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a b s t r a c t 

Two recursive least-squares (RLS) adaptive filtering algorithms are most often used in practice, the ex- 

ponential and sliding (rectangular) window RLS algorithms. This popularity is mainly due to existence of 

low-complexity versions of these algorithms. However, these two windows are not always the best choice 

for identification of fast time-varying systems, when the identification performance is most important. In 

this paper, we show how RLS algorithms with arbitrary finite-length windows can be implemented at a 

complexity comparable to that of exponential and sliding window RLS algorithms. Then, as an example, 

we show an improvement in the performance when using the proposed finite-window RLS algorithm 

with the Hanning window for identification of fast time-varying systems. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

In the adaptive filtering, recursive least-squares (RLS) algo- 

rithms are very popular. They possess fast convergence, while the 

complexity and numerical stability of their implementation can be 

comparable to that of slower convergent algorithms, such as the 

least-mean squares algorithms. An RLS algorithm, at every time in- 

stant n minimises the cost function 

J w (h ) = 

∞ 
∑ 

i = −∞ 

w (i − n ) | e (i ) | 2 → min 
h 

(1) 

where e (i ) = z(i ) − h H x (i ) is the error signal, z(i ) is the desired 
signal, x (i ) = [ x (i ) , x (i − 1) , . . . , x (i − L + 1)] T is the L × 1 regressor 

vector, and x (i ) is the adaptive filter input. 

Two RLS algorithms are most often used in practice, the expo- 

nential window (ERLS) and sliding window (SRLS) algorithms. The 

ERLS exploits the (infinite in length) window w (i ) : w ERLS (i ) = λ−i 

for i ∈ (−∞ , 0] and w ERLS (i ) = 0 otherwise, where 0 < λ < 1 is the 

forgetting factor, a parameter defining the efficient length of the 

window. The SRLS uses the finite window w (i ) : w SRLS (i ) = 1 for 

i ∈ [ −M + 1 , 0] and w SRLS (i ) = 0 otherwise, where M is the length 
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of the (rectangular) sliding window. Using the matrix inversion for- 

mula for a low-rank matrix update, these two windows allow the 

RLS algorithm implementation with a complexity of O(L 2 ) arith- 

metic operations per time instant [1,2] . The complexity can be 

further reduced to O(L ) arithmetic operations [2–4] . However, as 

indicated in Nied ́zwiecki and Ciołek [5] , identification of time- 

varying systems can benefit from using symmetric bell-shaped 

windows, like the Hamming, Hanning, Parzen, Bartlett, and other 

windows [6,7] . The main problem of implementing the RLS algo- 

rithms with these windows is the high complexity, which in gen- 

eral is O(L 3 ) or higher. The main contribution of this paper is to 

show how RLS algorithms with arbitrary finite window w (i ) of 

length M can be implemented with a complexity dominated by 

the term O((M + L ) log 2 (M + L )) . This is achieved by using the fast 

Fourier transform (FFT) and dichotomous coordinate descent (DCD) 

iterations [4,8] , the later are widely used in adaptive filtering appli- 

cations such as the active noise control [9] , underwater communi- 

cations [10] , power convertion [11] , etc. We then demonstrate that 

other windows, as an example – the Hanning window, can pro- 

vide a significant improvement in performance when identifying 

time-varying systems, compared to the exponential and rectangu- 

lar windows. 

When identifying time-varying systems, the excellent perfor- 

mance is achieved by adaptive filters based on the local basis func- 

tion (LBF) principle [12] . However, such filters are too complicated 

for practice, with a complexity of at least O(P 3 L 3 ) , where P is 

the number of basis functions. A similar performance with much 

lower complexity can be achieved by fast LBF (fLBF) adaptive filters 

https://doi.org/10.1016/j.sigpro.2022.108599 
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exploiting two stages, pre-estimation and post-filtering [13] . The 

pre-estimation stage provides estimates which are almost unbiased 

but with a large variability; this is obtained by ‘inverse filtering’ of 

the estimates yield by the ERLS algorithm [2] . At the post-filtering 

stage, denoising is carried out to reduce the variability [13] . How- 

ever, the pre-estimation still introduces some bias, which limits the 

overall performance of fLBF algorithms when identifying fast time- 

varying systems. Meanwhile, the fLBF complexity is dominated by 

the complexity of the ERLS algorithm. In this paper, we show that 

the finite-window RL S (FRL S) adaptive filter as the pre-estimator 

can significantly improve the fLBF performance. 

This paper is organized as follows. In Section 2 , the FRLS al- 

gorithm is derived. Section 3 introduces the fLBF algorithm. The 

identification performance of the FRLS algorithm and the fLBF al- 

gorithm with the FRLS pre-estimator are demonstrated by numer- 

ical simulation in Section 4 . The paper is concluded in Section 5 . 

Notations : In this paper, we use capital and small bold fonts 

for matrices and vectors, e.g. R and h , respectively. We denote the 

complex conjugate as (·) ∗, transpose of h as h T , and the Hermi- 

tian transpose of h as h H . The first column of matrix R is denoted 

as R (1) . The norm of a vector is denoted as ‖ · ‖ , the element-wise 

product of two vectors u and v is denoted as u � v , and the Kro- 
necker product of two vectors u and v is denoted as u � v . 

2. FRLS adaptive algorithm 

The minimization of the cost function in (1) , for a window w (i ) 

defined on a support Ŵ, results in the solution 

ˆ h (i ) = R 
−1 (i ) β(i ) , (2) 

where the L × L regression matrix R (i ) and the L × 1 cross- 

correlation vector β(i ) are given by 

R (i ) = 
∑ 

k ∈ Ŵ w (k ) x (i + k ) x H (i + k ) , (3) 

β(i ) = 
∑ 

k ∈ Ŵ w (k ) x (i + k ) z ∗(i + k ) . (4) 

The support Ŵ for the ERLS algorithm (also known as the FFLS al- 

gorithm [14] ) is Ŵ = (−∞ , 0] . The support for the SRLS algorithm 

(also known as the FDW-RLS algorithm [15] ) and FF-FDW-RLS al- 

gorithm [16] is Ŵ = [ −M + 1 , 0] ; for the delayed SRL S (SRL Sd) al- 

gorithm [17] , which is a non-causal version of the SRLS algorithm, 

it is Ŵ = [ −M 0 , M 0 ] , where M = 2 M 0 + 1 ; etc. 

Thus, finding the solution in (2) , for every time instance i , re- 

quires computation of elements of the matrix R (i ) and its inver- 

sion, which are most complicated steps of the algorithm. Since 

R (i ) is a Hermitian matrix, the direct computation in (3) re- 

quires about 2 ML 2 real-valued multiply and accumulate (MAC) 

operations, where it is also taken into account that a complex- 

valued multiplication requires 4 real-valued multiplications. For 

the transversal-structured regressor as in (1) , R (i ) can be updated 

as (see proof in Shen et al. [10] ): [ R (i )] m +1 ,n +1 = [ R (i − 1)] m,n , 

where R m,n denotes an element of the matrix R at the m th column 

and n th row, and m, n = 1 , . . . , L − 1 . Therefore, only the first col- 

umn R (1) (i ) of R (i ) needs an update, which with the direct com- 

putation requires 4 ML operations, this still can be high. However, 

the complexity of the update can be reduced if using the FFT as 

follows. The first column of R (i ) is given by 

R 
(1) (i ) = 

∑ 

k ∈ Ŵ

w (k ) x (i + k ) x ∗(i + k ) = 

∑ 

k ∈ Ŵ

˜ w (i, k ) x ∗(i + k ) , 

where ˜ w (i, k ) = w (k ) x (i + k ) , k ∈ Ŵ, are elements of an M-length 

vector ˜ w (i ) . The L -length column R (1)(i ) can be considered as 

convolution of the M-length sequence of elements in ˜ w (i ) and 

the (M + L ) -length sequence of all elements in the vector ˜ x ∗(i ) = 

[ x ∗(i − M 0 − L ) , . . . , x ∗(i + M 0 )] 
T . The convolution can be efficiently 

computed in the frequency domain. Specifically, the sequence ˜ w (k ) 

is zero-padded to the length M + L . Then, the FFTs s w and s x of 
˜ w (i ) and ˜ x ∗(i ) of (M + L ) -length are computed. Finally, the inverse 

FFT (IFFT) of their element-wise product s w � s x are computed, 

whose last L elements represent the column R (1)(i ) . In such a case, 

the complexity is reduced from 4 ML operations to three FFTs of 

size (M + L ) , which is O((M + L ) log 2 (M + L )) . Another important 

property of this approach is that the computation of R (i ) is nu- 

merically stable, since no recursion is required. 

The rest of the algorithm complexity is dominated by compu- 

tation in (2) . For the numerical stability of this computation, it is 

preferable to avoid the matrix inversion, which is also a computa- 

tionally demanding operation. Therefore, instead of the matrix in- 

version and matrix-vector multiplication in (2) , we solve the nor- 

mal equation R (i ) h (i ) = β(i ) and obtain a (possibly approximate) 

solution ˆ h (i ) ; a direct (precise) solution of the normal equation, 

e.g., using the Cholesky decomposition, would require O(L 3 ) MACs. 

This can be reduced as follows. Instead of solving the system of 

equations, we can solve: 

R (i )�h (i ) = r (i ) , (5) 

where r (i ) = β(i ) − R (i ) ̂  h (i − 1) is a residual vector for instance i 

when using the solution ˆ h (i − 1) obtained at the previous instance 

i − 1 . The solution for instance i is then found as ˆ h (i ) = ˆ h (i − 1) + 

� ˆ h (i ) , where � ˆ h (i ) is an approximate solution to (5) . The benefit 

of this approach is that a solution to (5) can be found with a few 

simple iterations, e.g., such as the DCD iterations [4] . 

With this approach, the most computationally demanding step 

of computing r (i ) can be simplified if we take into account that, as 

follows from (3) and (4) , 

r (i ) = 

∑ 

k ∈ Ŵ

w (k ) e ∗(i, k ) x (i + k ) , (6) 

where e (i, k ) = z(i + k ) − y (i, k ) is an error signal, and y (i, k ) = 

ˆ h H (i − 1) x (i + k ) . We denote y (i ) a vector with elements y (i, k ) , 

k ∈ Ŵ. These elements represent an M-length sequence, which is 

a convolution of the L -length sequence of elements in ˆ h (i − 1) and 

the (M + L ) -length sequence of all elements in ˜ x (i ) . Since the FFT 
s x of ˜ x ∗(i ) is already available, the computation of y (i ) requires one 
FFT and one IFFT of length (M + L ) . The error vector e (i ) with el- 

ements e (i, k ) , k ∈ Ŵ, is then given by e (i ) = z (i ) − y (i ) , where z (i ) 
is a vector with elements z(i + k ) , k ∈ Ŵ. After computing the vec- 

tor e (i ) , the residual vector r (i ) in (6) can be computed similarly 

to (5), but, with the available FFT s x , using only one FFT and one 
IFFT. 

The system of equations in (5) can be solved using the lead- 

ing DCD algorithm (see details in [4] ). At every iteration, the DCD 

algorithm updates one element of the vector � ˆ h (i ) corresponding 

to the element of r (i ) with the maximum magnitude. Four direc- 

tions of update, [ −1 , 1 , − j, j] , j = 
√ 

−1 , are analysed, and if the cost 

function can be minimized, the direction providing the minimum 

is chosen; such an iteration is called successful. If the cost function 

cannot be reduced after searching over all four directions, the step 

size is reduced by two. The initial step size H is chosen as a power 

of two for efficient hardware implementation. The maximum num- 

ber of times M b the step size can be reduced is equivalent to the 

number of bits representing the solution vector. The DCD algorithm 

requires no multiplication or division and its complexity depends 

on the number of successful DCD iterations N u . When identifying 

a system with time-invariant or slowly time-varying parameters, a 

small number of updates ( N u = 1 , 2 ) can be used. For idenfication 

of fast time-varying systems, a higher number of updates can be 

required; in our examples below, we set N u = 8 . 

The FRLS algorithm is summarized in Table 1 . Its complexity is 

(18 + 4 N u ) L + 16 M + M b MACs and 7 FFTs of size M + L . The mem- 

ory requirement of the FRLS algorithm is comparable to that of 

2 
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Table 1 

FRLS algorithm. 

Step Equation 

for i < 0 : x (i ) = 0 , ̂  h (i ) = 0 

R (i ) = 0 , z (i ) = 0 

for i = 0 , 1 , . . . , N

1 Computing the first column of R (i ) : 

s w = FFT { ̃  w (i ) } 
s x = FFT { ̃ x ∗(i ) } 
R (1) (i ) = IFFT { s w � s x } 

2 Computing the filter output y (i, k ) for k ∈ Ŵ: 

s h = FFT { h (i − 1) } 
y (i ) = IFFT { s x � s h } 

3 Computing the error signal: 

e (i ) = z (i ) − y (i ) 

4 Computing the residual vector: 

e w (i ) = e ∗(i ) � w 

s e = FFT { e w (i ) } 
r (i ) = [ IFFT { s e � s x } ] ∗

6 Solve (5) with DCD iterations 

7 ˆ h (i ) = ̂  h (i − 1) + �ˆ h (i ) 

the SRLS algorithm. The majority of the memory is allocated to the 

matrix R (i ) , which contains L 2 complex-valued elements. 

3. fLBF algorithm with FRLS pre-estimator 

The fLBF algorithm includes two stages [13] . At the first stage, 

pre-estimation is carried out to provide unbiased estimates of 

the system taps. A popular pre-estimate ˜ h (i ) is the result of 

inverse filtering ˜ h (i ) = 
1 

1 −λ
[ ̂  h ERLS (i ) − λ ˆ h ERLS (i − 1)] of estimates 

ˆ h ERLS (i ) obtained by the ERLS adaptive filter; the inverse filter- 

ing is applied to reduce the bias of the pre-estimates [13] . At 

the second stage of the fLBF algorithm, the pre-estimates are 

post-filtered to reduce the estimation variance, while keeping the 

bias small: ˆ h fLBF (i ) = F (0) ̂  αfLBF (i ) and ˆ αfLBF (i ) = 
∑ K 0 

k = −K 0 
F H (k ) ̃  h (i + 

k ) , where F (k ) = I L � f (k ) , f (k ) = [ f 1 (k ) , . . . , f P (k )] 
T is the vec- 

tor of orthogonal basis functions f p (·) , defined on a time inter- 

val [ −K 0 , K 0 ] , and P is the number of basis functions. In this 

paper, as an example, we adopt the complex exponential basis 

set of the form (see Tsatsanis and Giannakis [18] , Sayeed and 

Aazhang [19] , Zakharov and Kodanev [20] for a physical justifica- 

tion of such a choice in application to fast-varying communica- 

tion channels), { f 1 ( j) , . . . , f P ( j) } = 

{ 
1 √ 
K 
e i jω 1 , . . . , 1 √ 

K 
e i jω P 

} 

, where 

j ∈ [ −K 0 , K 0 ] , i = 
√ 

−1 , ω 1 = 0 , P = 2 m 0 + 1 , K = 2 K 0 + 1 , and ω 2 l = 

− 2 π l 
K , ω 2 l+1 = 

2 π l 
K , l = 1 , . . . , m 0 . The complexity of the fLBF al- 

gorithm is dominated by the ERLS adaptive filtering. 

The fLBF algorithm shows high identification performance in 

time-varying scenarios. However, the performance can be further 

improved with a better pre-estimator. For this purpose, we pro- 

pose to use the FRLS algorithm, so that ˜ h (i ) = ˆ h FRLS (i ) . 

4. Numerical results 

In this section, we compare the identification performance and 

complexity of the FRLS algorithm with the Hanning window on the 

support Ŵ = [ −M 0 , M 0 ] with that of other algorithms. We consider 

the following signal model: z(i ) = h H (i ) x (i ) + n (i ) , where h (i ) is a 

time-varying impulse response of an unknown system to be iden- 

tified, x (i ) is the regressor vector with zero-mean uncorrelated 

complex-valued Gaussian numbers of unit variance and n (i ) is a 

zero-mean complex-valued white Gaussian noise. The L = 50 sys- 

tem taps are modelled as independent zero-mean unit-variance 

random processes with a uniform power spectral density within 

the frequency interval [ − f max , f max ] . Realizations of the random 

processes are generated using the FFT-method [21] . 

Fig. 1. MSD performance of SRLS and FRLS algorithms when identifying time- 

varying systems; SNR = 25 dB. Note that FRLS (direct) is the version with the direct 

solution (2). 

The identification performance is evaluated by averaging the 

mean squared deviation (MSD) over 50 simulation trials. The 

MSD in every simulation trial is computed as: MSD (i ) = ‖ h (i ) −
ˆ h (i ) ‖ 2 2 /E h , where E h = (1 /N) 

∑ N 
i =1 || h (i ) || 2 and N = 10 4 is a num- 

ber of samples after the algorithm convergence; the MSD is aver- 

aged over these N samples. 

In the simulations, assuming that the sampling rate is 10 0 0 Hz, 

we use f max = 1 Hz, which is typical for underwater acoustic chan- 

nels [22] . The signal to noise ratio (SNR) is set to 25 dB. 

Fig. 1 compares the MSD performance of the FRLS and SRLS al- 

gorithms against the window length M. The classical SRLS algo- 

rithm achieves an MSD performance of −15 . 2 dB when M = 71 . Its 

non-causal version, the delayed SRL S (SRL Sd) algorithm, reduces 

the MSD to −20 . 1 dB; note that the SRLSd algorithm is equiva- 

lent to the FRLS algorithm with a symmetrical rectangular win- 

dow. With the Hanning window in the FRLS (direct) algorithm 

with the direct solution in (2) , the MSD is further reduced to 

−22 . 1 dB, which is 2.0 dB improvement compared to the SRLSd 

algorithm and 6.9 dB improvement compared to the classical SRLS 

algorithm. Note that in this scenario the lowest MSD provided 

by the ERLS algorithm is −15 . 8 dB, achieved with the forgetting 

factor λ = 0 . 94 ; this is close to the minimum MSD of the SRLS 

algorithm. 

With N u = 8 updates, H = 1 and M b = 16 , the DCD-based ver- 

sions of these algorithms show the MSD performance close to that 

of their original versions, except at low values of M. At low M, the 

system of equations becomes ill-conditioned and the DCD solution 

with its implicit regularization shows a better performance. The 

minimum MSD of the FRLS algorithm is −21 . 9 dB when M = 181 . 

In Fig. 2 , we show the MSD performance of the SRLS and FRLS 

algorithms under SNR = 5 dB and SNR = 15 dB. The FRLS algorithm 

outperforms the SRLS algorithm by 5.5 dB and 6.2 dB at SNR = 5 dB 

and SNR = 15 dB, respectively. 

The algorithm complexities at every time instant are sum- 

marized in Table 2 . They are shown against L in Fig. 3 , where 

the FFT complexity is counted as 4(L + M) log 2 (L + M) MACs [23] . 

The ERLS and SRLS algorithms implemented using DCD itera- 

tions [4] have the lowest complexity. Note that the SRL S (SRL S- 

DCD) and SRL Sd (SRL Sd-DCD) algorithms have the same complex- 

ity. The FRLS complexity is higher than that of the ERLS-DCD and 

SRLS-DCD algorithms, and this is the payment for the improved 

performance. However, the FRLS algorithm has a comparable or 

3 
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Fig. 2. MSD performance of SRLS and FRLS algorithms when identifying time-varying systems; (a) SNR = 5 dB; (b) SNR = 15 dB. 

Table 2 

Complexity of the adaptive algorithms. 

Adaptive algorithm MACs FFTs 

ERLS-DCD (20 + 4 N u ) L + N u + M b 
SRLS-DCD (24 + 4 N u ) L + N u + M b 
FRLS (18 + 4 N u ) L + 16 M + M b 7 

SRLS 24 L 2 + 32 L 

ERLS 12 L 2 + 16 L 

FRLS direct 2 ML (L + 1) + 4 L 3 

Fig. 3. Complexity of the SRLS and FRLS-based algorithms; the window length is 

M = 3 L + 1 . 

lower complexity than the classical SRLS algorithm, and signifi- 

cantly lower complexity than the direct implementation of the so- 

lution in (2) , especially for high L . 

We now show that the FRLS algorithm with the Hanning win- 

dow as a pre-estimator in the fLBF algorithm can significantly im- 

prove the fLBF identification performance compared to the use of 

the ERLS algorithm for this purpose. As recommended in [24] , the 

forgetting factor of the ERLS algorithm is set to λ = max (0 . 9 , 1 −
2 /L ) = 0 . 96 . In the FRLS algorithm, we set M = 3 L + 1 = 151 . We 

consider the cases with P = 3 and P = 5 basis functions. Fig. 4 

shows the MSD performance of the fLBF algorithm with differ- 

ent pre-estimators against K. The original fLBF algorithm (with the 

Fig. 4. The performance of the fLBF algorithms with different pre-estimators when 

identifying fast-varying channels, K is the approximation interval used for the post- 

filtering. 

ERLS pre-estimator), provides an MSD of −22 . 7 dB and −23 . 8 dB 

for P = 3 and P = 5 , respectively. The FRLS pre-estimator with N u = 

8 DCD iterations shows an improvement of, respectively, 3.5 dB 

and 3.8 dB against the classical-ERLS pre-estimator. Against the 

ERLS-DCD pre-estimator, this improvement is higher, 4.6 dB and 

4.9 dB, respectively. 

5. Conclusion 

We have proposed the FRLS algorithm that allows RLS adaptive 

filtering with any finite-length window in the cost function (1) to 

be implemented at a complexity dominated by the term O((M + 

L ) log 2 (M + L )) , which is comparable or lower than that of the 

classical ERLS and SRLS algorithms. As demonstrated by the sim- 

ulation results, the use of a non-uniform window in the FRLS al- 

gorithm, such as the Hanning window, significantly improves the 

identification performance compared to that of the classical ERLS 

and SRLS algorithms in time-varying scenarios. Same conclusion 

has been reached when the FRLS algorithm is used as the pre- 

estimator of the fLBF algorithm. The Matlab code of the FRLS al- 

gorithm is provided in [25] . 

4 
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