≤ n − 1. With this in mind, 

it is easily verified that

P ′
n+1(T i

k
−

) = 1 and P ′
1(T i

k
+

) = 1 .

Hence, with reference Definition 2.1, it immediately follows that r1 = r2 = n + 1 > s2 =

s1 = 1 and so the restraint associated with the final property is in fact vacuous.

It remains to extend Pδ to the interval [0, T1]. For this let

Sd+1 :=
(

β1,1
1 (δ) + · · · + β1,d

1 (δ) + (n + 1 − d)β1,d+1
1 (δ)

)
T1 ∀ 0 ≤ d ≤ n,

and let

P δ
j (0) := 0 ∀ 1 ≤ j ≤ n + 1 .

On the interval [0, S1], let the n + 1 components P δ
1 , . . . , P δ

n+1 coincide and have slope 

1/(n + 1). It follows that

P δ
j (S1) := β1,1

1 (δ)T1 ∀ 1 ≤ j ≤ n + 1 .

For 1 ≤ d ≤ n, on the interval [Sd, Sd+1], let the n + 1 − d components P δ
d+1, · · · , P δ

n+1

coincide and have slope 1/(n + 1 − d) while the components P δ
1 . . . , P δ

d have slope 0 and

P δ
j (Sd+1) :=

⎧
⎨
⎩

β1,j
1 (δ) T1 if 1 ≤ j ≤ d

β1,d+1
1 (δ) T1 if d + 1 ≤ j ≤ n + 1 .

In particular, by (3.34) we have that Sn+1 = T1 and so it follows that

P δ
j (T1) = β1,j

1 (δ)T1 ∀ 1 ≤ j ≤ n + 1 .

In short, this coincides with left hand side of Fig. 1 with T− = T1 and aj
− = β1,j

1 (δ)

(1 ≤ j ≤ n + 1). The upshot is that the above construction enables us to extend in then 

obvious manner the Roy (n +1)-system on [T1, ∞) to [0, ∞). We now show that the Roy 

(n + 1)-system Pδ : [0, ∞) → Rn+1 satisfies the desired properties of Lemma 3.1.

• By construction, (3.2) follows directly from (3.8).

• In view of (3.9), (3.15), (3.21) and (3.35), it follows that

lim sup
t→∞

(
t

n + 1
− P δ

1 (t)

)
= lim sup

k→∞

max
1≤i≤n−1

max
t∈[T i

k,T i+1
k ]

(
t

n + 1
− P δ

1 (t)

)

≥ lim sup
k→∞

max
1≤i≤n−1

(
1

n + 1
− βi,1

k (δ)

)
T i+1

k
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≥ lim sup
k→∞

max
1≤i≤n−1

(
1

n + 1
− βi,1

k − δ

k

)
T i+1

k

≥ lim sup
k→∞

(
1

n + 1
− k

(k + 1)(n + 1)
− 1

40n2k

)
Tk

≥ lim sup
k→∞

n3(k + 2)γ = ∞ .

This shows that Pδ satisfies (3.3).

• Let 1 ≤ d ≤ n. Then, in view of (3.10), (3.17) and part (c) of Lemma 3.3, it follows 

that

lim inf
t→∞

P δ
1 (t) + · · · + P δ

d (t)

t
= lim inf

k→∞
min

1≤i≤n
min

t∈[T i
k,T i+1

k ]

(
P δ

1 (t) + · · · + P δ
d (t)

t

)

= lim inf
k→∞

min
1≤i≤n−1

min

⎧
⎨
⎩

d∑

j=1

βi,j
k (δ),

d∑

j=1

βi+1,j
k (δ)

⎫
⎬
⎭

= lim inf
k→∞

min
1≤i≤n−1

min

⎧
⎨
⎩

d∑

j=1

βi,j
k ,

d∑

j=1

βi+1,j
k

⎫
⎬
⎭

= min
1≤i≤n

αi,1 + · · · + αi,d

=
1

1 + τn−d
.

This shows Pδ satisfies (3.4).

In the previous section (see Step 5), we have already seen that for any distinct δ

and δ′ satisfying (3.27), the Roy (n + 1)-systems Pδ and Pδ′

on [Tk, Tk+1] are mutually 

non-equivalent for all k sufficiently large. Consequently, there are continuum many non-

equivalent Roy (n + 1)-systems Pδ on [0, ∞) that satisfies the conditions of Lemma 3.1. 

This completes the proof. �

3.4. Further comment

Recall, that once we have constructed in §3.3 the collection of non-equivalent Roy 

(n + 1)-systems Pδ satisfying Lemma 3.1, the key ingredient towards establishing our 

main result is Theorem 2.1. In short, the latter guarantees that each system in our 

collection gives rise to a distinct point x ∈ Rn such that
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‖Lx − Pδ‖ ≤ Cn

on [0, ∞). In turn, it is not difficult to show that such x satisfies the desired Diophantine 

properties associated with Theorem 1.5. Now with this in mind, let n ∈ N and W be a 

collection of Roy (n + 1)-systems P : [0, ∞) → Rn+1. In [10, Theorem 2.3], it is shown 

that if W satisfies the so called ‘closed under finite perturbations’ hypothesis, then one 

is able to compute the Hausdorff dimension of the set

{x ∈ Rn : ‖Lx − P‖ < ∞ for some P ∈ W} .

However, it is not clear to us whether the methods in [10] can be adapted to give a result 

on the Hausdorff dimension of the set

{x ∈ Rn : ‖Lx − P‖ < C for some P ∈ W}

for any fixed constant C > 0. Such a result would potentially enable us to replace 

“continuum” by “full Hausdorff dimension” in the statement of Theorem 1.2. We state 

this highly desired strengthening formally as an open problem.

Problem 3.1. Suppose that n ≥ 2. Prove that

dim FSn = n .

In §4.3 below we consider the natural generalisation of the above problem to the 

setting of weighted Diophantine approximation for systems of linear forms.

A more subtle version of Problem 3.1 would be to understand how the removal of 

Badn ∪ Singn affects the quantitative form of the set DIn, that is to estimate from 

below the Haudorff dimension of FS(ε), where for 0 < ε < 1

FSn(ε) := DIn(ε) � (Badn ∪ Singn) .

Clearly, by definition, dim FSn(ε) cannot be larger than dim DIn(ε) and by a recent 

result due to Kleinbock & Mirzadeh [19], the latter is strictly smaller than n for all 

ε ∈ (0, 1). Note that Theorem 1.5 guarantees that

FSn(ε) �= ∅ ∀ ε ∈ (0, 1).

4. Intermediate Diophantine sets revisited

The main goal of this section is to define the notion of d-Dirichlet improvable points 

in Rn and investigate the relationship between them and the classical notions of simul-

taneous (d = 0) and dual (d = n − 1) Dirichlet improvable points. We will explore two 

different approaches:



34 V. Beresnevich et al. / Advances in Mathematics 401 (2022) 108316

(i) an algebraic approach using multilinear algebra and thus developing the ideas of 

Laurent [20], and

(ii) a geometric approach using Minkowski minima and thus developing the ideas of 

Schmidt & Summerer [25,26] and Roy [22] on the parametric geometry of numbers 

leading to Lemma 2.1 of §2.2.

The key ingredient required for achieving this lies in being able to state an appropri-

ate optimal Dirichlet type theorem (see Remark 1.3 in §1.2). This will be accomplished 

in §4.1 via the framework of multilinear algebra and in §4.2 via the framework of the 

parametric geometry of numbers. In the process of describing the setup leading to the 

Dirichlet type theorem of §4.1.2, we will take the opportunity to first revisit the interme-

diate badly approximable and singular sets in order to fill in the details of the arguments 

(cf. Remark 2.2) leading to (2.11) and (2.12). Recall, that these equivalences are used 

in the “classical” proof of Proposition 1.1 given in §2.2 showing that the intermediate 

d-badly approximable sets Badd
n (resp. the d-singular sets Singd

n) are equivalent. More-

over, we will provide an alternative “dynamical” proof of the proposition that avoids 

appealing to (2.11) and (2.12).

4.1. The algebraic approach

To proceed, we recall notions and results from multilinear algebra. Let n ≥ 2 and 

0 ≤ d ≤ n − 1. First, we endow the linear space Rn+1 with the usual inner product and 

let {ei}1≤i≤n+1 be the standard orthonormal basis. Then the wedge product ∧d+1Rn+1

is also equipped with an inner product with an orthonormal basis given by

{
ei1

∧ · · · ∧ eid+1
: 1 ≤ i1 ≤ . . . ≤ id+1 ≤ n + 1

}
.

Note that, under this basis, we identify ∧d+1Rn+1 with R(n+1
d+1). For any X ∈ ∧d+1Rn+1, 

we set ‖X‖2 and ‖X‖ to be the Euclidean norm and maximal norm (with respect to 

the basis given above), respectively. X ∈ ∧d+1Rn+1 is called decomposable if and only if 

there exists v1, . . . , vd+1 ∈ Rn+1 such that X = v1 ∧ · · · ∧ vd+1. It is worth highlighting 

that up to an homothety there is a one to one correspondence between decomposable 

X ∈ ∧d+1Rn+1 and d-dimensional rational affine subspaces of Rn. Indeed, by expressing 

a d-dimensional affine subspace L ⊂ Rn ⊂ P n(R) using homogeneous coordinates, we 

obtain a unique (d + 1)-dimensional subspace VL of Rn+1 satisfying that L = P (VL). 

Clearly, L is rational if and only if VL has a integer basis {v1, . . . , vd+1} ⊂ Zn+1. By 

using the Plücker embedding

Gr(d, P n(R)) →֒ P (∧d+1Rn+1), L �→ XL := v1 ∧ · · · ∧ vd+1 (4.1)

we obtain the Plücker coordinates for L. Conversely, given a decomposable multivector 

X ∈ ∧d+1
Zn+1 � {0}, the associated linear subspace VL can be expressed as VL :=
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{x ∈ Rn+1 : x ∧ X = 0} and then L can be obtained by projecting the intersection 

VL ∩ {x ∈ Rn+1 : xn+1 = 1} onto the first n coordinates. The height H(L) of L will be 

the Weil height, that is

H(L) = ‖XL‖2 ,

where XL is as in (4.1) and v1, . . . , vd+1 is a basis of VL ∩ Zn+1. In other words, H(L)

is the covolume of the lattice VL ∩ Zn+1 in VL. Note that XL ∈ ∧d+1Zn+1 � {0} has 

coprime coordinates. Given x ∈ Rn, we define the projective distance between x and L

by

dp(x, L) :=
‖x′ ∧ XL‖2

‖x′‖2‖XL‖2
, (4.2)

where x′ := (x, 1) ∈ Rn+1. Geometrically, dp(x, L) equals the sine of the smallest angle 

between x′ and non-zero vectors in VL. The projective distance dp(x, L) is easily seen to 

be locally (depending on ‖x‖2) comparable to the distance d(x, L) defined by (1.10) in 

§1.2 and indeed the distance of x from L induced by any norm on Rn, see for instance, 

[4, Eq (3.5)].

4.1.1. Showing Singd
n ≡ (2.11) and Badd

n ≡ (2.12)

The following statement provides an algebraic formulation of the sets Singd
n and Badd

n

as defined via (1.13) and (1.14) in §1.2. Recall, given n ∈ N and d ∈ {0, 1, . . . , n − 1}, 

we let

ωd :=
d + 1

n − d
.

Lemma 4.1. Let n ≥ 2 and 0 ≤ d ≤ n − 1.

(i) x ∈ Singd
n if and only if for any given ε ∈ (0, 1) and N > N0(x, ε) sufficiently large, 

there exists a X ∈ ∧d+1Zn+1 � {0}, such that

‖X‖ ≤ N and ‖x′ ∧ X‖2 ≤ εN−ωd . (4.3)

(ii) x ∈ Badd
n if and only if there exists a constant ε := ε(x) ∈ (0, 1) such that for any 

N > N0(x) sufficiently large, there are no X ∈ ∧d+1Zn+1 � {0} satisfying (4.3).

Remark 4.1. In view of the discussion at the start of this section, it is straightforward 

to establish the above reformulation of the sets Singd
n and Badd

n under the extra as-

sumption that X ∈ ∧d+1Zn+1 � {0} is decomposable. In view of this, the key feature of 

Lemma 4.1 is that it enables us to remove the decomposable assumption.

Proof. The ‘only if part’ of both (i) and (ii) follows directly from Remark 4.1. Now 

concentrating on the ‘if part’ of (i), in view of Remark 4.1, it suffices to show that 
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for any given ε ∈ (0, 1) and N > N0(x, ε) sufficiently large, there exists a decomposable 

X ∈ ∧d+1Zn+1�{0} such that (4.3) holds. With this in mind, let ε ∈ (0, 1), N > N0(x, ε)

and X ∈ ∧d+1Zn+1�{0} satisfying (4.3) be as given. This implies that the first successive 

minima of the convex body C defined by

{
X ∈ ∧d+1Rn+1 : ‖X‖2 ≤ N , ‖x′ ∧ X‖2 ≤ εN−ωd

}
(4.4)

is less than 1. Let

U := ε−d/(d+1)Nn/(n−d) and V := ε(n+d)/(nd+n)U1/n = ε1/(d+1)N−1/(n−d).

Thus, N = UV d and εN−ωd = V d+1. Then, in view of [5, Lemma 3], there exists 

β1 = β1(n, d) > 1 such that

β−1
1 C̃d+1 ⊂ C ⊂ β1C̃d+1 , (4.5)

where C̃d+1 is the (d + 1)-th compound of the convex body C̃ ⊂ Rn+1 defined as

C̃ :=

{
y ∈ Rn+1 : |yn+1| ≤ U , max

1≤i≤n
|yn+1xi − yi| ≤ V

}
.

In turn, it follows via Mahler’s theory of compound convex bodies that there exists 

β2 = β2(n, d) ≥ 1 such that

X := x1 ∧ · · · ∧ xd+1 ∈ β2 λ1

(
∧d+1Zn+1, C

)
C̃d+1 (4.6)

where xi ∈ Zn+1 is the integer point at which C̃ attains its i-th successive minima. Recall, 

for a given convex body C ⊂ ∧d+1Rn+1 and i = 1, . . . , d + 1, we write λi(∧d+1Zn+1, C)

for the i-successive minima of C with respect to the lattice ∧d+1Zn+1. The upshot of 

(4.6) is that X is decomposable and this proves the ‘if part’ of (i). The proof of the ‘if 

part’ of (ii) is similar and we leave the details to the reader. �

Armed with Lemma 4.1, it is relatively straightforward to obtained the sought after 

statement.

Lemma 4.2. Let n ≥ 2 and 0 ≤ d ≤ n − 1.

(i) x ∈ Singd
n if and only if for any δ > 0 there exists a constant t0 = t0(δ) > 0 such 

that for all t ≥ t0 inequality (2.12) holds; that is

(n − d)t

n + 1
− (Lx,1(t) + · · · + Lx,n−d(t)) ≥ δ.
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(ii) x ∈ Badd
n if and only if there exists a constant δ > 0 such that for all sufficiently 

large t inequality (2.11) holds; that is

(n − d)t

n + 1
− (Lx,1(t) + · · · + Lx,n−d(t)) ≤ δ.

Proof. Lemma 4.1 implies that x ∈ Singd
n if and only if for any δ > 0 there exists a 

constant t0 = t0(δ) > 0 such that for all t ≥ t0,

λ1

(
∧d+1Zn+1, Kd+1

x (et)
)

≤ e−δ

where

Kd+1
x (et) :=

{
X ∈ ∧d+1Rn+1 : ‖X‖ ≤ e

(n−d)t

n+1 , ‖x′ ∧ X‖ ≤ e
−(d+1)t

n+1

}
.

In view of (4.5), the convex body Kd+1
x (et) is comparable (with implied constants de-

pending on n and d only) to the (d + 1)-th compound of the convex body

Kx(et) :=

{
y ∈ Rn+1 : |yn+1| ≤ e

nt
n+1 , max

1≤i≤n
|yn+1xi − yi| ≤ e− t

n+1

}
.

Note that

Cx(et) = e− t
n+1 Kx(et)∨,

where Cx(et) is given by (2.1) and Kx(et)∨ denotes the dual of Kx(et). Hence, by 

Minkowski’s second convex body theorem, it follows that

log λ1

(
∧d+1Zn+1, Kd+1

x (et)
)

=

d+1∑

i=1

log λi

(
Zn+1, Kx(et)

)
+ O(1)

=

d+1∑

i=1

− log λn+2−i

(
Zn+1, Kx(et)∨

)
+ O(1)

=

n−d∑

i=1

log λi

(
Zn+1, Kx(et)∨

)
+ O(1)

= − (n − d)t

n + 1
+

n−d∑

i=1

Lx,i(t) + O(1) ,

where the quantity Lx,i(t) is given by (2.3) and the implied constants in the ‘big O’ term 

depend on n and d only. This thereby completes the proof of first claim made in the 

lemma. The proof of (ii) is similar and we leave the details to the reader. �
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4.1.2. An optimal Dirichlet type theorem via multilinear algebra

For obvious reasons, as discussed in Remark 1.3, in order to define Dirichet improvable 

sets it is paramount to start with an optimal Dirichlet type theorem. Any such theorem 

should naturally not only imply Theorem 1.3 concerning the approximation of points by 

rational subspaces but also coincide with the classical simultaneous and dual forms of 

Dirichlet theorem. The multilinear algebra framework exploited in the previous section 

yields the following optimal statement.

Theorem 4.1. Let n ∈ N and d be an integer satisfying 0 ≤ d ≤ n − 1. Then for any 

x ∈ Rn and N > 1, there exist Z ∈ ∧dZn � {0} and Y ∈ ∧d+1Zn such that

‖Z‖ ≤ N and ‖x ∧ Z + Y‖ ≤ N−ωd . (4.7)

Proof. Consider the linear space V := ∧dRn ⊕ ∧d+1Rn with the lattice L := ∧dZn ⊕
∧d+1Zn. On observing that ωd =

(
n
d

)
/
(

n
d+1

)
, it is easily verified that for any given x ∈ Rn

the volume of the convex body given by (4.7) is equal to 2dim V . Hence, the statement of 

the theorem follows as a direct consequence of Minkowski’s convex body theorem. �

By taking d = 0 and n − 1 in Theorem 4.1, we immediately recover the classical 

simultaneous and dual forms of Dirichlet’s theorem. We now show that for general d we 

recover Theorem 1.3.

Step 1. We show that Theorem 1.3 has the following equivalent algebraic formulation. 

Recall, given x ∈ Rn we let x′ := (x, 1) ∈ Rn+1.

Lemma 4.3. Let n ∈ N and d be integer satisfying 0 ≤ d ≤ n − 1. Then for any x ∈ Rn

there exists a constant c = c(n, d, x) > 0, such that for any N ≥ 1 there exists a

X ∈ ∧d+1Zn+1 � {0}, such that

‖X‖2 ≤ N and ‖x′ ∧ X‖2 ≤ cN−ωd . (4.8)

Proof of equivalence of Theorem 1.3 and Lemma 4.3. For the same reasons as outlined 

in Remark 4.1, it is easy to deduce Lemma 4.3 from Theorem 1.3. For the converse, 

we adapt the proof of Lemma 4.1. This simply amounts to putting ε = c(n, d, x) when 

defining the convex body C given by (4.4). Apart from this the given proof remains 

unchanged. �

Step 2. We show that Theorem 4.1 implies Lemma 4.3.

Proof that Theorem 4.1 implies Lemma 4.3. With reference to Theorem 4.1, given x ∈
Rn and N > max{‖x‖−1/ωd

2 , 1} let Z ∈ ∧dZn � {0} and Y ∈ ∧d+1Zn be a solution to 

(4.7). Then, it follows that
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‖Y‖ ≤ ‖x ∧ Z‖ + N−ωd ≤ ‖x ∧ Z‖2 + ‖x‖2 ≤ 2‖x‖2‖Z‖2. (4.9)

Now let en+1 := (0, . . . , 0, 1) ∈ Zn+1 and identify the set {y = (y1, . . . , yn+1) ∈ Zn+1 :

yn+1 = 0} (resp. {y = (y1, . . . , yn+1) ∈ Rn+1 : yn+1 = 0}) with Zn (resp. Rn). Then, we 

have that

∧d+1Zn+1 = en+1 ∧ (∧dZn) ⊕ ∧d+1Zn.

Next, let

X := en+1 ∧ Z − Y ∈ ∧d+1Zn+1.

Then, it follows that

‖X‖ ≤ ‖Z‖ + ‖Y‖
(4.9)

≤ (2|x| + 1)‖Z‖2 ≤ (2|x| + 1)

√(
n

d

)
‖Z‖

(4.7)

≤ 2
n
2 (2|x| + 1)N ,

and so

‖X‖2 ≤ n
1
2 2

n
2 (2|x| + 1)N . (4.10)

On the other hand, we have that

x′ ∧ X = (en+1 + x) ∧ (en+1 ∧ Z − Y) = −en+1 ∧ Y + x ∧ en+1 ∧ Z − x ∧ Y

= −(en+1 + x) ∧ (x ∧ Z + Y).

Since en+1 is orthogonal to x, en+1 ∧ (x ∧ Z + Y) is orthogonal to x ∧ (x ∧ Z + Y). Thus,

‖x ∧ Z + Y‖2 ≤ ‖x′ ∧ X‖2 ≤ ‖x′‖2‖x ∧ Z + Y‖2 (4.11)

and on using the above right hand side inequality and (4.7), it follows that

‖x′ ∧ X‖2 ≤ 2
n
2 |x′| ‖x ∧ Z + Y‖ ≤ 2

n
2 |x′|N−ωd . (4.12)

Together, (4.10) and (4.12) imply the statement of the lemma. �

The upshot of Steps 1 & 2 is the following desired statement.

Proposition 4.1. Theorem 4.1 =⇒ Theorem 1.3.
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4.1.3. Bad, singular and Dirichlet improvable in light of Theorem 4.1

Theorem 4.1 enables us to define an associated notion of d-Dirichlet improvable vectors 

as well as alternative “algebraic” notions of d-singular and d-badly approximable vectors.

Definition 4.1. Let n ∈ N and d be an integer satisfying 0 ≤ d ≤ n −1. Then for ε ∈ (0, 1), 

let

• DId
n(ε) be the set of x ∈ Rn, such that for all N > N0(x, ε) sufficiently large, there 

exist Z ∈ ∧dZn � {0} and Y ∈ ∧d+1Zn such that

‖Z‖ ≤ N and ‖x ∧ Z + Y‖ ≤ εN−ωd . (4.13)

• Badd
n(ε) be the set of x ∈ Rn, such that for all N > N0(x, ε) sufficiently large, there 

are no solutions Z ∈ ∧dZn � {0} and Y ∈ ∧d+1Zn to (4.13).

Moreover, let

DId
n :=

⋃

ε∈(0,1)

DId
n(ε), Singd

n :=
⋂

ε∈(0,1)

DId
n(ε), Badd

n :=
⋃

ε∈(0,1)

Badd
n(ε).

Recall, that on taking d = 0 (resp. d = n −1) in Theorem 4.1, we immediately recover 

the classical simultaneous (resp. dual) form of Dirichlet’s theorem. Thus, in these cases 

it is clear that the sets DId
n, Singd

n and Badd
n given by Definition 4.1 coincide with 

those defined via the classical forms of Dirichlet theorem. In particular, for Dirichlet 

improvable points in Rn, this means that the set DI0
n (resp. DIn−1

n ) is equivalent to 

set defined via the classical inequality (1.3) (resp. (1.9)) and in view of Davenport &

Schmidt [12, Theorem 2] we have that

DI0
n = DIn−1

n := DIn ; (4.14)

i.e. the simultaneous form of Dirichlet’s theorem is improvable if and only if the dual 

form of Dirichlet’s theorem is improvable.

For obvious reasons, including consistency, it is vitally important that the following 

‘equivalence’ statement is true for previously defined intermediate Diophantine sets.

Lemma 4.4. The definition of Singd
n (resp. Badd

n) given by Definition 4.1 is equivalent 

to that given by (1.13) (resp. (1.14)) in §1.2.

Proof. Let us write S̃ing
d

n (resp. B̃ad
d

n) to denote the set of d-singular vectors (resp. 

d-badly approximable vectors) given by (1.13) (resp. (1.14)). Then, Lemma 4.1 states 

that

• x ∈ S̃ing
d

n if and only if for any given ε ∈ (0, 1) and N > N0(x, ε) sufficiently large, 

there exists X ∈ ∧d+1Zn+1 � {0}, such that
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‖X‖2 ≤ N and ‖x′ ∧ X‖2 ≤ εN−ωd . (4.15)

• x ∈ B̃ad
d

n if and only if there exists a constant ε := ε(x) ∈ (0, 1) such that for any 

N > N0(x) sufficiently large, there are no solutions X ∈ ∧d+1Zn+1 � {0} to (4.15).

As in the proof of Step 2 in §4.1.2, let en+1 = (0, . . . , 0, 1) ∈ Zn+1 and identify the set 

{y = (y1, . . . , yn+1) ∈ Zn+1 : yn+1 = 0} (resp. {y = (y1, . . . , yn+1) ∈ Rn+1 : yn+1 = 0}) 

with Zn (resp. Rn). Then, we have that

∧d+1Zn+1 = en+1 ∧ (∧dZn) ⊕ ∧d+1Zn .

Hence, we can write any X ∈ ∧d+1Zn+1 � {0} uniquely as en+1 ∧ Z − Y with Z ∈ ∧dZn

and Y ∈ ∧d+1Zn such that either Z or Y is non-zero. Then, the same argument leading 

to (4.11), enables us to conclude that

‖x ∧ Z + Y‖2 ≤ ‖x′ ∧ X‖2 ≤ ‖x′‖2 ‖x ∧ Z + Y‖2. (4.16)

Note that we also have that

max{‖Z‖2, ‖Y‖2} ≤ ‖X‖2 ≤ 2 max{‖Z‖2, ‖Y‖2}. (4.17)

Now fix ε ∈ (0, 1) and x ∈ Rn. Let N > max{‖x‖−1/ωd

2 , 1} and suppose that 

Z ∈ ∧dZn � {0} and Y ∈ ∧d+1Zn is a solution to (4.13). Let X ∈ ∧d+1Zn+1 be 

the corresponding unique point satisfying (4.16) and (4.17). Then, the same argument 

leading to (4.10) and (4.12), shows that X satisfies

‖X‖2 ≤ n
1
2 2

n
2 (2‖x‖2 + 1)N and ‖x′ ∧ X‖2 ≤ ε2

n
2 ‖x′‖2N−ωd .

Conversely, let N > max{‖x‖−1/ωd

2 , 1} and suppose that X ∈ ∧d+1Zn+1 � {0} is a 

solution to (4.15). Let Z ∈ ∧dZn and Y ∈ ∧d+1Zn be the corresponding unique points 

(not both zero) satisfying (4.16) and (4.17). Then it follows that using the left hand side 

of (4.16) and (4.17), that Z and Y satisfy

‖Z‖ ≤ N and ‖x ∧ Z + Y‖ ≤ εN−ωd .

It remains to show that Z �= 0. Suppose it is. Then since the right hand side of the 

second inequality is strictly less than one, we must have that Y = 0. This contradicts 

the assumption that both are not zero. Hence we must have Z ∈ ∧dZn � {0}. This 

completes the proof. �

We now proceed by describing a dynamical reformulation of the intermediate Dio-

phantine sets associated with Definition 4.1. This will enable us to provide an alternative 

proof of Proposition 1.1 that is self-contained in that it avoids appealing to [5, Lemma 
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3]. Moreover, the dynamical reformulation will enable us to extend the Davenport &

Schmidt result [12, Theorem 2] concerning the equivalence of the simultaneous and dual 

Dirichlet improvable sets to intermediate Dirichlet improvable sets.

For simplicity, given n ≥ 2 and 0 ≤ d ≤ n − 1, we write

Ad :=

(
n

d

)
, Bd :=

(
n

d + 1

)
and Nd := Ad + Bd =

(
n + 1

d + 1

)
.

For x ∈ Rn, let Hd,x to be the linear transformation defined as

Hd,x : ∧dRn → ∧d+1Rn : Z �→ x ∧ Z.

Under the standard basis, Hd,x is given as a matrix Md,x ∈ MAd×Bd
(R). Recall, a matrix 

M ∈ MA×B(R) of A rows and B columns, is said to be

• Dirichlet improvable if and only if there exists ε = ε(M) ∈ (0, 1) such that for all 

N ≥ N0(M, ε) sufficiently large, there exists Y ∈ ZA and Z ∈ ZB � {0} such that

‖Z‖ ≤ N and ‖MZ + Y‖ ≤ εN− B
A . (4.18)

• singular if and only if for any given ε ∈ (0, 1) and N ≥ N0(M, ε) sufficiently large, 

there exists Y ∈ ZA and Z ∈ ZB � {0} such that (4.18) holds.

• badly approximable if and only if there exists ε = ε(M) ∈ (0, 1) such that for all 

N ≥ N0(M, ε) sufficiently large, there are no solutions Y ∈ ZA and Z ∈ ZB � {0}
to (4.18).

On comparing the notions as given in Definition 4.1 with the corresponding matrix 

notions above we immediately obtain the following statement.

Lemma 4.5. Let x ∈ Rn, 0 ≤ d ≤ n − 1 be an integer, A = Ad and B = Bd. Then x is 

d-Dirichlet improvable (resp. d-badly approximable, d-singular) if and only if the matrix 

M = Md,x is Dirichlet improvable (resp. badly approximable, singular).

Using this lemma, we can provide another proof of Proposition 1.1.

Alternative proof of Proposition 1.1. Let

ρd : SLn+1(R) → SLNd
(R) , (4.19)

be the homomorphism induced by the natural representation on ∧d+1Rn+1. It is easily 

seen that

ρd(SLn+1(Z)) ⊂ SLNd
(Z) and ρd(gt) = gd

t ,
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where

gt :=

(
e−tIn 0

0 ent

)
and gd

t :=

(
e−BdtIAd

0
0 eAdtIBd

)
.

According to [21, Theorem 1.13], the induced map

φd : Xn+1 → XNd
where Xm := SLm(R)/SLm(Z) (4.20)

is proper. This together with Dani’s correspondence [9] and Lemma 4.5, implies that

x is d-badly approximable ⇐⇒ the orbit {gd
t ΛMd,x

: t ≥ 0} is bounded

⇐⇒ the orbit {gtΛx : t ≥ 0} is bounded

⇐⇒ x is badly approximable .

Here and elsewhere,

Λx :=

(
In 0
x 1

)
Zn+1 and ΛMd,x

:=

(
IAd

0
Md,x IBd

)
ZNd .

The proof of equivalence in the singular case is similar and we leave the details to the 

reader. �

Concerning the set of intermediate Dirichlet improvable vectors, we are able to prove 

the following statement. It shows that the sets DId
n are all the same. This is of course 

in perfect harmony with the situation concerning the intermediate badly approximable 

and singular sets.

Proposition 4.2. Let n ∈ N and d be an integer satisfying 0 ≤ d ≤ n − 1. Then

DId
n = DIn.

Recall, that DIn is the set of Dirichlet improvable points in Rn defined via the classical 

simultaneous or (equivalently) dual form of Dirichlet’s theorem. Note that the proposition 

trivially implies the Davenport & Schmidt result [12, Theorem 2] conveniently summed 

up by (4.14). The proof of Proposition 4.2 is based on a dynamical reformulation of DId
n, 

which in turn relies on the following theorem of Hajós [15].

Theorem 4.2 (Hajós). Let k ∈ N and L ⊂ Rk be a lattice of covolume 1. Then

L ∩ Πk = ∅ ⇐⇒ L ∈
⋃

w∈Symk

w−1UkwZk,
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where Πk := (−1, 1)k denotes the open unit cube in Rk, Symk represents the Weyl group 

and Uk ⊂ SLk(R) denotes the subgroup of upper triangular matrices with all diagonal 

entries equal to 1.

By Dani’s correspondence, x ∈ DIn if and only if the ω-limit set

{
Λ ∈ Xn+1 : there exists (tk)k≥0 with lim

k→∞
tk = ∞ and gtk

Λx = Λ

}

does not intersect the set

E := {Λ ∈ Xn+1 : Λ ∩ Πn+1 = ∅}.

It follows from Theorem 4.2, that

E =
⋃

w∈Symn+1

w−1UwZn+1.

Let φd be the map given by (4.20), then, in view of Lemma 4.5, x is d-Dirichlet improvable 

if and only if the ω-limit set

{
Λ ∈ XNd

: there exists (tk)k≥0 with lim
k→∞

tk = ∞ and φd(gtk
Λx) = Λ

}

does not intersect the set

Ed :=
⋃

w∈SymNd

w−1UNd
wZNd .

Thus, x is d-Dirichlet improvable if and only if the ω-limit set

{
Λ ∈ Xn+1 : there exists (tk)k≥0 with lim

k→∞
tk = ∞ and gtk

Λx = Λ

}

does not intersect the set

E′
d := Xn+1 ∩ φ−1

d (Ed).

The upshot of the above is that Proposition 4.2 is a direct consequence of the following 

statement.

Lemma 4.6. Let n ∈ N and d be an integer satisfying 0 ≤ d ≤ n − 1. Then, E = E′
d.

We now proceed with the proof of Lemma 4.6. This will be done in two steps.
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• Step 1: E ⊆ E′
d. This inclusion is straightforward. Indeed, for any w ∈ Symn+1, we 

have that

ρd(w−1Un+1w) ⊆ ψd(w)−1UNd
ψd(w),

where ρd is given by (4.19) and ψd is the natural map from Symn+1 to SymNd
. Hence, 

it follows that E ⊆ E′
d.

• Step 2: E ⊇ E′
d. To prove this inclusion, it suffices to show that for any w ∈ SymNd

, 

there exists w1 ∈ Symn+1 such that

Xn+1 ∩ φ−1
d

(
w−1UNd

wZNd
)

⊆ w−1
1 Uw1Zn+1. (4.21)

Without loss of generality, let us fix w ∈ SymNd
and write

H1 := φd(SLn+1(R)) and H2 := w−1UNd
w. (4.22)

The proof of the inclusion (4.21) will make use of the following technical lemma.

Lemma 4.7. Let Y = H1H2 ⊂ SLNd
(R). Then Y is a variety defined over Z and

Y (Z) = H1(Z)H2(Z).

For the moment, let us assume the truth of the lemma and continue with the proof 

of Step 2. With this in mind, let Γ = SLNd
(Z) and note that

H1Γ ∩ H2Γ =
⋃

γ∈Γ

(H1γ ∩ H2)Γ.

Now if H1γ ∩ H2 �= ∅, then γ ∈ Y (Z) and in view of Lemma 4.7, it follows that 

γ ∈ H1(Z)H2(Z). Thus,

(H1γ ∩ H2)Γ = (H1 ∩ H2)Γ,

and so

H1Γ ∩ H2Γ = (H1 ∩ H2)Γ. (4.23)

Next, let T be the diagonal subgroup of SLn+1(R) with positive entries. Then D :=

φd(T ) is also a connected diagonal subgroup of SLNd
(R). Note that both H1 and H2 are 

invariant under the conjugation of D and so it follows that their intersection H1 ∩ H2

is also invariant under the conjugation of D. Note that the group H1 ∩ H2 is clearly 

unipotent, thus connected. Hence D(H1 ∩ H2) is a connected solvable subgroup of H1. 

Then there exists a Borel subgroup B such that D(H1 ∩ H2) ⊂ B. Thus, there exists 

w1 ∈ Symn+1 such that
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φ−1
d (H1 ∩ H2) ⊂ w−1

1 Uw1. (4.24)

Now (4.21) follows from (4.23) and (4.24). This completes the proof of Step 2 and thereby 

the proof of Lemma 4.6 modulo Lemma 4.7. �

Remark 4.2. With n and d as in Lemma 4.6, it is relatively straightforward to prove the 

weaker statement that

DId
n = DIn−1−d

n (4.25)

without appealing to Lemma 4.7. Note that when d = 0 or n − 1, this implies the 

Davenport & Schmidt result summed up by (4.14). To prove (4.2), let τd : XNd
→

XNn−d−1
be the isomorphism induced by the Hodge star operator, which is a natural 

isomorphism between ∧d+1(Rn+1) and ∧n−d(Rn+1), see §4.2.1 for its definition. It is 

easily verified that τd(Ed) = En−d−1 and τd ◦ φd = φn−d−1. Hence, it follows that 

E′
d = E′

n−d−1 which in turn this implies the desired result.

The proof of Lemma 4.7 will make use of tools from non-abelian cohomology. For a 

general reference on non-abelian cohomology, we refer the reader to Giraud’s book [14]. 

On considering the action of H := H1 × H2 on Y defined by (h1, h2) × y �→ ψd(h1)yh−1
2

we can identify Y with the quotient space H/(H1 ∩ H2). It follows that Lemma 4.7

is equivalent to saying that Y (Z) consists of a single orbit under the action of H(Z). 

The space of orbits Y (Z)/H(Z) is controlled by the non-abelian cohomology of Z with 

coefficients in H1 ∩H2. The non-abelian cohomology that we are going to use is the fppf-

cohomology and we will always work over Spec(Z) – the spectrum of the commutative 

ring Z of integers. For any group scheme H defined over Spec(Z), we let

H1(Z, H) := H1
fppf (Spec(Z), H)

denote the fppf-cohomology of Spec(Z) with coefficients in H. With this in mind, are 

now in the position to prove the lemma.

Proof of Lemma 4.7. For the sake of simplicity, we let G := SLNd
and H1 := SLn+1. 

Let T ⊂ H1 be the subgroup scheme of diagonal matrices. Let H2 be the group scheme 

over Z given by H2 endowed with their Z-structure, where H2 is given by (4.22). Let Y

be the scheme defined over Z given by Y endowed with its Z-structure, where Y is given 

in Lemma 4.7. It is clear that, all these schemes are flat (indeed smooth) over Z.

There is an action of H := H1 × H2 on Y such that for any ring R, we have

H(R) × Y(R) → Y(R), (h1, h2) × y �→ φd(h1)yh−1
2 .

Let H0 = H1 ×G H2; that is, for any ring R
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H0(R) = H1(R) ×G(R) H2(R) .

It follows that H0 is a unipotent subgroup scheme of H1 smooth over Z and is normalized 

by T. Consequently, H0 is split over Z. In particular, there is a sequence of smooth 

unipotent Z-group schemes

{1} = Hdim H0
0 ⊂ Hdim H0−1

0 ⊂ · · · ⊂ H2
0 ⊂ H1

0 = H0

such that Hi+1
0 is normal in Hi

0 and Hi
0/Hi+1

0
∼= Ga. Now observe that H1(Z, Ga) = {1}. 

Then on arguing by induction on the dimension and making use of [14, Proposition 3.3.1], 

it follows that

H1(Z, H0) = {1}. (4.26)

Furthermore, it is easily checked that Y is isomorphism to the quotient H/H0. In view 

of [14, Corollary 3.2.3], there is an injection

Y(Z)/H(Z) →֒ H1(Z, H0),

where Y(Z)/H(Z) denotes the orbit space of Y(Z) under the action of H(Z). It follows 

from (4.26) that Y(Z) consists of a single orbit under the action of H(Z). This completes 

the proof of Lemma 4.7. �

4.2. The geometric approach

In this section we explore a geometric approach to defining d-Dirichlet improvable 

sets. The approach taken is in line with that of §2.2 in which the d-badly approximable 

and d-singular sets are expressed via successive minima; namely via (2.11) and (2.12).

4.2.1. An optimal Dirichlet type theorem via successive minima

Fix n ∈ N and x ∈ Rn. Then, as in §2.1, for each i = 1, . . . , n + 1 and t > 0, let 

λx,i(t) := λi

(
Zn+1, Cx(et)

)
be the i-th successive minima of the convex body Cx(et)

given by (2.1) with respect to the lattice Zn+1. In turn, let

Lx,i(t) := log λx,i(t) (4.27)

be the natural logarithm of λx,i(t). It follows, via Minkowski’s second convex body 

theorem, that

et

(n + 1)!
≤

n+1∏

i=1

λx,i(t) ≤ et (4.28)

or equivalently
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t − log(n + 1)! ≤
n+1∑

i=1

Lx,i(t) ≤ t .

Now, (4.28) together with the fact that λx,1(t) ≤ λx,2(t) ≤ · · · ≤ λx,n+1(t) gives rise to 

the following statement.

Theorem 4.3. Let n ∈ N and d be an integer satisfying 0 ≤ d ≤ n − 1. Then for any 

x ∈ Rn and t > 0

n−d∏

i=1

λx,i

(
t) ≤ e

(n−d)t

n+1 , (4.29)

or equivalently

n−d∑

i=1

Lx,i(t) ≤ (n − d)t

n + 1
.

Theorem 4.3 can be viewed as an optimal Dirichlet type theorem for approximating 

points x ∈ Rn by d-dimensional rational subspaces. In the dual case (d = n − 1) when 

we approximate by hyperplanes, this realisation is relatively straightforward to see. For 

arbitrary d ∈ {0, . . . , n − 1}, the following statement provides the link. Recall that, by 

the definition of successive minima, given x and t > 0, there exist linearly independent 

vectors v1, . . . , vn+1 ∈ Zn+1, depending on x and t, such that

vi ∈ λx,i(t) Cx(et) (1 ≤ i ≤ n + 1) . (4.30)

As we shall soon see, the vectors play a key role in detecting the sought after d-

dimensional rational subspaces. As usual, given x ∈ Rn, we let x′ := (x, 1) ∈ Rn+1

and we also let

‖x‖1 := |x1| + · · · + |xn| .

Lemma 4.8. Let n ∈ N and d be an integer satisfying 0 ≤ d ≤ n −1. Then for any x ∈ Rn

and t > 0, let v1, . . . , vn+1 ∈ Zn+1 be as in (4.30). In turn, let u1, . . . , ud+1 be any basis 

of V (v1, . . . , vn−d)⊥ ∩ Zn+1, where V (v1, . . . , vn−d)⊥ is the linear subspace of Rn+1

orthogonal to the vectors v1, . . . , vn−d. Finally, let X := u1 ∧ · · · ∧ ud+1 ∈ ∧d+1
Zn+1. 

Then

‖x′ ∧ X‖ ≤ (n − d)!(1 + ‖x‖1)

(
n−d∏

i=1

λx,i(t)

)
e−t (4.31)

and

0 < ‖X‖ ≤ (n − d)!(1 + ‖x‖1)

(
n−d∏

i=1

λx,i(t)

)
. (4.32)
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To prove the lemma, it will be useful to make use of the notion of the Hodge dual – 

the image of a multivector under the Hodge star operator. In relation to multivectors 

over Rn+1, the Hodge star operator relates any basis a1, . . . , aℓ of a vector subspace of 

Rn+1 to a basis b1, . . . , bn+1−ℓ of the orthogonal subspace. Naturally, we will use the 

symbol ⊥ to denote the Hodge dual within the context of multivectors over Rn+1. In 

particular,

a1 ∧ · · · ∧ aℓ = ± (b1 ∧ · · · ∧ bn+1−ℓ)
⊥

provided the basis vectors under consideration span parallelepipeds of the same volume. 

We refer the reader to [4, §3] for the definition of the Hodge star operator and its useful 

properties that we shall exploit. In particular, we have that for any indices 1 ≤ i1 <

· · · < iℓ ≤ n + 1

(ei1
∧ · · · ∧ eiℓ

)⊥ = ±ej1
∧ · · · ∧ ejn+1−ℓ

, (4.33)

where {j1, . . . , jn+1−ℓ} = {1, . . . , n + 1} � {i1, . . . , iℓ}, and so the Hodge star operator 

preserves both Euclidean and maximum norms (in the standard basis).

Proof. To start with, simply note that X = ±(v1 ∧ · · · ∧ vn−d)⊥ ∈
∧d+1

Zn+1 and so 

X is decomposable and non-zero. Without loss of generality, we assume that the sign is 

positive. By the properties of the Hodge star operator, see [4, Eq (3.8)&(3.9)], we have 

that

(X ∧ x′)⊥ = ((v1 ∧ · · · ∧ vn−d)⊥ ∧ x′)⊥ = (−1)(d+1)(n−d)(v1 ∧ · · · ∧ vn−d) · x′ , (4.34)

where (v1 ∧ · · · ∧ vn−d) · x′ ∈ ∧n−d−1
Rn+1 is the interior product of multivectors under 

consideration. By [4, Eq (3.6)], the ej1
∧ · · · ∧ ejn−d−1

coordinate of (v1 ∧ · · · ∧ vn−d) · x′

is equal to

(
(v1 ∧ · · · ∧ vn−d) · x′

)
· (ej1

∧ · · · ∧ ejn−d−1
) = (v1 ∧ · · · ∧ vn−d) · (x′ ∧ ej1

∧ · · · ∧ ejn−d−1
) .

By Laplace’s identity, see [4, Eq (3.3)], this coordinate is equal to

det

⎛
⎜⎝

v1 · x′ v1 · ej1
. . . v1 · ejn−d−1

...
...

. . .
...

vn−d · x′ vn−d · ej1
. . . vn−d · ejn−d−1

⎞
⎟⎠ . (4.35)

By (4.30), we have that |vi · x′| ≤ λx,i(t)e
−t and |vi · ej | ≤ λx,i(t) for 1 ≤ j ≤ n. In turn, 

since en+1 = x′ − ∑n
j=1 xjej , we have that

|vi · en+1| =

∣∣∣∣∣∣
vi · x′ −

n∑

j=1

xjvi · ej

∣∣∣∣∣∣
≤ λx,i(t)e

−t + λx,i(t)‖x‖1 ≤ λx,i(t) (1 + ‖x‖1) .
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Hence, by (4.35), we get that

‖(v1 ∧ · · · ∧ vn−d) · x′‖ ≤ (n − d)!(1 + ‖x‖1)

(
n−d∏

i=1

λx,i(t)

)
e−t .

By (4.33), up to sign and order, the Hodge dual of a multivector has the same coordinates 

in the standard basis. Therefore, by (4.34) it follows that

‖x′ ∧ X‖ = ‖(v1 ∧ · · · ∧ vn−d) · x′‖ ≤ (n − d)!(1 + ‖x‖1)

(
n−d∏

i=1

λx,i(t)

)
e−t .

This establishes (4.31). Next, calculating the ej1
∧· · ·∧ejn−d

coordinate of v1 ∧· · ·∧vn−d

gives

(v1 ∧· · ·∧vn−d) ·(ej1
∧· · ·∧ejn−d

) . = det

⎛
⎜⎝

v1 · ej1
. . . v1 · ejn−d

...
. . .

...

vn−d · ej1
. . . vn−d · ejn−d

⎞
⎟⎠ . (4.36)

By the already established bounds on |vi ·ej |, the absolute value of (4.36) is bounded by

(n − d)!(1 + ‖x‖1)

(
n−d∏

i=1

λx,i(t)

)
.

This implies (4.32) and thereby completes the proof of the lemma. �

Given x ∈ Rn, t > 0 and i ∈ {1, . . . , n +1}, it will be convenient to define the following 

‘normalised’ value of the i-th successive minima:

λ∗
x,i(t) := e− t

n+1 λx,i(t) . (4.37)

Then, (4.29) becomes

n−d∏

i=1

λ∗
i

(
t, x) ≤ 1

and (4.31) and (4.32) respectively can be rewritten as

‖x′ ∧ X‖ ≤ (n − d)!(1 + ‖x‖1)

(
n−d∏

i=1

λ∗
x,i(t)

)

︸ ︷︷ ︸
≤1

e−
(d+1)t

n+1 , (4.38)
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‖X‖ ≤ (n − d)!(1 + ‖x‖1)

(
n−d∏

i=1

λ∗
x,i(t)

)

︸ ︷︷ ︸
≤1

e
(n−d)t

n+1 . (4.39)

Now, given N ∈ N there exists t ∈ R such that

(n − d)!(1 + ‖x‖1)e
(n−d)t

n+1 = N . (4.40)

Clearly, if N is sufficiently large we can guarantee that t > 0 and the following statement 

is a direct consequence of Lemma 4.8.

Proposition 4.3. Let n ∈ N and d be an integer satisfying 0 ≤ d ≤ n − 1. Then for any 

x ∈ Rn and any

N > (n − d)!(1 + ‖x‖1) ,

the decomposable vector X ∈
∧d+1

Zn+1 � {0} associated with Lemma 4.8 with t given 

by (4.40), satisfies

‖x′ ∧ X‖ ≤ c(n, d, x) N−ωd and ‖X‖ ≤ N ,

where

c(n, d, x) :=
(

(n − d)!(1 + ‖x‖1)
) n+1

n−d

.

Clearly, the proposition is a version of Lemma 4.3 obtained via the algebraic approach 

of §4.1. We have already seen that the latter leads to Theorem 1.3 – a Dirichlet type 

statement concerning the approximation of points x ∈ Rn by d-dimensional rational 

subspaces. The upshot of this is that Theorem 4.3, which implies Proposition 4.3 can 

thus be viewed as an optimal Dirichlet type theorem for approximating points by rational 

subspaces.

4.2.2. Bad, singular and Dirichlet improvable in light of Theorem 4.3

For any given x ∈ Rn, observe that during the course of establishing Proposition 4.3

we only used the trivial fact that 
∏n−d

i=1 λ∗
x,i(t) ≤ 1. Clearly if the product under con-

sideration gets significantly smaller than 1, then we will obtain a stronger version of 

Proposition 4.3. Specifically, if for some ε > 0

n−d∏

i=1

λ∗
x,i(t) ≤ ε (4.41)

for all sufficiently large t, then for any sufficiently large N there exists a decomposable 

X ∈ ∧d+1Zn+1 such that
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‖x′ ∧ X‖ ≤ c(n, d, x) ε
n+1
n−d N−ωd and 0 < ‖X‖ ≤ N .

This is obtained in exactly the same way as Proposition 4.3 is obtained from Theorem 4.3

but now we are able to insert the factor ε into the left hand side of (4.40). Now observe 

that in view of (4.27) and (4.37), inequality (4.41) is equivalent to the statement that

(n − d)t

n + 1
−

n−d∑

i=1

Lx,i(t) ≥ log(1/ε) =: δ

which is precisely inequality (2.12). We have already seen that the validity of (2.12)

for arbitrarily large δ for all sufficiently large t is equivalent to x being d-singular (see 

Lemma 4.2). As a consequence, we have that:

• x ∈ Singd
n if and only if for any ε > 0 there exists a constant t0 = t0(ε) > 0 such 

that (4.41) holds for all t ≥ t0.

Now suppose that for some ε > 0

n−d∏

i=1

λ∗
x,i(t) ≥ ε (4.42)

for all sufficiently large t. This is easily seen to be equivalent to the statement that

(n − d)t

n + 1
−

n−d∑

i=1

Lx,i(t) ≤ log(1/ε) =: δ

which is precisely inequality (2.11). This together with Lemma 4.2 implies that

• x ∈ Badd
n if and only if there exists ε > 0 such that (4.42) holds for all t > t0(x, ε)

sufficiently large.

Remark 4.3. Note that the above discussion together with Proposition 1.1 and 

Lemma 4.4, implies that the d-singular sets (respectively the d-badly approximable 

sets) defined via the algebraic approach of §4.1 or the geometric approach of this section 

coincide with the set Singn (respectively Badn); that is, the set of singular (respectively, 

badly approximable) points in Rn defined via either the classical simultaneous or dual 

form of Dirichlet’s Theorem.

The above observations naturally lead us to the following notion of d-Dirichlet im-

provable points in Rn.

Definition 4.2. Let n ∈ N and d be an integer satisfying 0 ≤ d ≤ n − 1. Then for 

0 < ε < 1, let
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• D̂I
d

n(ε) to be the set of x ∈ Rn, such that inequality (4.41), or equivalently

(n − d)t

n + 1
−

n−d∑

i=1

Lx,i(t) ≥ log(1/ε), (4.43)

holds for all t > t0(x, ε) sufficiently large.

Moreover, let

D̂I
d

n :=
⋃

0<ε<1

D̂I
d

n(ε) .

Note that by definition, x ∈ D̂I
d

n if and only if there exists ε ∈ (0, 1) such that (4.41), 

or equivalently (4.43), holds for all sufficiently large t. The following result shows that 

these sets are in fact all equivalent and coincide with the set DIn; that is, the set of 

Dirichlet improvable points in Rn defined via either the classical simultaneous or dual 

form of Dirichlet’s Theorem (both forms give rise to the same set). In turn, this together 

with Proposition 4.2 implies that the set of d-Dirichlet improvable points defined via the 

algebraic approach (cf. Definition 4.1) and geometric approach also coincide.

Lemma 4.9.

(i) For any ε ∈ (0, 1), we have that

D̂I
n−1

n (ε) = DIn(εn+1) . (4.44)

Therefore, D̂I
n−1

n = DIn.

(ii) For any ε ∈ (0, 1) we have that

D̂I
d

n(ε) ⊂ D̂I
d+1

n

(
ε

n−d−1
n−d

)
if 0 ≤ d ≤ n − 2 (4.45)

and

D̂I
d

n(ε) ⊂ D̂I
d−1

n

(
ε

d
d+1

)
if 1 ≤ d ≤ n − 1 . (4.46)

Therefore, the sets D̂I
d

n are the same for all d ∈ {0, 1, . . . , n − 1}.

Proof. Part (i) follows immediately on comparing (4.43) in Definition 4.2 and (2.15)

in Lemma 2.1. Regarding Part (ii), first suppose that ε ∈ (0, 1), 0 ≤ d ≤ n − 2 and 

x ∈ D̂I
d

n(ε). Then, by definition, for all sufficiently large t we have (4.41). Now on 

raising (4.41) to the power n − d − 1 and using the inequalities λ∗
x,1(t) ≤ · · · ≤ λ∗

x,n+1(t)

we obtain that
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εn−d−1 ≥
(
λ∗

x,1(t) · · · λ∗
x,n−d(t)

)n−d−1 ≥
(
λ∗

x,1(t) · · · λ∗
x,n−d−1(t)

)n−d
.

Hence

λ∗
x,1(t) · · · λ∗

x,n−d−1(t) ≤ ε
n−d−1

n−d

and we conclude that x ∈ D̂I
d+1

n (ε
n−d−1

n−d ). This proves the ‘going-up’ inclusion (4.45).

To prove the ‘going-down’ inclusion (4.46), let ε ∈ (0, 1) and 1 ≤ d ≤ n − 1 and 

x ∈ D̂I
d

n(ε). Then, for all sufficiently large t inequality (4.41) holds and since λ∗
x,1(t) ≤

· · · ≤ λ∗
x,n+1(t), it follows via Minkowski’s second convex body theorem that

λ∗
x,n−d+1(t)d+1 ≤ λ∗

x,n−d+1(t) · · · λ∗
x,n+1(t) ≤ 1

λ∗
x,1(t) · · · λ∗

x,n−d(t)
.

Hence, on using (4.41) we find that

n−d+1∏

i=1

λ∗
x,i(t) ≤

(
n−d∏

i=1

λ∗
x,i(t)

)1− 1
d+1

≤ ε
d

d+1 .

Since this holds for all sufficiently large t, we conclude that x ∈ D̂I
d−1

n

(
ε

d
d+1

)
and this 

thereby establishes (4.46). The ‘therefore’ statements in both parts of the lemma follow 

on taking the union over all ε ∈ (0, 1) in (4.44), (4.45) and (4.46). �

4.3. Final remarks: linear forms and weighted approximation

The geometric approach of §4.2 can be readily adapted to extend the definition of 

badly, singular and Dirichlet improvable points to systems of linear forms and thereby 

consider the “matrix” analogue of the main problem considered in this paper. We will 

now develop/describe this “matrix” theory within the more general setup of weighted

Diophantine approximation. The parametric geometry of numbers, the underlying tool 

exploited in proving our main result, for weighted approximation has recently been initi-

ated by Schmidt [27], albeit it remains in its ‘infancy’ to cope with the weighted analogue 

of the main question considered in this paper.

Let m, n ∈ N and fix a pair of weights r = (r1, . . . , rn) ∈ Rn
≥0 and s = (s1, . . . , sm) ∈

Rm
≥0 satisfying

r1 + · · · + rn = 1 and s1 + · · · + sm = 1 .

For t > 0, let

gt = diag{e−r1t, . . . , e−rnt, es1t, . . . , esmt} and uX =

(
In 0
X Im

)
,
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where X is an m × n real matrix; i.e. X ∈ Mm×n(R). For each i = 1, . . . , m + n and 

t > 0, let

λ∗
X,i(t) := λi

(
gtuXZm+n, B1

)

denote the i-th successive minima of the convex body B1 = [−1, 1]m+n with respect to 

the lattice gtuXZm+n. The following provides a natural generalisation of the Diophantine 

sets Badd
n, Singd

n and DId
n to the weighted matrix setup.

Definition 4.3. Let X ∈ Mm×n(R) and d be an integer satisfying 0 ≤ d ≤ m + n − 2. 

Then for any pair of weights (r, s) ∈ Rn × Rm, we say that

X ∈ Badd(r, s) ⇐⇒ lim inf
t→∞

∏n+m−1−d
i=1 λ∗

X,i(t) > 0;

X ∈ Singd(r, s) ⇐⇒ lim
t→∞

∏n+m−1−d
i=1 λ∗

X,i(t) = 0;

X ∈ DId(r, s) ⇐⇒ lim sup
t→∞

∏n+m−1−d
i=1 λ∗

X,i(t) < 1.

It is easily seen that up to the linear change of the variable

t �→ n

n + 1
t ,

the definition of λ∗
X,i(t) for matrices is consistent with that of λ∗

x,i(t) for vectors x ∈ Rn

given by (4.37). So if we put m = 1 and r1 = . . . = rn = 1/n, we immediately see, in 

view of the discussion in §4.2.2, that sets Badd(r, s), Singd(r, s) and DId(r, s) coincide 

with Badd
n, Singd

n and DId
n respectively. Moreover, on using the same techniques as in 

the proof of Lemma 4.9, it is relatively straightforward to show that for any fixed pair 

of weights (r, s) the badly approximable sets Badd(r, s) are all the same; the singular 

sets Singd(r, s) are all the same, and the Dirichlet improvable sets DId(r, s) are all the 

same. It is therefore natural to drop the dependence on ‘d’ from the defining notation. 

With this in mind, the following is the natural “matrix” extension of the main question 

considered in this paper.

Problem 4.1. Let m, n ∈ N such that mn > 1. Prove that for any pair of weights (r, s) ∈
Rn × Rm,

FS(r, s) := DI(r, s) �
(
Bad(r, s) ∪ Sing(r, s)

)
�= ∅ .

We suspect that a lot more is true and the set under consideration has full dimension; 

that is to say that dim FS(r, s) = nm. This is in line with the content of Problem 3.1

appearing in §3.4 of the main body.

Remark 4.4. Potentially, the non-weighted case of Problem 4.1 can be resolved using the 

generalisation of Theorem 2.1 to systems of linear forms due to Das, Fishman, Simmons 
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and Urbański [10, Theorem 5.2]. However, there is currently a natural barrier in using 

their generalisation for this purpose. The point is that if we apply [10, Theorem 5.2], 

then the analogue of the constant appearing in the right hand side of (2.5) becomes 

dependent on the matrix X under consideration. The upshot of this is that we are not 

able to simply implement the machinery used to address Problem 1.1 in order to deal 

with the analogous problem for systems of linear forms.
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