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SUMMARY

Surface waves are a particular type of seismic wave that propagate around the surface of the

Earth, but which oscillate over depth ranges beneath the surface that depend on their frequency

of oscillation. This causes them to travel with a speed that depends on their frequency, a prop-

erty called dispersion. Estimating surface wave dispersion is of interest for many geophysi-

cal applications using both active and passive seismic sources, not least because the speed-

frequency relationship can be used to infer the subsurface velocity structure at depth beneath

the surface. We present an inversion scheme that exploits spatial and temporal relationships

in the scalar Helmholtz (wave) equation to estimate dispersion relations of the ealstic surface

wave data in both active and passive surveys, while also reconstructing the wavefield contin-

uously in space (i.e., between the receivers at which the wavefield was recorded). We verify

the retrieved dispersive phase velocity by comparing the results to dispersion analysis in the

frequency-slowness domain, and to the local calculation of dispersion using modal analysis.

Synthetic elastic examples demonstrate the method under a variety of recording scenarios. The
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results show that despite the scalar approximation made to represent these intrinsically elastic

waves, the proposed method reconstructs both the wavefield and the phase dispersion structure

even in the case of strong aliasing and irregular sampling.

Key words: Inverse theory; Surface waves and free oscillations; Seismic noise; Theoretical

seismology; Computational seismology.

1 INTRODUCTION

Geophysical methods are often used to infer Earth’s internal structure. In seismology this usually

involves the analysis of two main types of seismic energy propagation: body and surface waves.

Body waves consist of energy that travels through the Earth’s interior while surface waves are

attributed to the energy that is trapped near the Earth’s surface. Surface waves are measured in

active surveys (Peiming et al. 2016) as well as passive surveys (Shapiro et al. 2005; Curtis et al.

2006; De Ridder & Dellinger 2011) and are used for different applications such as inferring the

structure of Earth’s crust and mantle (Trampert & Woodhouse 1995; Curtis et al. 1998) or for near-

surface imaging and engineering (Jones 1958; Socco et al. 2010).

Surface waves travel with a speed that depends on frequency, a property called dispersion.

Given the dispersion relation of a medium, it is possible to estimate its subsurface velocity struc-

ture (Xia et al. 1999). The commonly used methods to estimate dispersion of surface waves include

frequency wavenumber (f-k) or frequecy slowness (f-p) analysis (McMechan & Yedlin 1981) us-

ing long seismic arrays. These methods provide an averaged dispersion curve across a long ar-

ray, and make the implicit assumption of a laterally invariant (i.e., horizontally layered) medium

below the array (Foti et al. 2000). Alternatively, path-averaged dispersion may be estimated be-

tween a point-source and a single receiver by analysing the arrival time of different wave fre-

quencies and dividing by the estimated source-receiver distance (Trampert & Woodhouse 1995;

van Heijst & Woodhouse 1997). Either method therefore provides spatially averaged rather than

local dispersion at each geographical location. Surface wave tomography is then used to spatially

localize dispersion. This involves picking many dispersion relations (usually called dispersion

curves) from different f-k records and inverting their spatial averaging in order to estimate a map
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of surface wave dispersion at each location using phase velocity (Galetti et al. 2016; Nicolson et al.

2012) or group velocity (Levshin et al. 2018).

Seismic data are usually measured at discrete spatial locations. It is often also of interest to

know the wavefield between recording locations for a variety of signal processing and imaging

techniques, in which case wavefield interpolation or reconstruction is necessary. A variety of meth-

ods exist to reconstruct a wavefield such as frequency-space (f-x) interpolation (Spitz 1991), wave

equation based interpolation (Ronen 1987) and Fourier reconstruction (Zwartjes & Sacchi 2006),

some of which can be used for aliased and non-uniformly recorded data. Zhan et al. (2018) pre-

sented a wavefield compressive sensing method for reconstructing the wavefield of the surface

waves. They showed that the method is capable of yielding better results in velocity estimation

methods such as Helmholtz tomography or wavefield gradiometry. The formulation was based on

a plane wave representation of surface waves, and was demonstrated to enhance velocity estima-

tion using methods that require spatial derivatives of the wavefield to be estimated across irregular

arrays of receivers. In another approach, Lehujeur & Chevrot (2020) proposed to extract and iso-

late coherent wave fronts that travel across seismic arrays using an iterative matched filtering

method and then deriving phase velocities using eikonal tomography.

Gradiometry is another approach to extract useful information from surface waves in active or

ambient seismic records. The term gradiometry refers to the explicit use of wavefield gradients in

space and time to estimate properties of the wavefield or the medium. Curtis & Robertsson (2002)

first proposed to measure first and second order spatial derivatives of the recorded wavefield in or-

der to invert the equation of motion for properties of the medium. To estimate vertical derivatives,

they used volumetric recordings (where one of the receivers is buried beneath the surface) and

obtain gradient estimates using finite difference methods. They used these derivatives to invert the

elastic wave equation for the effective near surface P and S velocities, a method they called wave

equation inversion. Their derivation holds for any incoming wavefield, including ambient noise.

Langston (2007a) used the first order spatial and temporal gradients of a plane-wave arrival to es-

timate the horizontal wave slowness. This method was extended for 2-dimensional surveys, which

provided extra information about azimuthal radiation patterns (Langston 2007b). Both methods



4 A. Shaiban, S.A.L. de Ridder, A. Curtis

of Langston (2007a,b) are based on the assumption that there is a single propagating wave, so

the formulation does not hold for interfering wave modes such as are found in wavefields con-

sisting of ambient seismic noise. Edme & Yuan (2016) applied the gradiometry method described

by (Langston 2007a,b) to estimate dispersion curves for surface waves using ambient noise data.

They introduced statistical methods to detect and avoid overlapping waves in an attempt to satisfy

the assumption of noninterference.

De Ridder & Biondi (2015) proposed to invert the scalar wave equation to estimate phase ve-

locities of surface waves using ambient noise data recorded across the Ekofisk field in the Nor-

wegian North Sea. Their formulation is based on a single frequency of propagation. To avoid

dispersion related effects, they first apply a narrow bandpass around each desired frequency. Then,

the analysis is repeated for different frequencies to estimate the dispersion curves. Unlike seis-

mic interferometry, their method does not require long recording times but assumes that there is a

single mode of surface wave propagation (i.e. that the fundamental mode dominates over the am-

plitude of higher modes). This method was extended to include both isotropic and anisotropic me-

dia by De Ridder & Curtis (2017) using an elastodynamic wave equation with anisotropic phase

velocity. The results of De Ridder & Biondi (2015) and De Ridder & Curtis (2017) matched re-

sults obtained using conventional cross-correlation tomography studies across the same field, thus

verifying the methodology.

Full waveform inversion (FWI) is an optimization technique that calculates synthetic wave-

forms from a given subsurface model and then updates the model to minimize the difference be-

tween these synthetic waveforms and those observed. The update of the subsurface model is done

by projecting the residual difference between the waveforms into the gradient that defines the best

direction to update the model (Tarantola 1984). Most of the current formulations of FWI involve

estimating both forward and adjoint wavefields.

van Leeuwen & Herrmann (2013) proposed a partial differential equation (PDE) constrained

method that enlarges the search space by estimating the wavefield everywhere in the model while

inverting for the medium parameters which may mitigate the issue of converging to local rather

than global optima in classic FWI formulations. This is done by introducing a penalty term in
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the objective function to make the wavefield satisfy the wave equation. The optimisation prob-

lem composed of two coupled optimisation objectives to find (i) a wavefield satisfying the wave

equation PDE, and (ii) a structural model governing the PDE such that the wavefield matches

observations. Zhang & Alkhalifah (2019) proposed to use FWI to maximize the similarity of the

phase velocity spectrum (f-v) between the observed and predicted waveforms of all Rayleigh-wave.

Their methodology allowed dispersion curves of all Rayleigh-wave modes to be used without the

need for manual picking to invert for S-wave velocity structure. Recent developments in machine

learning employs training neural networks as a proxy process for tomography posed as a PDE

constrained optimisation process (bin Waheed et al. 2021).

de Ridder & Maddison (2018) used a similar method to the PDE constrained inversion for a

wavefield inversion of ambient seismic noise. One key difference is that the inversion for ambient

noise is formulated with unknown sources by introducing a boundary condition to the inversion

algorithm where sources are known to be negligible inside a sub domain. The synthetic examples

showed that the inversion scheme retrieved a good velocity model and reconstructed a reasonable

estimate of the ambient noise wavefield. Effective source functions are projected to the boundaries

of the domain. However, the formulations that they used were limited to the time domain data.

In this paper, we extend the approach of de Ridder & Maddison (2018) to the case where we

use the Helmholtz equation in the frequency domain with a frequency dependent velocity to ap-

proximate the horizontal propagation of elastic surface waves. We perform an iterative two-step

inversion which in each iteration first reconstructs the wavefield that best matches our observations

using an estimate for the phase velocity model, after which we update the phase velocity model

using a local wave equation inversion of the wavefield.

We test the proposed method using an example representing an elastodynamic wavefield (in-

cluding surface waves) generated by a single active source, and an example of ambient noise

(dominated by surface waves) excited by many seismic sources. To demonstrate the effectiveness

of our method, we compare the dispersion curves from our algorithm to the ones estimated us-

ing the f-p method. Unlike the f-p method which assumes lateral homogeneity, the results of our

method recovers both laterally heterogeneous velocities and their corresponding wavefields.
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2 METHODOLOGY

The Helmholtz equation with frequency dependent velocity describes wave motion in a dispersive

medium. It has been used to describe the far-field motion of surface waves in an elastic medium

(Aki & Richards 2002) and underlies many methods that estimate surface wave phase velocity

maps (Aki 1957; Wielandt 1993). The one dimensional form can be written as follows:

c2(x, ω)∂2

x u(x, ω) + ω2 u(x, ω)− s(x, ω) = 0 (1)

where u = u(x, ω) is the scalar pressure or particle displacement field at spatial location x and

angular frequency ω, c = c(x, ω) is the phase velocity and s = s(x, ω) is the source function.

We aim to solve for the wavefield of the surface waves that satisfy equation 1 and to solve for

a velocity model such that the wavefield matches the observation in a joint inversion algorithm.

We refer to our method as full wavefield inversion (FWFI) since we reconstruct the full wavefield

while also estimating medium properties that control the wave phenomena. The match of the

wavefield against a finite number of observations involves a sampling function and norm over a

discrete space. Therefore, the remainder of the paper is more easily expressed after discretising

the wavefield and sources.

The fields, u, s, and medium parameters c are discretised on a finite basis as a regular grid with

spacing ∆x and frequency interval ∆ω. The spatial derivatives are approximated by central finite

differences. Bold terms will now represent discretised quantities over space and frequency (x,ω)

arranged into a 1D array, where x contains the set of locations (the spatial basis) and ω contains

the set of frequencies (the frquency basis) on which the field u is defined. For simplicity we define

m = c
2. The spatial derivative operator (acting on each frequency) can now be arranged into a

matrix L, acting as a matrix-vector operator on the field u. The matrix-vector system representing

the discretised version of equation1 can be expressed in two different linear forms:

diag{m}Lu+ diag{ω2}u− s = 0 (2)

and

diag{Lu}m+ diag{ω2}u− s = 0 (3)

where diag{m} is a square matrix with m on the diagonal and zero elsewhere. The frequency-
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spatial sampling operator K can likewise be written as a matrix, Kij , which is equal to one for the

spatial locations and frequencies at which we have a wavefield measurement, and it is zero where

we do not. Our discrete sampling of the wavefield therefore results in the following condition on

wavefield u:

Ku = d (4)

where d represents the discrete wavefield measurements.

The general problem we address in this manuscript is to solve for a wavefield satisfying the

governing partial differential equation, while also solving for the medium parameters which govern

that PDE simultaneously, which can be expressed as the following optimisation problem:

J (u,m) = ǫ1

∥

∥

∥
Ku− d

∥

∥

∥

2

2

+ ǫ2

∥

∥

∥
W[diag{m}Lu+ diag{ω2}u− s]

∥

∥

∥

2

2

(5)

where the second term can be written with either of the linear forms of the Helmholtz equation.

The solutions for the wavefield and medium parameters are found as

argmin
u,m J (u,m) → û, m̂ (6)

However, we follow de Ridder & Maddison (2018) and do not solve the wavefield and the phase

velocity simultaneously but perform a two-step iterative procedure: in each iteration, we first es-

timate the full wavefield using the wavefield reconstruction inversion. Second, we directly invert

the wave equation for the phase velocity using the wave equation inversion. The process of our

methodology is illustrated in a sketch in figure 1. Next, we introduce each step separately.

2.1 Wavefield Reconstruction Inversion (WRI)

We measure seismic wavefield at discrete spatial locations, so we introduce wavefield reconstruc-

tion inversion to reconstruct the wavefield between measurement points. The motivation here is

to enhance the estimates of the spatial derivatives of the wavefield required to estimate the phase

velocity model using wave equation inversion. We use the first linear form, equation 2, of the

Helmholtz equation. We introduce a masking operator W in space and frequency which selects

an area where we will reconstruct the wavefield. For this, we use both equations 2 and 4 in ad-

dition to an estimate of the model parameter m = m
′. In the minimization scheme, two objective
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Wavefield Reconstruction 
Inversion

Measured
Wavefield

Reconstructed 
Wavefield

Wave Equation Inversion Inverted Phase 
Velocity

Initial \ Update
Velocity

Iterate

Iterate

Figure 1. A sketch illustrating our proposed method. In the first iteration, the input to the method are the

measured wavefield and an initial velocity model. The iterated, nonlinear wavefield reconstruction inversion

outputs a reconstructed wavefield which is then used as input for the linear wave equation inversion to output

a new estimate of the phase velocity. In subsequent iterations, the newly reconstructed wavefield and the

new estimate of the phase velocity are used as an input for the methodology. We iterate until we have a

convergence.

functions measuring the squared misfit to equations 2 and 4 are weighted by a scaling parameter,

denoted by ǫ1. We seek a least squares solution for the wavefield u by combining equations 2 and 4

and the mask W using the following cost function:

Jwri (u) =
∥

∥

∥
Ku− d

∥

∥

∥

2

2

+ ǫ1

∥

∥

∥
W[diag{m′}Lu+ diag{ω2}u− s]

∥

∥

∥

2

2

(7)

In practise, we find that as long as ǫ1 is chosen small enough to balance the terms such that the data

fitting term is relatively more important than the physics enforcement term, the particular choice

of ǫ1 does not impact the final result but affects the convergence rate of the iterative scheme. We

also select a frequency-spatial domain such that W ∗ s = 0: that is, we assume that the source

function can be neglected within the selected domain for inversion. For a given estimate of the

model parameter m′, we find the optimal wavefield û by the following:

argmin
u
Jwri (u) → û (8)

2.2 Wave Equation Inversion (WEI)

After reconstructing the wavefield, we use WEI (Curtis & Robertsson 2002) to estimate the ve-

locity model. We use the second linear form, equation 3, of the Helmholtz equation to estimate

phase velocities m using the estimated wavefield û from the first step. We introduce a second
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order Tikhonov regularization term to favour solutions with lower model roughness. This is based

on geological prior information that phase velocities tend to change reasonably smoothly across

both space and frequency. This regularization term is expressed by fitting the objective:

Am = [A1 + ǫ2A2]m = 0 (9)

The matrices A1 and A2 represent smoothing in space and frequency, respectively, and contain

second order finite difference stencils over space and frequency points, which calculate roughness

of the model parameters m. ǫ2 is the scaling factor used to control the weight of smoothing in

frequency versus space. Similarly to WRI, we use a mask M in space and frequency for WEI.

The mask M is smaller than the mask W used in WFI so that the finite difference stencils of

WEI do not extend outside of the region selected for WRI. Similarly to the way we reconstruct the

wavefield in WRI, we define the cost function as follows:

Jwei (m) =
∥

∥

∥
M[diag{Lû}m+ diag{ω2}û− s]

∥

∥

∥

2

2

+ ǫ3

∥

∥

∥
Am

∥

∥

∥

2

2

(10)

By analogy to WRI, we choose a masking operator M such that M ∗ s = 0. For a given estimate

of the wavefield û, we find the optimal model parameter by:

argmin
m
Jwei (m) → m̂ (11)

2.3 Full Wavefield Inversion (FWFI)

We iterate between WRI and WEI to find an optimal solution for both m and u upon convergence.

To reconstruct the wavefield in the first iteration, we must have a starting velocity model. This

model estimate will be updated in subsequent iterations. We solve the inversion by employing a

conjugate gradient algorithm for WRI starting from the trivial solution u0 = 0. In subsequent

iterations, we use the reconstructed wavefield of the previous iteration as a starting model in the

conjugate gradient algorithm for WRI. WEI is solved using the same algorithm. The joint inver-

sion in iteration N is thus defined to find optimal model parameter mN , and best reconstructed

wavefield uN , as shown in the following scheme:
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u0,m0 → argmin
u
Jwri (u) → u1 →

→ argmin
m
Jwei (m) → m1 →

→ argmin
u
Jwri (u1) → u2 →

→ . . . → uN →

→ argmin
m
Jwei (m) → mN

(12)

2.4 WEI Regularisation Parameters

There exists a trade-off between the scaling parameters used for the second order Tikhonov regu-

larisation in space and frequency. To choose appropriate parameters we follow a similar approach

to Nicolson et al. (2014) where the normalized root mean squared (rms) data residual, which is a

dimensionless quantity, is computed for different combinations of regularisation parameters. For

our research, we tried different combinations of ǫ2 and ǫ3 and then calculate the root mean square

of the data residual for each combination as follows:

E =

√

√

√

√

1

N

N
∑

i=1

[di − ui]2

σ2

i

(13)

where E is the root mean squares (rms) of the data residual, N is the number of samples, di is the

input data at location i, ui is the reconstructed wavefield at location i, and σi is the covariance of

the input data at location i. In our case, σ is unknown for the input data and we set it equal to 1,

thus assuming that the data units are chosen appropriately given the data accuracy. We expect that

E would be minimum for a reasonable combination of ǫ2 and ǫ3. Following Nicolson et al. (2014),

the approach that we use to choose the right frequency and spatial smoothing for WEI is as follows;

for combinations of ǫ2 and ǫ3 that are too low, the inverted velocity is under-regularized resulting in

clear ringing in the inverted phase velocity so such combinations are discarded. For combinations

that are too large, the inverted velocity would be over-regularized, would not fit the data, and these

are also discarded. For combinations that are in between, we choose the combination for which E

is minimum, but recognize that ǫ2 and ǫ3 are likely to trade off so the choice is always subjective.
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Figure 2. Acquisition geometry and modelling results. a) Is the shear velocity model we used to generate

experimental data. The star shows the seismic source while the triangles show the location of the receiver

array. b) The elastic modelling result in the time domain for the acquisition scenario in (a). The amplitude

is proportional to the source function.

3 ACTIVE SEISMIC EXAMPLE

Fig. 2 illustrates the elastic properties overlain with the acquisition geometry, and the results of

elastic synthetic wavefield modelling as performed for the test examples used in this paper. Fig. 2a

represents the acquisition geometry for a step-like structure over a half space. This is suitable

for testing because a vertical step includes all wavenumbers and hence it is demanding in terms

of horizontal resolution. The p-wave velocity is
√
3 times the shear wave velocity in order to

represent a Poisson solid medium where λ equals to µ. In this example we keep the density constant

at 1000 kg/m3. We model an elastic wavefield using finite difference methods with one source to

the left as shown in Fig. 2a and (separately) another source to the right of the model. The elastic

wavefield is dominated by surface waves and other modes of waves such as reflected and refracted

body waves are also present. The simulated wavefield is recorded in the time domain as shown in

Fig. 2b but our formulation is in the temporal frequency domain. Therefore, we first apply Fourier

transform to the recorded wavefield as shown in Fig. 3a.

Fig. 3 illustrates the wavefield results of FWFI. Where, Fig. 3a shows the true surface wave

wavefield in the frequency domain that results from using the left shot in the survey shown in

Fig. 2a. Fig. 3b displays the input to FWFI which is the discretely sampled data at a spatial sam-

pling rate of 25m (which is above the average Nyquist sampling rate for both sides of the model).
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Figs 3c and d show the reconstructed wavefield after 50 iterations and the difference between the

true elastic wavefield and the reconstructed wavefield, thus demonstrating that FWFI reconstructs

the surface wave wavefield reasonably well. The difference between the true and estimated wave-

field is transformed to time domain shown in Fig. 4b to illustrate that parts of the wavefield not

matched by WRI are mainly the higher order modes and body waves. Note, the difference is small

inside the selected area shown by the red box, which represents the frequency-spatial mask applied

within the inversion. The spatial sampling rate in Figs 3a,c and d is 5m.

Fig. 5 shows the results of WEI for this example. Fig. 5a represents the starting velocity model

which is a homogeneous dispersive velocity model. Fig. 5b shows the retrieved dispersive phase

velocity model after 50 iterations in which the step structure is reasonably well resolved. To ver-

ify the retrieved phase velocity models, we calculated dispersion images using an f-p transform

(McMechan & Yedlin 1981) of the horizontal structure on the left, and separately of the horizon-

tal structure on the right side of Figs 2c and d. In Figs 5c and d, we select two phase velocity

profiles from both left and right sides of the retrieved dispersive velocity model (location indicated

by dashed lines in Fig. 5b) and overlain with f-p dispersion images of these profiles as displayed

in Figs 5c and d. Note that the retrieved velocity profiles nicely match the fundamental mode

dispersion.

3.1 Choice of Regularization Parameters

The choice of regularization parameters impacts the retrieved dispersive phase velocity model.

There exists a range of possible combinations of the frequency and spatial smoothing parameters.

Therefore, we applied the proposed method to find suitable regularization parameter values for

ǫ2 and ǫ3. We ran a number of combinations of the regularization parameters and calculate E

in equation 13 for each combination with results shown in Fig. 6. The combinations to the left

of the purple curves appear under-regularized as the structure oscillates in space; these models

are discarded. Similarly, the combinations to the right of the green curve appear over-regularized

because there are less regularized models that fit the data equally well or better; the application

of more smoothing is equivalent to adding stronger a priori information (i.e., the Earth is smooth)
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Figure 3. FWFI wavefield results for an active seismic scenario. a) True modelled wavefield in the space-

frequency domain as obtained from the first scenario in Fig. 2a. b) The decimated data input to WFI sampled

every 25 m. c) Wavefield estimated by FWFI after 50 iterations. d) Difference between true and estimated

wavefields. The red box in (d) shows the zone where we inverted for phase velocities. Note, spatial sampling

intervals are 5 m in panels a, c and d, and 25 m in panel (b).

which is therefore not justified. Hence, those models are also discarded. Finally, we also discard the

combinations to the right of the black curve as the algorithm fails to estimate reasonable velocities

for the low frequencies (estimates revert to the low velocity reference model). We then choose one

of the remaining three combinations - the combination highlighted by a pink circle for which E is

minimum among the three combinations.
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Figure 4. Difference between true and estimated wavefields in frequency domain (a) which transformed to

time domain (b).

4 AMBIENT NOISE EXAMPLE

For the ambient noise example, we use the same model as in the active source example (Figs 2a).

To simulate an ambient noise response, two sources to the left and right of Figs 2a are fired re-

peatedly with random time delays. Fig. 7 show the wavefield in both space-time domain (a) and

space-frequency domain (b) and the sampling rate in both figures is 5m. From this dataset, we

create different examples that simulate different acquisition scenarios to test our method. The first

scenario corresponds to dense and regular spatial sampling that meets the Nyquist sampling crite-

ria. Such dense sampling is not always viable due to logistical and environmental difficulties. Thus,

in the second example, we use a data subset that is irregularly sampled. Then in a third example

we use a severely aliased data subset where the sampling rate is less than the average half wave-

length. In all of the examples, we apply our method to raw noise recordings and there is no need

to perform correlations to the gathers as commonly used in ambient noise seismology studies. The

surface wave velocity on both left and right sides of the step in the velocity of Fig. 2a can be pre-

dicted analytically from the shear wave velocity for a Poisson solid medium (Stein & Wysession

2003) which produces highest and lowest possible surface wave velocities. Table 1 shows the up-

per and lower velocity limits, and the half of the wavelength for each frequency, data which are

used to analyze the aliasing effect. Figs 8 and 9 show the input and the results of WFI and WEI

for each acquisition scenario illustrated below.
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Figure 5. FWFI phase velocity results for the active source scenario. The first row displays both initial

(a) and final (b) phase velocity models. The final dispersion velocity model is retrieved after 50 iterations

of FWFI. The second row shows the f-p dispersion images of the two horizontally-layered sections of the

step velocity model overlain with dashed black velocity profiles extracted from the FWFI final model at the

locations highlighted by black dashed lines. The image in c) correspond to the thick top layer of the left side

of the step velocity model, whereas the one in d) is for the thin layer in the right side of the step model.

4.1 Densely Sampled Measurements

The spatial sampling rate is 25m and the corresponding frequencies below 14Hz are not aliased

as shown in table 1. The input data is shown in Fig. 8a and the starting velocity was the same as in

Fig. 5a. Fig. 8b shows the reconstructed wavefield after 50 iterations, now at a new spacing of 5m

in the selected spatio-frequency domain ranging spatially from 80m to 1920m and for frequencies

from 0.1Hz to 20Hz. This domain is the mask that was used for both WRI and WEI which is

necessary so that the source function can be neglected. Fig. 8c shows the difference between the
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Figure 6. Velocity properties obtained using different combinations of both spatial and frequency smoothing

scaling parameters ǫ2 and ǫ3, respectively. We choose the circled combination as it has the lowest E, data

residual, among the remaining combinations. For definitions of purple, green and black curves refer to the

main text.

true wavefield in Fig. 7b and the reconstructed wavefield in Fig. 8b. Note, the difference is minimal

mainly because of the presence of other modes, such as reflected and refracted body waves, in the

original dataset and also to interpolation numerical errors.

Fig. 9a shows the retrieved surface wave phase velocity after 50 iterations. At first glance, the

retrieved velocity model resembles the step structure of the true velocity model. We use the same

verification method as in the active source experiment where we take two velocity profiles from

the retrieved phase velocity model in Fig. 9a. As expected, the chosen velocity profiles match the
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Figure 7. True-modelled ambient-noise wavefield at every 5m in both space-time domain a) and in space-

frequency domain b).

dispersion obtained by f-p analysis of equivalent 1-D media as shown in the white dashed lines in

Figs 9d and e, respectively.

4.2 Irregular Sampling Rate

Reconstruction of a regularly sampled wavefield is an important step in our proposed method as

WEI benefits from the enhanced accuracy offered by the estimated gradients. However, regular and

dense samples are not always available because of field constrained and/or logistical limitations.

Table 1. The table shows half of the wavelength for each frequency for the two limits (obtained analytically

using shear wave velocities) of the surface wave velocities to analyze aliasing. The bold cells separate

between aliased and un-aliased frequencies, below and above the cells respectively for the densely sampled

case with receivers at 25m spacing

F (Hz) V1 (m/s) λ/2(m) V2 (m/s) λ/2(m)

1

690

345.0

1150

575.0

3 115.0 191.7

6 57.5 95.8

9 38.3 63.9

12 28.8 47.9

15 23.0 38.3

18 19.2 31.9
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To demonstrate the effectiveness of our method, we introduce irregular sampling of the wavefield.

A randomly located sample is taken in each 40m bin as shown in Fig. 8d. We face then two

challenges: the irregularity would introduce errors in estimating the wavefield spatial gradients;

the input data is aliased for frequencies above about 9Hz (table 1). Nevertheless, Fig. 8e shows

that the wavefield was successfully reconstructed, and Fig. 8f shows that the difference between

the true and the reconstructed wavefield is acceptable. Fig. 9d shows the retrieved phase velocity

model after 50 iterations. The velocity model is consistent with the one obtained using densely

sampled data and the velocity profiles on left and right of the model match the dispersion of the

fundamental mode from the f-p analysis as shown by the purple dashed lines in Figs 9d and e,

respectively.

4.3 Severely Aliased Data

We use a sampling rate of 175m which creates aliasing for frequencies above 3Hz according to

table 1. Therefore, we consider this example to be a severely aliased case to test the tolerance of

our proposed inversion. The data input to the algorithm consist of the sampled wavefield shown

in Fig. 8g. The algorithm nevertheless reconstructed a reasonable wavefield estimate shown in

Fig. 8h. The difference between the true and the reconstructed wavefield is more significant than

in the previous examples as shown in Fig. 8i. Despite the low number of spatial samples in this

example, FWFI managed to retrieve a decent phase velocity model after 50 iterations as shown in

Fig. 9c. The step structure is still resolved in this example and the chosen velocity profiles show

a good match with the dispersion of the fundamental mode as shown by the black dashed lines in

Figs 9d and e.

5 DISCUSSION

The main aim of this paper is to establish a method which jointly estimates local surface wave dis-

persion curves and reconstructs the wavefield using the relationships between spatial and temporal

gradients in the Helmholtz equation. This is performed using a two-step iterative inversion scheme

where the first step reconstructs the wavefield between recorded measurements and the second
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Figure 8. FWFI wavefield results of the different acquisition scenarios of the ambient noise example. a)

The data input for the non-aliased regular decimation every 25m. b) Wavefield estimated by FWFI after 50

iterations for the non-aliased example. c) The difference between the reconstructed wavefield in (b) and the

true wavefield shown in figure 7a. d) The data input for the irregular sampling example by selecting a ran-

dom receiver every 40m bin. e) Wavefield estimated by FWFI after 50 iterations for the irregular sampling

example. f) The difference between the reconstructed wavefield in (e) and the true wavefield shown in fig-

ure 7a. g) The data input for the severely aliased regular decimation at every 175m. h) Wavefield estimated

by FWFI after 50 iterations for the severely aliased example. i) The difference between the reconstructed

wavefield in (h) and the true wavefield shown in figure 7a.

uses this newly estimated wavefield to estimate the phase velocity, where we iterate between the

two steps until an acceptable match to the measured wavefield is found. This approach allows local

dispersion measurements to be estimated without the assumption of lateral homogeneity made in

other methods such as f-k (Nolet & Panza 1976) or f-p (McMechan & Yedlin 1981) transforms.

This is shown by testing the method using a step function structure; the method was able to esti-
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Figure 9. FWFI phase velocity results of the different acquisition scenarios of the ambient noise example.

This figure shows the retrieved phase velocity model for (a) the non-aliased regular decimation every 25m,

(b) the irregular random receiver selection every 40m bin and (c) and severely aliased regular decimation

at every 175m. The images in (d) and (e) are the f-p dispersion images of the two horizontally-layered

sections of the step velocity model overlain with dashed velocity profiles extracted from the WEI final

models ( all three plotted on top of one another) at the locations highlighted by their corresponding same

coloured dashed lines. The image in d) correspond to the thick top layer of the left side of the step velocity

model whereas the one in e) is for the thin layer in the right side of the step model.

mate correct dispersion curves for a heterogeneous medium given a laterally homogeneous starting

velocity model.

We tested our proposed method with three examples from three typical field scenarios. The

reconstructed wavefield from the densely sampled data shown in the first row of Fig. 8 show that

WRI reconstructs the wavefield well. Despite the fact that our approach is based on a scalar wave

equation, our method was able to reconstruct a wavefield that closely matches the true elastic

wavefield in Fig. 7, even though other modes such as reflected and refracted P and S waves were

present in the elastic data. WRI successfully reconstructed the wavefield despite the complication

of irregular sampling in Fig. 8d. This example suffers from two major challenges - errors in the

finite difference estimation of gradients due to the irregularity, and mild aliasing in the data, yet the
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algorithm performs well. The third example showed the effectiveness of our proposed method by

using the severely aliased data shown in Fig. 8g, as the method still reconstructs a good wavefield.

Fig. 8i shows that the difference between the true and the reconstructed wavefield is more signifi-

cant than in the other examples, which could be attributed to the strong aliasing of the data. In the

same manner, the step structure is resolved less well in the severely aliased data shown in Fig. 9c

compared to the previous two scenarios. Given the extent of aliasing and under sampling of the

data, we regard these results as highly encouraging. In Zhan et al. (2018) the simulated wavefield

is based on the plane wave assumption to represent the motion of surface waves. In our examples,

we used an elastic finite difference modelling where other wave modes such as reflected and re-

fracted P and S waves are present. The residual in the well sampled examples are related to the

other modes present in the data as well as numerical errors as a result of finite difference.

When the aliasing is less significant (usually true for low frequencies only), the algorithm

provides good wavefield reconstruction and estimates the correct phase velocity. This estimate,

however, is bound to the starting velocity model. If the starting velocity model is close to the

correct value in the aliased section of the data, then the algorithm reconstructs a good wavefield

and estimates correct velocities for all frequencies. When the initial velocity is too far from the

correct velocity, errors are large for the aliased part of the data but the algorithm still works well

for the unaliased part of the data.

To validate the retrieved dispersive phase velocity, we compare our results to dispersion analy-

sis of the data in the f-p domain. In Fig. 9d dispersion analysis is shown for the data recorded in the

left-hand side of the medium and overlain with velocity profiles from the left side whereas, Fig. 9e

shows the dispersion analysis for data recorded in the right-hand side of the medium overlain with

a velocity profiles extracted from the right side. On both sides, the retrieved dispersion curves

from the different scenarios match the dispersion of the fundamental mode. These plots showed

that FWFI was successful in obtaining the correct dispersive phase velocity model, despite using

a Helmholtz scalar approximation to the elastic wavefield of the surface waves.

The extension of the method to a 2-D spatial domain would inherently add more complexity

to the regularization parameters in equation 9. Parameter ǫ1 represents the data dependency term.
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In the 2-D case, this data dependency term would have to be larger than in the 1-D case as we

have significantly more sets of data in 2-D, but the model space increases in size too. Updating

the initial model estimate might be more challenging as finding the optimum set of regularization

strengths in the 2-D case may be more difficult than the 1-D case. We anticipate that the major

challenges in the application of this method to field data will be the presence of coherent and

incoherent noise. Non-coherent noise could potentially be addressed by changing the norm on the

data fitting term, while coherent noise could be tackled by incorporating uncertainties of the data

inside a co-variance matrix in the norm. The presence of non-surface wave energy is one form of

coherent noise that is successfully addressed in this study.

As future work, one might focus on the low frequency part of the data that can be used as a-

priori information to resolve the high frequency aliased part of the data. Alternatively, the method-

ology may benefit from anti-aliasing processing techniques such as 5D Antileakage Fourier Trans-

form (Zwartjes & Sacchi 2006) to build a starting velocity model to mitigate the problem of alias-

ing. One extension of the proposed method is to formulate the gradiometry using an elastic wave

equation rather than the acoustic wave equation used here. This would allow the methodology to

account for other elastic wave modes that are present in real data. The iterative two-step optimisa-

tion presented here, is one approach to solving the joint wavefield and medium parameter estima-

tion expressed in equation 5. In this research, we used an alternating inversion scheme where we

solve the wavefield and the medium parameter separately. Valentine & Woodhouse (2010) showed

that in the context of inverting for wavefield source and structural parameters, an alternating ap-

proach exhibits a poorer convergence rate than combining the two. Such a direct approach may

also have benefit for solving for the wavefield and medium parameters simultaneously (i.e. a di-

rect approach to solving equation 5). Another extension could be to represent the wavefield using

compressed sensing or using neural networks (Zhan et al. 2018; bin Waheed et al. 2021).

6 CONCLUSION

We present a wavefield inversion algorithm that images surface waves and their phase velocities.

The scheme is a two-step iterative inversion that first reconstructs the full surface wave field and
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then estimates the phase velocity. The scheme is driven by the wavefield gradient relationships

in the Helmholtz equation. The proposed algorithm allows us to retrieve the dispersive velocity

model of the medium of propagation, which in turn can be used to characterize the near-surface

shear velocity structure. We tested the proposed methodology with different synthetic examples

that mimic different sampling criteria including sub-Nyquist sampling rates. The results showed

that wavefield reconstruction works well with irregular samples and is acceptable to a certain

extent with sub-Nyquist sampling criterion. The retrieved dispersive phase velocity compared well

with an equivalent estimation of the dispersion using f-p method.
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