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Abstract

Classically, statistical datasets have a larger
number of data points than features (n > p).
The standard model of classical statistics
caters for the case where data points are con-
sidered conditionally independent given the
parameters. However, for n ≈ p or p > n such
models are poorly determined. Kalaitzis et al.
(2013) introduced the Bigraphical Lasso, an
estimator for sparse precision matrices based
on the Cartesian product of graphs. Unfor-
tunately, the original Bigraphical Lasso al-
gorithm is not applicable in case of large p
and n due to memory requirements. We ex-
ploit eigenvalue decomposition of the Carte-
sian product graph to present a more efficient
version of the algorithm which reduces mem-
ory requirements from O(n2p2) to O(n2+p2).
Many datasets in different application fields,
such as biology, medicine and social science,
come with count data, for which Gaussian
based models are not applicable. Our multi-
way network inference approach can be used
for discrete data.

Our methodology accounts for the dependen-
cies across both instances and features, re-
duces the computational complexity for high
dimensional data and enables to deal with
both discrete and continuous data. Numeri-
cal studies on both synthetic and real datasets
are presented to showcase the performance of
our method.
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1 INTRODUCTION

In this research, we develop a tensor-decomposition
based two-way network inference approach for count
data. Firstly, we present a Scalable Bigraphical Lasso
algorithm, reducing both the space complexity and the
computational complexity of the inference. Secondly,
we extend the Bigraphical model to count data by
means of a semiparametric approach. Our proposed
methodology not only accounts for the dependencies
across both instances and features, but also reduces the
computational complexity for high dimensional data.

The main motivation of this research is that real world
problems often come with correlations between several
dimensions. Recently, Gaussian graphical models have
been developed with tensor decomposition for multi-
way network inference. For example, Tsiligkaridis and
Hero (2013) and Zhou (2014) studied a matrix normal
distribution where the precision matrix corresponds to
the Kronecker product between the row-specific and
the column-specific precision matrices. Kalaitzis et al.
(2013) introduced Bigraphical Lasso, and Greenewald
et al. (2019) introduced TeraLasso, both studying a
multivariate normal distribution where the precision
matrix corresponds to a Kronecker sum instead.

Many datasets in different application fields come with
count data, for which Gaussian based models are not
applicable. Some methods use other distributions to
infer network from the data. Jia et al. (2017) infers
the gene regulation networks with a Poisson-Gamma
based Bayesian Hierarchical Model, borrowing informa-
tion across cells. McDavid et al. (2019) infers the gene
regulation networks with a multivariate Hurdle model
(zero-inflated mixed Gaussian). Several approaches
have extended the use of Gaussian models to an appro-
priate continuous transformation of count data. Liu
et al. (2009) and Liu et al. (2012) proposed a semipara-
metric approach, and Roy and Dunson (2020) proposed
a nonparametric approach, while Chiquet et al. (2019)
considered Bayesian Hierarchical Models. However, all
these methods only produce a one-way network infer-
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ence. Bartlett et al. (2021) proposed a Bayesian model
with a prior having decoupled two-way sparsity to infer
a dynamic network structure through time, however,
the method still depends on a pre-inferred or known
ordering of time. Our method extends the Gaussian
Copula transformation to enable a two-way network
inference, where the structure in both dimensions is to
be inferred simultaneously.

This paper is structured as follows: In Section 2 we
present a detailed review on relevant literature; In
Section 3 we present our Scalable Bigraphical Lasso
algorithm for Gaussian data; In Section 4 we propose a
semiparametric extension to the Bigraphical model for
count data; In Section 5 we showcase the performance
of our method on both synthetic and real datasets.

2 BACKGROUND

2.1 From the matrix normal model to the
Kronecker sum structure

For a Gaussian density, a sparse precision matrix de-
fines a weighted undirected graph in Gaussian Markov
random field relationship (Lauritzen, 1996), encod-
ing conditional independence between variables in the
Gaussian model. Therefore we can induce the network
structure from the support of the precision matrix.

A matrix normal model with the Kronecker sum struc-
ture was proposed in Kalaitzis et al. (2013). If a p× n
random matrix Y follows a matrix normal distribution,

Y ∼MNp×n
(
M;Ψ−1

n×n,Θ
−1
p×p

)
,

with M a p × n matrix, and with precision matrix
Ψn×n indicating the dependency structure in rows,
and precision matrix Θp×p indicating the dependency
structure in columns, the model can be reparametrized
such that the vectorised random matrix follows a np-
dimensional multivariate normal distribution (denoted
as mN):

vec (Y) ∼mNnp

(
0np, (Ψn×n ⊗Θp×p)

−1
)
,

where ⊗ denotes the Kronecker product (KP), Ψn×n⊗
Θp×p is the overall precision matrix, and 0np is
a column vector of zeros of length np. Kalaitzis
et al. (2013) proposed to use the Kronecker sum (KS )
Ψn×n ⊕Θp×p = Ψn×n ⊗ Ip + In ⊗Θp×p to structure
the overall precision matrix. In a KS-structured matrix
normal distribution, for a p× n random matrix Y, we
write

vec (Y) ∼mNnp

(
0np, (Ψn×n ⊕Θp×p)

−1
)
.

The KS-structure has several advantages. Firstly, in
algebraic graph theory, the Kronecker sum corresponds

to the Cartesian product of graphs (Sabidussi, 1959).
A KS-structured model therefore provides intuitive and
interpretable results. Secondly, for high-dimensional
data, the KS-structure enhances the sparsity of the
network, reducing the computation complexity and the
memory requirement.

2.2 Rank-based estimation in a Gaussian
graphical model

To model count data or other non-Gaussian data in a
Gaussian graphical model, the Gaussian copula can be
applied to transfer these data into a latent Gaussian
variable. Liu et al. (2012) proposed a semiparametric
Gaussian copula for one-way network inference. For
a p × n matrix Y, Liu et al. (2012) considered it as
n samples of a p−dimensional vector (Y1j , . . . , Ypj).
Liu et al. (2012) assumed that there exist functions
f = {fi}pi=1 such that for j = 1, . . . , n:

(f1 (Y1j) , . . . , fp (Ypj)) ∼mNp

(
0p,Θ

−1
p×p

)
,

where Θp×p is an unknown precision matrix. In
this case Yj = (Y1j , . . . , Ypj) is said to follow a non-
paranormal multivariate normal distribution, Yj ∼
NPN

(
0p,Θ

−1
p×p, f

)
. Then they inferred the precision

matrix Θp×p with the following objective function from
graphical lasso (Friedman et al., 2008):

min
Θp×p

tr (Θp×pS)− log |Θp×p|+ β
∑
i1,i2

Θi1i2

 ,

where S is the empirical covariance matrix of
(f1 (Y1j) , . . . , fp (Ypj)) , j = 1, . . . , n in graphical lasso,
and β is the regularization parameter controlling spar-
sity. Liu et al. (2012) used the estimated correla-

tion matrix Ŝ instead of S, estimated using Kendall’s
tau or Spearman’s rho. In particular, one defines
∆i(j, j

′) = Yij − Yij′ , so that

(Kendall’s tau)

τ̂i1i2 =
2

n (n− 1)

∑
j<j′

sign (∆i1(j, j
′)∆i2(j, j

′)) ,

(Spearman’s rho)

ρ̂i1i2 =

∑n
j=1

(
r
(c)
i1j
− r̄(c)j

)(
r
(c)
i2j
− r̄(c)j

)
√∑n

j=1

(
r
(c)
i1j
− r̄(c)j

)2 (
r
(c)
i2j
− r̄(c)j

)2
,

where r
(c)
ij is the rank of Yij among Y1j , . . . , Ypj and

r̄
(c)
j = 1

p

∑p
i=1 r

(c)
ij = 1+p

2 . Correspondingly,

Ŝi1i2 =

{
sin

(
π
2 τ̂

(c)
i1i2

)
, i1 ̸= i2,

1, i1 = i2.
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Ŝi1i2 =

{
2 sin

(
π
6 ρ̂

(c)
i1i2

)
, i1 ̸= i2,

1, i1 = i2.

Ning and Liu (2013) extended the matrix-normal dis-
tribution with Kronecker product structure to non-
Gaussian data with a similar semiparametric approach
applied on both the row vectors and the column vectors
of Y.

2.3 Background on Bigraphical lasso

Bigraphical Lasso is introduced by Kalaitzis et al.
(2013). Let Y ∈ Rn×p be a random matrix. If its rows
are generated as i.i.d. samples from N (0,Σp×p), then
the sampling distribution of the sufficient statisticY⊤Y
is Wishart (n,Σp×p). At the same time, if the columns
are generated as i.i.d. samples from N (0,Γp×p), then
the sampling distribution is Wishart (n,Γp×p). Com-
bining these sufficient statistics in a model for the entire
matrix Y as

p (Y) ∝ exp{−tr
(
Ψn×nYY⊤)− tr

(
Θp×pY

⊤Y
)
}

is equivalent to a joint factorised Gaussian distribution
for the entries of Y, with a precision matrix given by
the KS:

Ω = Ψn×n ⊕Θp×p = Ψn×n ⊗ Ip + In ⊗Θp×p. (1)

Through this representation we obtain a parameter
vector of size O

(
n2 + p2

)
instead of the usual O

(
n2p2

)
.

Given data in the form of some design matrix Y,
the Bigraphical Lasso model proposed in Kalaitzis
et al. (2013) estimates the sparse KS-structured in-
verse covariance of a matrix normal by minimising the
ℓ1-penalized negative likelihood function of (Ψn×n ,
Θp×p):

min
Θp×p,Ψn×n

{
ntr (Θp×pS) + ptr (Ψn×nT)

− log |Ψn×n ⊕Θp×p|

+ β1||Ψn×n||1 + β2||Θp×p||1
}
,

(2)

where S ≜ 1
nY

⊤Y and T ≜ 1
pYY⊤ are empirical

covariances across the samples and features respectively.
A solution simultaneously estimates two graphs — one
over the columns of Y, corresponding to the sparsity
pattern of Θp×p, and another over the rows of Y,
corresponding to the sparsity pattern of Ψn×n.

The original paper of Kalaitzis et al. (2013) proposes
a flip-flop approach first optimizing over Ψn×n, while
holding Θp×p fixed, and then optimizing over Θp×p
while holding Ψn×n fixed. They show that in case of

no regularization, the first step of the optimization
problem is reduced to

min
Ψn×n

{
ptr (Ψn×nT)− ln|Ψn×n ⊕Θp×p|

}
.

Obtaining the stationary point:

T− 1
2pT ◦ I =

1
p trp (W)− 1

2p trp (W) ◦ I , (3)

where ◦ is the Hadamard product and we define W ≜
(Ψn×n ⊕Θp×p)

−1
. The block-wise trace trp (·) is an

operator that to each np × np matrix M written in
terms of n2 many p× p blocks

M =

M11 . . . M1n

...
. . .

...
Mn1 . . . Mnn

 ,
associates the matrix of traces of each p× p block:

trp (M) =

tr (M11) . . . tr (M1n)
...

. . .
...

tr (Mn1) . . . tr (Mnn)

 ,
as defined in Kalaitzis et al. (2013). While their ap-
proach dramatically reduces the computational com-
plexity of the problem, its memory requirements (i.e.
space complexity) are prohibitive for problems involv-
ing large n or p.

Our contribution in Section 3 is to give a more effi-
cient solution in terms of computational and space
complexity.

3 SCALABLE BIGRAPHICAL
LASSO ALGORITHM

Consider the eigen-decomposition of the two preci-
sion matrices Ψn×n = UΛ1U

⊤ and Θp×p = VΛ2V
⊤,

where Λ1 ∈ Rn×n and Λ2 ∈ Rp×p are eigenvalues diag-
onal matrices and U = (uij) ∈ Rn and V = (vij) ∈ Rp
are orthogonal eigenvectors matrices associated respec-
tively to Ψn×n and Θp×p. It follows that Equation (1)
can be rewritten as

Ω = (U⊗V) [Λ1 ⊗ Ip + In ⊗ Λ2]
(
U⊤ ⊗V⊤) . (4)

Inversion of a symmetric matrix for which an eigenvalue
decomposition is provided is achieved through inversion
of the eigenvalues,

W = Ω−1 = (U⊗V) [Λ1⊗Ip+In⊗Λ2]
−1

(
U⊤ ⊗V⊤) .

Taking (
In ⊗V⊤) (In ⊗ Ip) = In ⊗V⊤,
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then
WΩ = In ⊗ Ip (5)

can be premultiplied by In ⊗V⊤ to provide(
In ⊗V⊤)WΩ = (U⊗ Ip)D

(
U⊤ ⊗V⊤)Ω, (6)

where D = [Λ1 ⊗ Ip + In ⊗ Λ2]
−1 is a diagonal matrix.

The detailed proof of Eq. (4) and Eq. (6) can be found
in the Supplementary Material A.1. Multiply both
sides of Equation (6) by In ⊗V, we have

In⊗Ip = (U⊗ Ip)D
(
U⊤ ⊗ Ip

)
(Ψn×n ⊗ Ip + In ⊗ Λ2) ,

(7)
Detailed proof of Eq. (7) can be found in the Supple-
mentary Material A.2. Eq (7) can be rewritten in a
similar form as Equation (5)

ŴΩ̂ = In ⊗ Ip,

where
Ŵ = [U⊗ Ip]D

[
U⊤ ⊗ Ip

]
and

Ω̂ = Ψn×n ⊗ Ip + In ⊗ Λ2.

We partition Ŵ and Ω̂ into blocks

Ŵ =

[
Ŵ11 Ŵ1\1
Ŵ\11 Ŵ\1\1

]
,

Ω̂ =

[
Ω̂11 Ω̂1\1
Ω̂\11 Ω̂\1\1

]
,

where Ŵ11 and Ω̂11 are p× p matrices and Ŵ\11 and

Ω̂\11 are p (n− 1)×p matrices. Then from the bottom-
left block of

ŴΩ̂ = Ŵ (Ψn×n ⊗ Ip + In ⊗ Λ2) = In ⊗ Ip (8)

we get

Ŵ\11 (ψ11Ip + Λ2) + Ŵ\1\1

(
ψ\11 ⊗ Ip

)
= 0n−1 ⊗ Ip,

where we use notation Ψn×n = (ψij)i,j=1,...,n and ψ\11
represents the corresponding sub-block. Post multiply-
ing both sides of the last equation by (ψ11Ip + Λ2)

−1

we have

Ŵ\11 + Ŵ\1\1

(ψ11Ip + Λ2)
−1
ψ21

...

(ψ11Ip + Λ2)
−1
ψn1

 = 0n−1 ⊗ Ip.

(9)
Detailed proof of Eq. (9) can be found in the Supple-
mentary Material A.3.

Decomposing Ŵ\1\1 in (n− 1) adjacent blocks Ŵ\1k ∈
R(n−1)p×p, ∀k ∈ {2, . . . , n}, then Equation (9) can be
rewritten as

Ŵ\11+Ŵ\12 (ψ11Ip + Λ2)
−1
ψ21 + . . .

· · ·+Ŵ\1n (ψ11Ip + Λ2)
−1
ψn1 = 0n−1 ⊗ Ip.

Proposition 3.1 Following the assumptions and cal-
culations above we have

trp (W) = trp

(
Ŵ

)
.

The proof of Proposition 3.1 is in the Supplementary
Material. Proposition 3.1 enables us to make use of the
stationary point given in Equation (3). As described in
Kalaitzis et al. (2013), we can partition the empirical
covariance T as

T =

[
t11 t1\1
t\11 T\1\1

]
,

where t\11 ∈ Rn−1 and T\1\1 ∈ R(n−1)×(n−1). In
particular, from the lower left block of (3) we get

t\11 =
1

p
trp

(
W\11

)
.

Taking the block-wise trace trp (·) of both sides of (9),
gives

pt\11 +A\1\1ψ\11 = 0n−1, (10)

where A⊤
\1\1 ∈ R(n−1)×(n−1) is:

A⊤
\1\1 ≜


trp

{
Ŵ\12 (ψ11Ip +Λ2)

−1
}⊤

...

trp

{
Ŵ\1n (ψ11Ip +Λ2)

−1
}⊤

 . (11)

The problem posed in Equation (10) is addressed via
a lasso regression. In Proposition 3.2 we use some
of the previous decomposition in order to reduce the
computational complexity of the problem.

Proposition 3.2 Following the assumptions and cal-
culations above we have

trp

{
Ŵ\1k (ψ11Ip +Λ2)

−1
}

=

p∑
j=1

1

ψ11 + λ2j


∑n
i=1

u2iuki

λ1i+λ21

...∑n
i=1

uniuki

λ1i+λ2p

 ,
where λ11 . . . λ1n and λ21 . . . λ2p are the diagonal values
of Λ1 ∈ Rn×n and Λ2 ∈ Rp×p, respectively. The proof
of Proposition 3.2 is in the Supplementary Material.

We note that by imposing an ℓ1 penalty on Ψ\11, the
problem posed in (10) reduces to a lasso regression
involving now only the matrix U, the diagonal of Λ1

and Λ2, and ψ11. This decomposition frees the pro-
hibitive amount of memory needed to store the matrix
Ŵ, which is of size n2p2.

The lasso regression will provide an estimation on the
first column of Ψn×n. For the update of all the other
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columns Ψ\ii we need to reiterate the same approach.
Indeed we partition Ψn×n into ψii,ψ\ii and Ψ\i\i for
i = 1, . . . , n. We then find a sparse solution of pt\ii +
A\i\iψ\ii = 0n−1 with lasso regression. Given the new
value ψ\ii we then compute the eigenvalues matrix
Λ1 and eigenvectors matrix U of Ψn×n. This will
provide the updated values to be used in Proposition
3.2. Hence, after n steps, the columns of Ψn×n are
estimated. Similarly the estimation of Θp×p, for fixed
Ψn×n, becomes directly analogous to the above simply
by transposing the design matrix (samples become
features and vice-versa) and is obtained in p steps.
In our experiments the precision matrices Ψn×n and
Θp×p are initialised as identity matrices. The empirical
mean matrix is removed from each dataset.

Algorithm 1 scBiGLasso

Input: Maximum iteration number N , tolerance ε,
m many observations of p × n matrices Y(k), k =
1, . . . ,m. β1, β2 and initial estimates of Ψn×n and

Θp×p, Ψ
(0)
n×n and Θ

(0)
p×p.

For each Y(k), T(k) ← p−1Y(k)Y(k)⊤.
T̂← 1

m

∑m
k=1 T̂

(k)

repeat
# Estimate Ψn×n :
for iteration τ = 1, . . . , N do

for i = 1, . . . , n do

Partition Ψ
(τ−1)
n×n into ψ

(τ−1)
ii ,ψ

(τ−1)
i\i and

Ψ
(τ−1)
\i\i .

Calculate A
(τ−1)
\i\i as in Equation (11) with

ψ
(τ−1)
ii .

With Lasso regression, find a sparse

solution of pti\i +A
(τ−1)
\i\i ψ

(τ)
i\i = 0n−1.

Update the eigen-decomposition of the

precision matrix Ψ
(τ)
n×n = UΛ1U

⊤

# Estimate Θp×p :
Proceed as if estimating Ψn×n with input
Y⊤, β1, β2.

∆Ψ(τ) = ∥Ψ(τ)
n×n −Ψ

(τ−1)
n×n ∥2F

∆Θ(τ) = ∥Θ(τ)
p×p −Θ

(τ−1)
p×p ∥2F

until Maximum iteration number reached, or

max
τ∗=τ−2,τ−1,τ

{
(∆Ψ(τ∗) +∆Θ(τ∗))

}
< ε, for τ ≥ 3.

The approach is summarised in Algorithm 1 for Gaus-
sian data. We point out that the convergence of Algo-
rithm 1 could also be directly verified on the value of
the objective function (2) at each step, but, due to the
computation of |Ψn×n⊕Θp×p| , when p, n >> 100 this
becomes unfeasible. Indeed, the space complexity can
be reduced from O

(
n2p2

)
to O

(
n2 + p2

)
by means of

Proposition 3.3.

Proposition 3.3 Following the assumptions and cal-
culations above we have

|Ψn×n ⊕Θp×p| =
n∏
i=1

p∏
j=1

(λ1i + λ2j) .

The proof of Proposition 3.3 is in the Supplementary
Material. It follows that:

log |Ψn×n ⊕Θp×p| =
n∑
i=1

p∑
j=1

log |λ1i + λ2j | = K.

Hence we can write the objective function as

min
Θp×p,Ψn×n

{
ntr (Θp×pS) + ptr (Ψn×nT)−K

+ β1||Ψn×n||1 + β2||Θp×p||1
}
.

Note that this scalable version of the Bigraphical Lasso
enables higher dimensional problems. This is mainly
due to the fact that in our implementation there is
no need to directly evaluate the matrix W. Instead
we just need the eigen-decomposition of the two preci-
sion matrices Ψn×n and Θp×p. In the original paper
Kalaitzis et al. (2013) at each step i the blocks of W
are explicitly updated and of course were involved in
the next step of the estimation. In particular W\ii is
computed via backward-substitution in Equation (9)
and W11 via backward-substitution in Equation (8).

In summary, as we are not interested in the estimation
of the overall Ŵ nor Ω, we will never explicitly update
them, but we will rather focus on the estimation of
Ψn×n and Θp×p. This leads to a space complexity
reduction from O(n2p2) to O(n2 + p2) by means of
Proposition 3.2 and Proposition 3.3.

0 20 40 60 80 100 120 140 160 180

Iterations

10-2

10-1

100

0.567 Tera sec

0.119 ScB sec

Tera K = 2, d
k
 = 40

ScB K = 2, d
k
 = 40

(a)

0 20 40 60 80 100 120 140 160

Iterations

10-3

10-2

10-1

100

0.549 Tera sec

0.0891 ScB sec

Tera K = 2, d
k
 = 40

ScB K = 2, d
k
 = 40

(b)

Figure 1: ScB and Tera convergence rates and times
with regularisation parameters β1 = β2 ∈ {0.01, 0.02}.

Our model provides a Scalable Bigraphical lasso algo-
rithm (ScB) and as such benefits of the same statistical
convergence properties. A subgaussian concentration
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inequality (Greenewald et al., 2019, Lemma 19, Sup-
plementary Material) gives rates of statistical conver-
gence (Greenewald et al., 2019, Theorems 1-3) of the
TeraLasso estimator as well as the Bigraphical Lasso
estimator, when the sample size is low. In Figure 1 we
show the numerical convergence rates and times of ScB
with respect to the Frobenius norm for the precision
matrix, compared to the Teralasso approach with K=2.

4 NONPARANORMAL
BIGRAPHICAL MODEL

The method in Section 3 only deals with Gaussian data,
while in real world many data come in the form of count
data. In this section, we introduce a Gaussian copula
based method to adapt Algorithm 1 for count data. We
start with the definition of the matrix nonparanormal
distribution with a Kronecker sum structure.

Definition 4.1 Consider a p × n non-Gaussian
data matrix Y. Y follows a matrix nonparanor-
mal distribution with a Kronecker sum structure
MNPNKS

(
M;Ψ−1

n×n,Θ
−1
p×p; f

)
, with mean matrixM,

and where Ψn×n and Θp×p are the row-specific and
the column-specific precision matrices, if and only
if there exists a set of monotonic transformations
f = {fij}j=1,...,n

i=1,...,p such that

vec[f (Y)] ∼mN
(
vec(M), (Ψn×n ⊕Θp×p)

−1
)
.

In this paper, we only consider the model after cen-
tering, i.e vec(M) = 0np. The choices fij (Yij) = Yij
and fij (Yij) = log Yij give us multivariate Normal
distribution and multivariate log-Normal distribution
respectively. Since we only require f to be mono-
tone, this model provides us with a wider family of
distributions to work on, thus extends the Bigraphi-
cal model to non-Gaussian data. We note that the
model in Definition 4.1 can be viewed as a latent
model, with latent variable Z = f (Y) and vec (Z) ∼
mN

(
0np, (Ψn×n ⊕Θp×p)

−1
)
.

Following the arguments in Kalaitzis et al. (2013) and
Greenewald et al. (2019), the supports of Ψn×n and
Θp×p encode the dependence structure of the row vari-
ables and the column variables, respectively. Further
discussion and mathematical details of the decompo-
sition of the latent model are in the Supplementary
Material A.7.

In the next section, we introduce a method to infer the
nonparanormal distribution without explicitly defining
f .

4.1 Estimation of the precision matrices

We now consider estimation of the precision matrices
Ψn×n and Θp×p. Like the lasso methods applied in
one-way network inference and in Gaussian Bigraphical
models, we enforce sparsity on Ψn×n and Θp×p by
regularization on the negative log-likelihood, which
gives us the objective function:

min
Ψn×n,Θp×p

{
ptr (Ψn×nT) + ntr (Θp×pS)−K

+ β1∥Ψn×n∥1 + β2∥Θp×p∥1
}
,

where T = 1
p

(
ZZ⊤) is the empirical covariance matrix

along the rows, and S = 1
n

(
Z⊤Z

)
is the empirical co-

variance matrix along the columns. The only problem
that remains now is to estimate the empirical covari-
ance matrices T and S. When estimating one-way
network, Liu et al. (2012) proposed the nonparanormal
skeptic, exploiting Kendall’s tau or Spearman’s rho,
without explicitly calculating the marginal transform-
ing function f . Similarly, we define Kendall’s tau and
Spearman’s rho along rows and columns. More specifi-

cally, let r
(c)
ij be the rank of Yij among Y1j , . . . , Ypj and

r̄
(c)
j = 1

p

∑p
i=1 rij =

p+1
2 . Define ∆i(j, j

′) = Yij − Yij′ .
We consider the following statistics:

(Column-wise Kendall’s tau)

τ̂
(c)
i1i2

=
2

n (n− 1)

∑
j<j′

sign (∆i1(j, j
′)∆i2(j, j

′)) ,

(Column-wise Spearman’s rho)

ρ̂
(c)
i1i2

=

∑n
j=1

(
r
(c)
i1j
− r̄(c)j

)(
r
(c)
i2j
− r̄(c)j

)
√∑n

j=1

(
r
(c)
i1j
− r̄(c)j

)2 (
r
(c)
i2j
− r̄(c)j

)2
.

Similarly, let r
(r)
ij be the rank of Yij among Yi1, . . . , Yin

and r̄
(r)
i = 1

n

∑n
j=1 rij =

n+1
2 . Define ∆j(i, i

′) = Yij −
Yi′j . We consider the following statistics:

(Row-wise Kendall’s tau)

τ̂
(r)
j1j2

=
2

p (p− 1)

∑
i<i′

sign (∆j1(i, i
′)∆j2(i, i

′)) ,

(Row-wise Spearman’s rho)

ρ̂
(r)
j1j2

=

∑p
i=1

(
r
(r)
ij1
− r̄(r)i

)(
r
(r)
ij2
− r̄(r)i

)
√∑p

i=1

(
r
(r)
ij1
− r̄(r)i

)2 (
r
(r)
ij2
− r̄(r)i

)2
.

And the following estimated covariance matrices using
Kendall’s tau and Spearman’s rho:

T̂j1j2 =

{
sin

(
π
2 τ̂

(r)
j1j2

)
, j1 ̸= j2,

1, j1 = j2.
(12)
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T̂j1j2 =

{
2 sin

(
π
6 ρ̂

(r)
j1j2

)
, j1 ̸= j2,

1, j1 = j2.
(13)

Ŝi1i2 =

{
sin

(
π
2 τ̂

(c)
i1i2

)
, i1 ̸= i2,

1, i1 = i2.

Ŝi1i2 =

{
2 sin

(
π
6 ρ̂

(c)
i1i2

)
, i1 ̸= i2,

1, i1 = i2.

In Algorithm 2 we summarise the Nonparanormal Scal-
able Bigraphical Lasso approach for count data.

Algorithm 2 Nonparanormal scBiGLasso

Input: Maximum iteration number N , tolerance ε,
m many observations of p× n count matrices Y(k),
k = 1, . . . ,m. β1, β2 and initial estimates of Ψn×n

and Θp×p, Ψ
(0)
n×n and Θ

(0)
p×p.

For each Y(k), calculate T̂(k) according to Equation
(12) or (13).

T̂← 1
m

∑m
k=1 T̂

(k)

repeat
# Estimate Ψn×n :
for iteration τ = 1, . . . , N do

for i = 1, . . . , n do

Partition Ψ
(τ−1)
n×n into ψ

(τ−1)
ii ,ψ

(τ−1)
i\i and

Ψ
(τ−1)
\i\i .

Calculate A
(τ−1)
\i\i as in Equation (11) with

ψ
(τ−1)
ii .

With Lasso regression, find a sparse

solution of pti\i +A
(τ−1)
\i\i ψ

(τ)
i\i = 0n−1.

Update the eigen-decomposition of the

precision matrix Ψ
(τ)
n×n = UΛ1U

⊤

# Estimate Θp×p :
Proceed as if estimating Ψn×n with input
Y⊤, β1, β2.

∆Ψ(τ) = ∥Ψ(τ)
n×n −Ψ

(τ−1)
n×n ∥2F

∆Θ(τ) = ∥Θ(τ)
p×p −Θ

(τ−1)
p×p ∥2F

until Maximum iteration number reached, or

max
τ∗=τ−2,τ−1,τ

{
(∆Ψ(τ∗) +∆Θ(τ∗))

}
< ε, for τ ≥ 3.

5 NUMERICAL RESULTS

In this Section, we implement our Scalable Bigraphical
Lasso algorithm where covariance matrices are esti-
mated using Kendall’s tau. After precision matrices
Ψn×n and Θp×p are inferred, they are transformed into
binary matrices to reveal the network structures, where
any non-zero value in the precision matrices become 1
and any zero value stays zero. We illustrate an appli-
cation of our overall approach on both synthetic and

real datasets as described in the following subsections.
Code to reproduce our results are available on GitHub.

5.1 Synthetic Gaussian Data

To demonstrate the efficiency of our Scalable Bigraphi-
cal Lasso algorithm (Algorithm 1), we generate sparse
positive definite matrices Ψn×n and Θp×p. Then sim-

ulate m many p× n Gaussian data Y
(k)
G , k = 1, . . . ,m

from mN
(
0, (Ψn×n ⊕Θp×p)

−1
)
. We plug Y

(k)
G , k =

1, . . . ,m into our implemented Algorithm 1, Bigraphical
Lasso from Kalaitzis et al. (2013) and TeraLasso from
Greenewald et al. (2019). Figure 1 shows a compari-
son between the convergence times of Algorithm 1 and
Bigraphical Lasso for increasing problem dimensions
n = p. We can observe that, as expected, Algorithm 1
converges in significantly faster times, allowing one to
tackle higher dimensional problems in practice. Table
1 shows the network recovery when n = p = 100. We
can see that our method provides high Accuracy while
improving greatly on speed; see Section 5.2 for the
definition of Accuracy.
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Figure 2: Computational convergence time (seconds)
comparison between Bigraphical Lasso (Kalaitzis et al.
(2013)) and Algorithm 1, for increasing values of the
dataset dimensions n = p.

Table 1: Comparison between computational conver-
gence times, Accuracy of Ψ and of Θ for Bigraphical
Lasso (Kalaitzis et al. (2013)), TeraLasso (Greenewald
et al. (2019)) and Algorithm 1, for a synthetic Gaussian
dataset with dimensions n = p = 100.

Method AccuracyΨ AccuracyΘ Time(s)

Biglasso 0.9032 0.9028 951.15
ScBiglasso 0.9032 0.9028 3.50
TeraLasso 0.5416 0.4323 0.3696

5.2 Synthetic count data

We generate and process Gaussian Copula-based count
data through the following steps:
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1. Generate sparse positive definite matrix Ψn×n
and Θp×p. Calculate the Kronecker sum of Ψn×n
and Θp×p.Generatem multivariate-normal vectors
of length p × n from mN

(
0,Ω−1

)
, where Ω =

Ψn×n ⊗ Ip + In ⊗Θp×p.

2. Centre each of the m multivariate-normal vectors
around their mean, and reshape the vectors into
p× n matrices X(1), . . . , X(m).

3. For each X(k), k = 1, . . . ,m, calculate the matrix

P (k) such that P
(k)
ij = Φ

(
X

(k)
ij

)
, where Φ (·) is

the cumulative density function of the standard
normal distribution.

4. For each k = 1, . . . ,m, produce the nega-

tive binomial variable Y
(k)
ij = QNB

(
P

(k)
ij , r, p

)
,

where QNB (·, r, p) is the quantile function of
Negative-Binomial (r, p), with r the number of suc-
cess to be observed and p the success rate.

Below we describe some of the criteria we use to as-
sess the recovery of the synthetic network. Denote
TP as the number of True Positives in the network
recovery, TN as the number of True Negatives in the
network recovery, FP as the number of False Positives
in the network recovery, and FN the number of False
Negatives in the network recovery, then we can define

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

Accuracy =
TP + TN

TP + TN + FP + FN
,

TPR =
TP

TP + FN
, FPR =

FP

TN + FP
.

Figure 3 shows some results from synthetic data. Figure
3 (a) is the Precision-Recall of the recovery of Ψn×n
with changing β1 (different points on the graph) and
β2 (different colours on the graph). Two arbitrary
values of β2 have been chosen to illustrate how the
results do not depend on β2. This is expected as β1
is the regularization parameter for Ψn×n, while β2
corresponds to Θp×p. A similar result is shown in
Figure 3 (b), where the Precision-Recall of the recovery
of Θp×p heavily depends on the choice of β2, regardless
of the β1 value. Figure 3 (c)(d) show that high values
of TPR and Accuracy, with low values of FPR, can
be achieved for appropriate choices of β1 and β2 in the
range [0.005, 0.016].
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Figure 3: Synthetic network recovery results. (a)
Precision-Recall of the network recovery relating to
the support of Ψn×n; (b) Precision-Recall of the net-
work recovery relating to the support of Θp×p; (c)
Accuracy vs corresponding regularization parameter
β1 (β2) of the network recovery relating to the support
of Ψn×n (Θp×p) and (d) TPR-FPR of the network re-
covery relating to the support of Ψn×n (Θp×p), where
the corresponding regularization parameter β1 (β2)
∈ {0.005 : 0.001 : 0.0016}.
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Figure 4: Synthetic network recovery. We generated
synthetic data as described in Section 5.2 using a block-
diagonal precision matrix for Θ0 plus Gaussian noise
(Left plot). On the right we plot the estimated Θ via
our method. In this example, we used β2 = 0.0002.

Figure 4 shows network recovery for another synthetic
count dataset, where the original precision matrix Θ0

was generated with block diagonals and Gaussian noise
throughout the matrix. We observe that our method
leads to good recovery of the corresponding blocks.
Further discussion on the choice of optimal regulariza-
tion parameters β = (β1, β2) is in the Supplementary
Material.

5.3 mESC scRNA-seq data
We use a single cell gene expression dataset from mouse
embryonic stem cells (mESC) available in Buettner
et al. (2015). The data consist of measurements of
gene counts in 182 single cells at different stages of the
cell cycle. We will refer to the three phases as G1, S
and G2M. About 700 genes are annotated as cell cycle
related. Of these, we considered 167 genes more active
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during mitosis, the cell division phase and last part of
the cell cycle (G2M). In our dataset there are 65 cells
in the G2M phase.

In Figures 5 and 6, we show how our model allows
the identification of the sub-population of cells that
correspond to the G2M stage. In Figure 5 we show
the estimated precision matrices for the cells (left) and
the genes (right). We use a binary transformation
where only the negative values are considered an edge
in the network. In Figure 6 we plot the corresponding
networks, over imposing the clusters found with the
label propagation approach developed by Raghavan
et al. (2007). We note that ∼ 92% of the G2M cells are
clustered in two densely connected modules (Ψ network
plot in Figure 6), while no connection is measured
between cells in different phases of the cell cycle. As
expected, on the other hand, the mitosis genes are all
densely connected in a single cluster (Θ network plot
in Figure 6).
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Figure 5: Networks recovered by our proposed Scalable
Bigraphical Lasso algorithm combined with the non-
paranormal transformation as described in Section 4.2,
(β1, β2) = (0.014, 0.001).

Figure 6: Ψ (left) and Θ (right) induced networks.

6 CONCLUSIONS

In this work, we present a Scalable Bigraphical Lasso
algorithm. In particular, we exploit eigenvalue decom-
position of the Cartesian product graph to present a
more efficient version of the algorithm presented in
Kalaitzis et al. (2013). Our approach reduces memory
requirements from O(n2p2) to O(n2 + p2), and reduces
the computational time by up to a factor of 200 in our
experiments (case p = n = 100 in Figure 2 and Table 1).
Note that comparisons for n = p > 100 were restricted
because of the memory limitation in Kalaitzis et al.
(2013). Additionally, we propose a Gaussian-copula

based model and a semiparametric approach that en-
ables the application of the proposed Bigraphical model
to non-Gaussian data. This is particularly relevant for
count data applications, such as single cell data. Fu-
ture work will include optimisation of the choice of the
regularization parameters, and potential extension to
k-way network inference for non-Gaussian data, with
k > 2.

Data availability

The code and data is available at https:

//github.com/luisacutillo78/Scalable_

Bigraphical_Lasso.git.
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Supplementary Material:
Two-way Sparse Network Inference for Count Data

A Mathematical analysis

In this Section, we provide detailed proofs for some of the properties and results in the main paper.

A.1 Proof of Equations (4) and (6)

Equation (4) in the main paper follows from the following:

Ω = Ψn×n ⊕Θp×p = UΛ1U
⊤ ⊗ Ip + In ⊗VΛ2V

⊤ = (U⊗V) [Λ1 ⊗ Ip + In ⊗ Λ2]
(
U⊤ ⊗V⊤) .

Equation (6) within the main paper follows from Equation (4). In particular, we have

(U⊗ Ip)D
(
U⊤ ⊗V⊤)Ω = (U⊗ Ip)D

(
U⊤ ⊗V⊤) (Ψn×n ⊗ Ip + In ⊗VΛ2V

⊤)
= (U⊗ Ip)D

(
U⊤ ⊗ Ip

) (
In ⊗V⊤) (Ψn×n ⊗ Ip + In ⊗VΛ2V

⊤)
= (U⊗ Ip)D

(
U⊤ ⊗ Ip

) (
Ψn×n ⊗V⊤ + In ⊗ Λ2V

⊤)
= In ⊗V⊤.

A.2 Proof of Equation (7)

Note that WΩ = Inp, therefore we can write Equation (6) as:(
In ⊗V⊤)WΩ = (U⊗ Ip)D

(
U⊤ ⊗V⊤)Ω.

Multiply both sides of the equation above by In ⊗V:(
In ⊗V⊤)WΩ (In ⊗V) = (U⊗ Ip)D

(
U⊤ ⊗V⊤)Ω (In ⊗V) .

From the right-hand side, we get (U⊗ Ip)D
(
U⊤ ⊗ Ip

)
(Ψn×n ⊗ Ip + In ⊗ Λ2). On the left-hand side, remember

that WΩ = Inp, so (
In ⊗V⊤)WΩ (In ⊗V) = In ⊗ Ip.

Indeed we get Equation (7) in the main paper.

A.3 Proof of Equation (9)

In order to prove Equation (9), we first note that, from the bottom-left block of

ŴΩ̂ =

[
Ŵ11 Ŵ1\1
Ŵ\11 Ŵ\1\1

]ψ11Ip + Λ2 . . . ψ1nIp
...

. . .
...

ψn1Ip . . . ψnnIp + Λ2

 = In ⊗ Ip

we get

Ŵ\11Ω̂11 + Ŵ\1\1Ω̂\11 = Ŵ\11 (ψ11Ip + Λ2) + Ŵ\1\1

(
ψ\11 ⊗ Ip

)
= 0n−1 ⊗ Ip.

Thus, multiplying both sides of the last equation by (ψ11Ip + Λ2)
−1

, one has

Ŵ\11 + Ŵ\1\1

(ψ11Ip + Λ2)
−1
ψ21

...

(ψ11Ip + Λ2)
−1
ψn1

 = 0n−1 ⊗ Ip.
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A.4 Proof of Proposition 3.1

Proposition 3.1 follows from the fact that[
In ⊗V⊤]W [In ⊗V] = [U⊗ Ip]D

[
U⊤ ⊗ Ip

]
= Ŵ.

Then, the p× p blocks of W and Ŵ hold a similarity relation:

Ŵij = V⊤WijV

and hence trp (W) = trp

(
Ŵ

)
.

A.5 Proof of Proposition 3.2

To prove Proposition 3.2, we note that

Ŵ\1\1 =
[
U\1 ⊗ Ip

]
D

[
U⊤

\1 ⊗ Ip

]
=

u21Ip . . . u2nIp
...

. . .
...

un1Ip . . . unnIp

D

u21Ip . . . un1Ip
...

. . .
...

u2nIp . . . unnIp

 ,

where U\1 ∈ R(n−1)×n is the matrix formed by the last n − 1 rows of U. Then, we can decompose Ŵ\1\1 in

(n− 1)× (n− 1) blocks [Ŵ\1\1]ℓ,k ∈ Rp×p, with

[Ŵ\1\1]ℓ,k =

[∑n
i=1

u(ℓ)iuki

λ1i+λ21
. . . 0

0 . . .
∑n
i=1

u(ℓ)iuki

λ1i+λ2p

]
, ℓ, k ∈ {2, . . . , n}.

Note that if we partition the Ŵ into four blocks starting from any other Ŵhh with h ∈ {1, . . . , n} the above sums
would be over i ∈ {1, . . . , h− 1, h+ 1, . . . , n}. This formulation allows us to write each trace term of Equation
(10) in the main paper as

trp

{
Ŵ\1k (ψ11Ip +Λ2)

−1
}
=


tr
{
Ŵ\1\1

}
1,k

(ψ11Ip +Λ2)
−1

...

tr
{
Ŵ\1\1

}
(n−1),k

(ψ11Ip +Λ2)
−1

 , k ∈ {1, . . . , n− 1},

More explicitly,

trp

{
Ŵ\1k (ψ11Ip +Λ2)

−1
}
=


∑p
j=1

∑n
i=1

1
ψ11+λ2j

u2iuki

λ1i+λ21

...∑p
j=1

∑n
i=1

1
ψ11+λ2j

uniuki

λ1i+λ2p

 =


∑p
j=1

1
ψ11+λ2j

∑n
i=1

u2iuki

λ1i+λ21

...∑p
j=1

1
ψ11+λ2j

∑n
i=1

uniuki

λ1i+λ2p



=

p∑
j=1

1

ψ11 + λ2j


∑n
i=1

u2iuki

λ1i+λ21

...∑n
i=1

uniuki

λ1i+λ2p

 .
A.6 Proof of Proposition 3.3

Proposition 3.3 follows from the fact that

W = Ω−1 = (U⊗V) [Λ1 ⊗ Ip + In ⊗Λ2]
−1

(
U⊤ ⊗V⊤) ,
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and

D =



1
λ11+λ21

. . . 0 . . . 0 . . . 0
...

. . .
... . . .

... . . .
...

0 . . . 1
λ11+λ2p

. . . 0 . . . 0
... . . .

...
. . .

... . . .
...

0 . . . 0 . . . 1
λ1n+λ21

. . . 0
... . . .

... . . .
...

. . .
...

0 . . . 0 . . . 0 . . . 1
λ1n+λ2p


,

where λ11 . . . λ1n are the diagonal values of Λ1 ∈ Rn×n and λ21 . . . λ2p are the diagonal values of Λ2 ∈ Rp×p.
Then, we can write

|Ψn×n ⊕Θp×p| = | (U⊗V)D−1
(
U⊤ ⊗V⊤) | = |U⊗V|2|D−1| = |U|2p|V|2n

n∏
i=1

p∏
j=1

(λ1i + λ2j)

=

n∏
i=1

p∏
j=1

(λ1i + λ2j) .

A.7 Some mathematical details for Section 4.1

Consider the p × n random matrix Y = (Yij) , i = 1, . . . , p, j = 1, . . . , n. Consider for each row vectors of Y,

Yi = (Yi1, . . . , Yin)
⊤
, i = 1, . . . , p, the marginal distributions F

(r)
1 , . . . , F

(r)
j , . . . , F

(r)
n , where the superscript (r)

denotes marginal distributions in row vector. Then by Sklar’s theorem, for a n−dimensional distribution function
Φ(0n,Ψ

−1
n×n)

, there exists copula C(r) such that

Φ{0n,Ψ
−1
n×n}

(
Φ−1

(
F

(r)
1 (Yi1)

)
, . . . ,Φ−1

(
F (r)
n (Yin)

))
= C(r)

(
F

(r)
1 (Yi1) , . . . , F

(r)
n (Yin)

)
.

That is, there exist functions f (r) =
{
f
(r)
j

}n
j=1

such that for each row vectors of Y, Yi = (Yi1, . . . , Yin)
⊤
, i =

1, . . . , p, Z
(r)
i ≡ f (r) (Yi) ∼ mN(0n,Ψn×n), where f

(r) (Yi) =
(
f
(r)
1 (Yi1) , . . . , f

(r)
n (Yin)

)
. Then we say Yi =

(Yi1, . . . , Yin)
⊤

has a nonparanormal distribution and write

Yi ∼ NPN
(
0n,Ψ

−1
n×n, f

(r)
)
.

According to Lemma 3.1 in Lafferty et al. (2012), the dependence between Yi1, . . . , Yin, i = 1, . . . , p, can be
illustrated by a Gauss-Markov Graph Gr = {Vr, Er} corresponding to precision matrix Ψn×n. This is equivalent
to have latent variable Z(r) = f (c)(Yi) ∼ mN

(
0n,Ψ

−1
n×n

)
, i = 1, . . . ,p.

Similarly, for each column vector of Y, Yj = (Y1j , . . . , Ypj)
⊤
, j = 1, . . . , n, we consider marginal distri-

butions F
(c)
1 , . . . , F

(c)
i , . . . , F

(c)
n , where the superscript (c) denotes marginal distributions in column vector. Then

by Sklar’s theorem, for a p−dimensional distribution function Φ(0p,Ψ
−1
p×p)

, there exists copula C(c) such that

Φ(0p,Θ
−1
p×p)

(
Φ−1

(
F

(c)
1 (Y1j)

)
, . . . ,Φ−1

(
F (c)
p (Ypj)

))
= C(c)

(
F

(c)
1 (Y1j) , . . . , F

(c)
n (Ypj)

)
.

That is, there exist functions f (c) =
{
f
(c)
i

}p
i=1

such that for each column vector of Y, Yj = (Y1j , . . . , Ypj)
⊤
, j =

1, . . . , n, Z
(c)
j ≡ f (c) (Yj) ∼ mN

(
0p,Θ

−1
p×p

)
, where f (c) (Yj) =

(
f
(c)
1 (Y1j) , . . . , f

(c)
p (Ypj)

)
. Then we say Yj =

(Y1j , . . . , Ypj)
⊤

has a nonparanormal distribution and write

Yj ∼ NPN
(
0p,Θ

−1
p×p, f

(c)
)
.
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The dependence between Y1j , . . . , Ypj can be illustrated by a Gauss-Markov GraphGc = {Vc, Ec} corresponding to
precision matrix Θp×p. This is equivalent to have latent variable Z(c) = f (c)(Yj) ∼ mN

(
0p,Θ

−1
p×p

)
, j = 1, . . . ,n.

Consider the Cartesian product between Gc and Gr:

Gc2Gr =
(
Vr × Vc, {(v1, v2), (v1, v

′

2)|v1 ∈ Gc, (v2, v
′

2) ∈ Er}
⋃
{(v1, v2), (v

′

1, v2)|v2 ∈ Gr, (v1, v
′

1) ∈ Ec}
)
.

According to Theorem 4.3.5 in Knauer and Knauer (2019) (where Cartesian product we defined here was called
Box product), the mapping V1 × V2 −→ Gc2Gr is bimorphism.

From the perspective of Gauss-Markov graph, we propose to view that after the Cartesian product of Gc and Gr,
the latent variables was mapped to a new set of latent variable Z for the total mateix Y, Z(c) ×Z(r) −→ Z. As in
Gauss-Markov graph, the support of precision matrix defines the adjacency matrix of the corresponding graph,
and by Cvetković et al. (1998), Cartesian product of graphs (Reffered to as ”sum” in Cvetković et al. (1998))
corresponds to the Kronecker sum of Adjacency matrices. Therefore, the Cartesian product of Gauss-Markov
graphs corresponds to the Kronecker sum of precision matrices.

Assume the overall graph illustrating relationships inside Y is the Cartesian product of the graph Gr and Gc,
denoted as Gr2Gc. Then the overall graph Gr2Gc is a Gauss-Markov Graph corresponding to precision matrix
Ψn×n ⊕Θp×p. Then we can assume for each Yij , there exists functions f = {fij}{i,j} and the latent variable

Zij = fij (Yij) such that Z(c) × Z(r) −→ Z, and

vec (Z) ≡ f (vec (Y)) ∼ mN
(
0np,Ω

−1
)
,

where Ω = Ψn×n ⊕Θp×p is the corresponding precision matrix.

B The effect of regularization parameters

Our algorithms depend on the regularization parameters β1 and β2. Figure 8 below illustrates the effect of these
parameters on the performance of our algorithms. We generated two random sparse positive-definite matrices
with a sparsity of 0.1 and non-zero entries normally distributed with mean 1 and variance 2. These were used as
precision matrices Ψ0 and Θ0 to create the Kronecker product matrix Ω0 as plotted in Figure 7. This synthetic
dataset corresponds to the experiment plotted in Figure 3 of our paper.
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Figure 7: Precision matrix Ψ0 (left), Θ0 (centre) and corresponding Kronecker product matrix Ω0 (right) for our
exemplar synthetic dataset.

In Figure 8(a)-(b) we show the Precision-Recall for the estimated precision matrices. In particular, subfigure (a)
refers to the estimate of Ψn×n when varying β1, while subfigure (b) refers to the estimate of Θp×p when varying
β2. These curves suggest that optimal choices of β1 lie within the interval [0.007, 0.01] and similarly β2 should
lie within the interval [0.006, 0.008]. When choosing values within these intervals, one tries to strike a balance
between Precision and Recall. In order to explore further the impact of the regularization parameters, we also
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Figure 8: Synthetic network recovery results. Bayesian Information Criterion and regularization parameters.(a)
Precision-Recall of the network recovery relating to the support of Ψn×n; (b) Precision-Recall of the network
recovery relating to the support of Θp×p;
Bayesian Information Criterion and regularization parameters. (c) β1-BICΨ; (d) β2-BICΘ;

computed the Bayesian Information Criteria (BIC) described in Schwarz (1978). In subfigures (c) and (d) we plot
the BIC curves corresponding to the estimated precision matrices when varying β1 and β2 respectively. BIC is an
heuristic criteria that helps selecting from several models. Ones with lower BIC values are generally preferred,
however, a lower BIC does not necessarily indicate one model is better than another and further investigation is
usually needed. The BIC curve depicted in subfigure (c) confirms the suggestion on the optimal choices for the
regularization parameters obtained with the Precision-Recall plot, but the BIC curve in subfigure (d) suggest
a different range for optimal regularization parameter in [0.01, 0.016]. Therefore, when dealing with problems
without known truth, although BIC can be used to help identify the interval of potential optimal regularization
parameters, it is not necessarily accurate and should be used with caution. Alternative methods to find the
optimal regularization parameter should be explored in the future.
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