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Abstract

This paper presents an effective method for multiple talker localisation using

only a single microphone in a room. One of the main challenge here is obtain-

ing a model that can be used for estimating the localization parameter. This

model must be sensitive to all possible speaker locations and correctly discrim-

inate their positions. The reverberant speech signal in a room environment can

be composited by the clean speech and the acoustic transfer function (ATF).

The ATF is a useful tool to describe changes of the speech source, and the ap-

proaches based on ATF can thus be used to identify talker localizations with a

single microphone. This paper presents two methods, referred to as Compos-

ite Reverberant Speech (CRS) model and Direct Training Reverberant Speech

(DTRS) model, and uses these methods for obtaining the ATF of a room. The

approaches based on proposed methods can successfully and accurately process

multi-talker localization task with single microphone. Experiments also demon-

strate the effectiveness of the proposed methods.
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(ATF), talker localization
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1. Introduction

The goal of talker localization is to automatically estimate the position of

dominant talker which may alternate frequently among multiple candidate po-

sitions in the room environment. Effective methods for successful talker local-

ization must be capable of simultaneously estimating the positions of all talkers

present. This is an important capability in various applications in a number6

of pattern recognition areas, including disease detection [1, 2], human-machine

interaction [3, 4], auditory scene analysis [5], augmented reality audio [6] and

intelligent hearing aid devices [7]. Most of these applications require real-time

processing of the signals. Further, the estimation of sound source location is

frequently used in the subsequent processing stages, such as sound source sep-

aration [8, 9], sound source classification [10] and automatic speech recognition12

[11].

A common approach to talker localization relies on sound signal and utilizes

time delay cues for localization by microphone arrays [3, 12]. It splits the mi-

crophone array on pairs and estimates the time difference of arrival (TDOA) at

different microphone pairs, using e.g., the generalized cross-correlation (GCC)

algorithm [13]. The position of sound source can be determined by the triangu-18

lation rule given a set of signal frames via using some filter tools (e.g., Bayesian

filters) from different microphones pairs [14]. The TDOA-based method be-

comes unreliable when the individual TDOA estimates are inaccurate to begin

with. A series of methods for improving the TDOA estimation problem have

been proposed, where both the multipath and so far unexploited information

among multiple microphone pairs were taken into account [15, 16, 17]. However,24

the microphone-array based systems are depend on large-size equipment and of-

ten computationally expensive, making them almost impracticable for real-time

speech processing applications.

In this context, the ability to localize sound using a single microphone has

emerged as an interesting, low-complexity and enlightening sound processing
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domain. Indeed, the technique of single-channel sound source localization could30

be applied to a wider range of devices, especially for some small and low-power

device with limited computational resources. For example, the wearable device

and smart phone etc., which would be quite important to some commerce ap-

plications and disaster relief tasks (e.g., we can use mobile sensors to localize

people who were buried under rubble in the earthquake by following their voice).

Current examples of single microphone sound source location generally use the36

accessory information obtained from the external ear, such as head-related trans-

fer functions (HRTFs), to localize the sound source [18, 19]. However, since

they have to simultaneously extract and separate parameters of orientation and

distance features, their accuracies are therefore still quite low. Other existing

single microphone sound source location techniques mainly use learning-based

mapping procedures, accompanied with the use of external pinnae and/or inner-42

earcanals. For example, the work presented in [20] can only locate the types of

sources for which it is trained for, therefore its performance might be affected

by unknown sources. Further, a novel algorithm based on single microphone

combined with an additional visual model is proposed recently [21].

Most of the work to date on the localization of sound sources is approached

for the case of a single speech source, which is might not be appropriate in a48

number of situations. As in the cocktail-party scenario, for applications such as

multi-conferencing, various gaming setups, and also human-computer interac-

tion (HCI), it is often desirable to be able to distinguish between different simu-

lataneous speakers. This requires sound source location to be extended to more

complex and demanding problems. Recent work has focused on simultaneous

speaker location [22, 23]. However, these methods were based solely on acoustic54

signal processing techniques and some utilized large-aperture microphone ar-

rays. Therefore, the task of talker localization with a single microphone is still

a challenging problem due to 1) the multiple voices of different talkers present,

where an estimation model is required to switch from one talker to another,

frequently using only a single-channel input; 2) the representation of positional

characteristics obtained from signal frames which contain potential interference,60
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noise and reverberation.

To address these challenges, we propose novel approaches in this study. Gen-

erally, a reverberant speech can be linearly represented by the clean speech and

acoustic transfer function (ATF) [24]. The ATF indicates transfer informa-

tion of the speech signal in a room environment independent of the number of

microphones. Therefore, even with single microphone, we also can capture the66

discriminative signal from different locations of speakers by using features based

on the ATF. However, the ATF cannot be obtained directly, which has to be

estimated from reverberant speech (also viewed as observed speech signal) using

a clean speech model. In our study, we use Gaussian Mixture Model (GMM) to

model clean speech features. By so doing, the approach can be independent of

talker’s utterance texts, because as widely known that it is difficult to obtain72

utterance texts in talker localization tasks. To estimate the ATF from reverber-

ant speech, we proposed two approaches, i.e., Composite Reverberant Speech

(CRS) model and Direct Training Reverberant Speech (DTRS) model. In the

CRS model, GMMs of the reverberant speech cepstrums are obtained by sepa-

rately training clean speech GMM and single Gaussian model (SGM) (see Fig.

3) of the acoustic transfer function at each location in cepstrum domain, and78

then composing them (see Fig. 4). In DTRS model, the reverberant speech

GMMs are directly trained from the speech signals recorded at each talker loca-

tion in cepstrum domain (see Fig. 5). Finally, the ATF can be estimated from

the obtained reverberant speech GMM by using trained clean speech GMM.

Based on above introduction, the main idea of our solution is to talker

localization task that focuses on capturing the discriminative feature during the84

signal transferring from each location. In this way, this issue is reducible to a

training task to get the ATF, which can be used to estimate the talker location.

Meanwhile, it is not required to implement these approaches relying on a large

number of signal filter or sensor tools. Since ATF is inherent information of

speech and independent of the number of microphone, the approach based on

the ATF can successfully process single microphone-based tasks. However, once90

the environmental conditions (e.g., layout, wall material) change significantly,
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ATF will become inappropriate for unknown indoor environment. Therefore,

the main contribution of this paper is twofold, namely, a) this paper provides

methods of CRS and DTRS and uses these to implement the ATF estimation;

b) this paper proposes a novel solution using only a single microphone, which

can accurately discriminate multi-talker locations in the room environment.96

This paper is organized as follows: Section 2 reviews the related works.

Sections 3 presents the proposed methods, including descriptions of CRSmodel,

DTRS model, ATF estimation based on these models and technical details

of talker localization implementation. These are followed by an experimental

evaluation in Section 4. Finally, conclusions are presented in Section 5.

2. Related Works102

Broadly, the existing localization methods can be divided into four main

categories: a) time difference of arrival (TDOA) estimation based methods [16,

17, 25, 26, 27]; b) subspace-based methods adapted from classical spectrum

estimation theory, such as multiple signal classification (MUSIC) [28, 29, 30,

31] and estimation of signal parameters via rotational invariance (ESPRIT)

algorithms [32]; c) steered-response power (SRP) based methods [33, 34, 35]; d)108

independent component analysis (ICA) based methods [36, 37, 38, 39, 40].

Time difference of arrival (TDOA) is widely used for single source localiza-

tion [41]. For systems with more than one microphone, we can first estimate

the time TDOA among the signals captured by different microphones, using

e.g., the generalized cross-correlation (GCC) algorithm [13], steered-response

power (SRP) [42] and its phase transferred version (SRP-PHAT) [43]. Then114

the position of sound source (speaker) can be determined by the triangulation

rule given a set of TDOA’s from different microphones pairs [14]. This basic

bearing estimation process forms the foundation of most of the microphone-

array based source-localization techniques, even though many algorithms may

formulate and solve the problem from a different theoretical perspective [44].

Recently, several TDOA-based methods have also been proposed for multiple120
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source localization [26, 27]. However, the microphone-array based systems are

depend on large-size equipment and often computationally expensive, making

them almost impracticable for real-time speech processing applications. An

overview of TDOA estimation techniques can be found in [41].

For multiple-speaker localization, some methods are able to localize a num-

ber of sound sources in overdetermined conditions (i.e., sound sources number126

is equal or less than microphones number) [29], such as multiple signal classifi-

cation (MUSIC) algorithm [28, 29, 30, 31]. MUSIC can estimate the directional

of arrivals (DOAs) based on the eigen decomposition for the covariance matrix

of observation vectors, but the accuracy is vulnerable to noise. Hu et al. [31]

have proposed a novel MUSIC method by applying the relative sound pressure

measurements of the higher-order microphone array in noisy environment. An-132

other popular subspace-based method for DOA estimates is estimation of signal

parameters by rotational invariance techniques (ESPRIT), which is more robust

to array imperfections than MUSIC because it exploits the rotational invariance

property in the signal subspace created by two subarrays [45]. However, these

subspace methods in general, require a prior information on the number of active

sources, which are often unavailable or difficult to obtain. Also while ESPRIT138

has a lower computational cost in comparison with MUSIC, it may still fail for

directions where the estimation function is singular [46].

Maximizing the steered response power (SRP) of a beamformer is also used

to estimate DOAs of multiple sources [33]. The main idea of the SRP is to steer

the microphone array to all possible candidate source locations and find one

where the response power is highest, typically using some frequency weighting.144

Furthermore, SRP with phase transform (SRP-PHAT) algorithm is also used

for sound source localization [34, 35], which features robustness in noisy and

reverberant environments. Although SRP based methods can provide excellent

DOA estimation accuracy, two important problems prevent their widespread use

in DOA estimation: a) computational cost due to performing a time-consuming

search process over some space [47, 33], and b) robustness to additive noise [45].150

Derived as a solution to the blind source separation (BSS), independent
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Figure 1: Training of mixed speech models of talkers using a model composition.

component analysis (ICA) methods achieve multiple source localization by di-

rectional sparsity of sound sources [36, 37, 38, 39]. The work of [36] proposes im-

plementing ICA in regions of time-frequency domain for multiple sound sources

localization and assumes that the number of sound sources is less than the num-

ber of microphones in each time-frequency region. Based on W-disjoint orthogo-156

nality (W-DO) assumption that only one source is active at each time-frequency

domain, sparse component analysis (SCA) is applied for multiple sound source

localization [48, 49]. Using this assumption, the problem of multiple sources lo-

calization might be solved by single source one for each time-frequency domain.

For example, Pavlidi et al. [49] and Loesch et al. [50] presented an SCA-based

method to count and localize multiple sound sources but requires one sound162

source to be dominant over others in a time-frequency zone. Most of the SCA-

based methods are dependent on the W-DO property of multiple sound sources

meaning that respective time-frequency representations of sources are located

in different time-frequency zones. However, when the number of simultaneously

occurring sources are four or above, more than one source is active in a time-

frequency zone with a high probability. It means that the W-DO assumption168

of speech signal on which these methods are relying is less accurate with the

number of actual sound sources raises, which would also affect the localization

accuracy of the SCA-based method.

7



�Talk���� �����	
����
��


������

����
	�
��

�


����������� Θ

Θ
=Θ

�
� λ

�










°=

°=

��

��

�

�

θ

θ

��
�	
������  �


!�
"���#�$������$
�������

!
��������
�"�����
��
!�	
����
��

�θ

�θ
 ���$�������

Θ
�
λ

{ }��
�%�� θθ=Θ










°=

°=

&�

��

�

�

θ

θ

Figure 2: Talkers localization using composite models of the mixed speech.

3. the Estimation of Acoustic Transfer Function

In the study presented in this paper, the acoustic transfer function was esti-

mated from observed (reverberant) speech using a clean speech model (speaker-174

dependent model). A Gaussian mixture model (GMM) was used to model the

features of the clean speech. Because the characteristics of the acoustic trans-

fer function depends on the talker’s position, the obtained acoustic transfer

function can be used to localize the talker. To estimate the location of sound

sources without an external ear, we must extract the characteristics of each

position. This is trained using training utterances at different positions. By180

using GMM source separation, we can estimate the acoustic transfer function

with some adaptation data (only several words) uttered from different positions.

Therefore, we can use the acoustic transfer function based on GMM to estimate

locations of multiple talkers.

3.1. Overview of proposed method

An overview of the proposed method for localizing speakers using a single186

microphone is shown in Figures 1 and 2. The proposed method is divided into

two steps: model training and localization. Figure 1 shows the model training

section, and Figure 2 shows the localization section. The model training section

first trains GMMs of the reverberant speech cepstrums of each speaker for all

speaker locations. Afterwards, composite GMMs of the cepstrums of the mixed
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speech signals of the speakers for all combinations of locations are obtained by192

combining these models to compose the model.

The normal distribution is a simple distribution function with a single peak

and cannot represent complex distribution shapes. Therefore, a distribution

function with multiple peaks is considered using weighted sums of multiple nor-

mal distributions, which is Gaussian Mixture Model.

If Pr(m) = wm (
∑

m wm = 1) is the prior probability (mixture weights) that198

the normal distribution (mixture elements) in the GMM with M mixtures will

be output, the output probability (likelihood) of the GMM for the input can be

expressed as:

Pr(x|λ) =

M
∑

m=1

Pr(m) Pr(x|m,λ) (1)

=

M
∑

m=1

wmN(x;µm,Σm) (2)

where λ denotes the set of GMM parameters λ = {wm, µm,Σm|m = 1, · · · ,M}.

We can use the maximum likelihood estimation method for GMM parameter204

estimation, based on the training approach. When we estimate the parameters

of a multidimensional normal distribution by the maximum likelihood estima-

tion method, the formula for each parameter is obtained by differentiating the

formula by each parameter and setting it to 0. The parameters are determined

in such a way that the sum of the likelihoods of the models for each piece of

data is maximised.210

On the other hand, a mixture factor m exists in the GMM as a hidden vari-

able. That is, the data x generated from the GMM alone is incomplete as data,

and the data (x,m) is complete only when it is observed from which mixture

element m it was generated. However, when learning a GMM using training

data x, the training data cannot be solved as simply as a normal distribution

because the mixture element m that generates it is unknown and incomplete.216

Therefore, each parameter is estimated using mixed speech models.

The localization section calculates the likelihood of the evaluation speech

9
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Figure 3: Training process for the acoustic transfer function SGM.

signal in which both speakers were speaking for the mixed speech signal models

that were composed for each combination of locations. It then returns the

combination of locations for which the likelihood was the highest as the locations

of the speakers in the evaluation speech signal.222

3.2. Composite reverberant speech model and direct training reverberant speech

model

In this research, we propose two methods for obtaining GMMs of reverber-

ant speech cepstrums for each speaker location in the model training stage as

described in the previous subsection. In one method, which is referred to as the

CRS model, GMMs of the reverberant speech cepstrums are obtained by sepa-228

rately training a GMM of the cepstrum of the clean speech signal and SGMs of

the cepstrums of the ATF at each location, and then composing them. In the

other method, which is referred to as the Directly-Trained Reverberant Model,

the GMMs are trained directly from the speech signals for each speaker loca-

tion. In both methods, the mixed speech GMMs are obtained by composing the
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reverberant speech GMMs for each speaker. However, the CRS model differs234

from the DTRS model in that the CRS model creates the reverberant speech

GMMs of each of the speakers by composing the clean speech GMM and the

SGM of ATF.

The process for training the SGMs of the ATFs used in the CRS model

is shown in Figure 3. First, in order to obtain the ATF that will be used for

training, we record speech from a speaker at a designated location. Next, we240

estimate the cepstrums of the ATFs Ĥθi
i from the recorded reverberant speech

data Xθi
i (i = 1, 2) using the GMMs of the clean speech cepstrums of the same

speaker (λSi
represents the model parameters) through maximum likelihood

estimation. Next, we learn the model parameters λθi
Hi

of the SGM of the ATF

at that particular location using the estimated ATF cepstrum. We perform

this procedure for all sound source locations. In addition, we also train the246

ATF SGM for each position for the other speaker in the same way. Since it

is normally assumed that the ATF does not depend on the speaker, it is not

necessary to carry out this procedure separately for each speaker. However, in

this research, we consider the possibility that the ATF may not necessarily be

completely independent of the speaker. Therefore, we chose to train SGMs for

the ATFs for each speaker.252

The process for creating mixed speech GMMs for speakers, using model

composition of the CRS models, is shown in Figure 4. All acoustic models

are represented in the cepstral domain. In the method that uses CRS models,

we first compose the obtained the SGMs of ATF and the clean speech GMM,

which was used for estimating the ATF, in the cepstral domain in order to

create the reverberant speech GMM (CRS model) for the given speaker at258

the given location. Next, applying the additivity of mixed speech in the linear

spectral domain, we apply the inverse discrete cosine transform (IDCT) to the

parameters λθi
Xi

of the obtained reverberant speech GMMs of each speaker and

transform them to the linear spectral domain. In the linear spectral domain, we

compose the reverberant speech models of the speakers at the given locations,

apply the log transform and the discrete cosine transform (DCT), and create264

11



�

�

θ
λ
�

�������	��
�

�



��
λ

����

����� θθ

λ
�

�

�

θ
λ
�

��	

���

���

���	�������



�������� �!������!��������

���"����

#�
���������
�$���


����������$�
����

���	���������

�

�

θ
λ
�

�������	��
�

�



��
λ

����

�

�

θ
λ
�

��	

���"����

#�
���������
�$���


����������$�
����

���	����������

���	������

�� ���������

�	��
���



�θ �θ

���	������

�� ���������

�	��
���



Figure 4: Composite model of the mixed speech of talkers using CRS model.
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Figure 5: Composite model of the mixed speech of talkers using DTRS model.

the GMM (parameter λ
(θ1,θ2)
O ) of the mixed speech cepstrum.

On the other hand, the procedure for creating mixed speech GMMs for the

speakers through model composition of DTRS models is shown in Figure 5. In

the method that directly uses DTRS models, we directly train GMMs (DTRS

models) of the reverberant speech cepstrums based on the speech data from

each location for each speaker. Afterwards, we compose the reverberant speech270

GMMs (DTRSmodels) of each speaker and create mixed speech GMMs, similar

to the process we used in the method that uses CRS models.

We compose mixed speech GMMs for all combinations of locations. We

calculate the likelihood of the evaluated mixed speech signal for the composed

mixed speech models and return the pair of locations corresponding to the GMM

for which the likelihood is the highest as the locations of the speakers. In the276

next section, we explain our method for estimating the ATFs used in the CRS
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models.

3.3. Estimation of acoustic transfer functions

The reverberant speech data of each speaker is defined as x(t). The cepstrum

of the reverberant speech can be approximated by linear summation [24], as

shown follows,282

Xcep(d;n) ≈ Scep(d;n) +Hcep(d;n), (3)

where Xcep, Scep, and Hcep represent the cepstrums of the reverberant speech,

clean speech, and ATF, and d represents the dimension, n denotes the frame

index.

We estimated the ATF Ĥθi
i (d;n) for when speaker i is speaking at location

θi based on the reverberant speech data Xθi
i (d;n) and used it to train the SGM.

µ(H
θi
i

) =
1

N

∑

n H
θi
i (n) (4)

Σ(H
θi
i

) =

1

N

∑

n(H
θi
i (n)− µ(H

θi
i

))T (Hθi
i (n)− µ(H

θi
i

)) (5)

µ(H
θi
i

) and Σ(H
θi
i

) represent the mean vector and covariance matrix of the288

SGM of the ATF. Since the weak correlation among the different components of

the cepstral vector, we assume that the covariance matrix is a diagonal matrix

to reduce the training difficulty [51, 52].

The frame sequence of the acoustic transfer function in Equation 3 is esti-

mated in an ML manner by using the expectation maximization (EM) algorithm,

which maximizes the likelihood of the reverberant speech:294

Ĥθi
i = argmax

H

Pr(Xθi
i |H,λSi

) (6)

Here, λSi
denotes the set of clean speech GMM parameters, while the suffix

S represents the clean speech in the cepstral domain. The EM algorithm is a

14



two-step iterative procedure. In the first step, called the expectation step, the

following auxiliary function is computed.

Q(Ĥθi
i | H)

= E
[

log Pr
(

Xθi
i , c | Ĥθi

i , λSi

)

| H,λSi

]

=
∑

c

Pr
(

Xθi
i , c | H,λSi

)

Pr
(

Xθi
i | H,λSi

) · log Pr
(

Xθi
i , c | Ĥθi

i , λSi

)

(7)

Here c represents the unobserved mixture component labels corresponding to

the recorded reverberant speech Xθi
i . The joint probability of observing se-300

quences Xθi
i and c can be calculated as:

Pr
(

Xθi
i , c | Ĥθi

i , λSi

)

=
∏

n(v)

wn(v) Pr
(

Xθi
i,n(v) | Ĥ

θi
i , λSi

)

, (8)

where w is the mixture weight and Xθi
i,n(v) is the cepstrum at the n-th frame

for the v-th training data. Since we consider the acoustic transfer function as

additive noise in the cepstral domain, the mean to mixture k in the model λ
X

θi
i

is derived by adding the acoustic transfer function. Therefore, Equation 8 can

be written as:306

Pr
(

Xθi
i , c | Ĥθi

i , λSi

)

=
∏

n(v)

wc
n(v)

·N
(

Xθi
i,n(v) ;µ

(Si)

n(v) + Ĥθi
i,n(v) ,Σ

(Si)
k
n(v)

)

,
(9)

whereN(Xθi
i ;µ, ·) denotes the multivariate Gaussian distribution. It is straight-

forward to derive that [53] .

Q(Ĥθi
i | H)

=
∑

k

∑

n(v)

Pr
(

Xθi
i,n(v) , cn(v) = k | λSi

)

logwk

+
∑

k

∑

n(v)

Pr
(

Xθi
i,n(v) , cn(v) = k | λSi

)

· logN
(

Xθi
i,n(v) ;µ

(Si)
k + Ĥθi

i,n(v) ,Σ
(Si)
k

)

(10)
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Here µ
(Si)
k and Σ

(Si)
k are the k-th mean vector and the (diagonal) covariance

matrix in the clean speech GMM, respectively. It is possible to train those

parameters by using a clean speech database. Next, we focus only on the term

involving H.312

Q(Ĥθi
i | H)

=
∑

k

∑

n(v)

Pr
(

Xθi
i,n(v) , cn(v) = k | λSi

)

· logN
(

Xθi
i,n(v) ;µ

(Si)
k + Ĥθi

i,n(v) ,Σ
(Si)
k

)

= −
∑

k

∑

n(v)

γk,n(v)

D
∑

d=1

{

1

2
log(2π)Dσ

(Si)
2

k,d

+

(

Xθi
i,n(v),d

− µ
(Si)
k,d − Ĥθi

i,n(v),d

)2

2σ
(Si)2

k,d











(11)

γk,n(v) = Pr
(

Xθi
i,n(v) , k | λSi

)

(12)

Here D is the dimension of the reverberant speech vector Xθi
i,n(v),n

, and µ
(Si)
k,d

and σ
(Si)

2

k,d are the d-th mean value and the d-th diagonal variance value of the

k-th component in the clean speech GMM, respectively. The maximization step

(M-step) in the EM algorithm becomes “max Q(Ĥθi
i | H)”. The re-estimation

formula can, therefore, be derived, knowing that ∂Q(Ĥθi
i | H)/∂Ĥθi

i = 0 as318

Ĥθi
i,n(v),d =

∑

k

γk,n(v)

X
θi

i,n(v),d
−µ

(S)
k,d

σ
(S)2

k,d

∑

k

γ
k,n(v)

σ
(S)2

k,d

(13)

After calculating the frame sequence data of the acoustic transfer function for

all training data, the GMM for the acoustic transfer function is created.

3.4. Creation of mixed speech models through model composition

In the CRS model method, an SGM of the ATF is trained for each speaker

and each location using the ATF Ĥθi
i calculated in the previous subsection.
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Then, the parameters λΘ
O (Θ = {θ1, . . . , θM}) of the mixed speech GMMs for324

multiple speakers are calculated through model composition using the param-

eters λθi
Hi

=
{

µ(H
θi
i

),Σ(H
θi
i

)
}

of the obtained ATF cepstrum SGMs and the

parameters λSi
of the clean speech cepstrum GMMs for each speaker. M rep-

resents the number of speakers. The parameters µ
(S)
k , Σ

(S)
k , µ(H

θi
i

) and Σ(H
θi
i

)

of the clean speech GMM and the ATF GMMs, described in the previous sub-

section, are represented as µ
(S)
cep,k, Σ

(S)
cep,k, µ

(H
θi
i

)
cep , and Σ

(H
θi
i

)
cep in this section in330

order to emphasize the fact that they refer to models in the cepstral domain,

where the subscript k denotes k-th Gaussian component.

The mixed speech spectrum is expressed as the linear sum of the reverberant

speech of each speaker as shown follows.

OΘ
spc(ω;n) =

M
∑

i=1

Xθi
spc,i(ω;n); (14)

Xθi
spc,i(ω;n) ≈ Sspc,i(ω;n) ·H

θi
spc,i(ω;n), (15)

Sspc,i(ω;n) refers to the clean speech spectrum of speaker i. Xθi
cep,i(ω;n) and

Hθi
spc,i(ω;n) denote the reverberant speech spectrum and ATF spectrum of the336

speaker at location θi and OΘ
spc(ω;n) represents the mixed speech spectrum

when each speaker speaks from their given location.

In the CRS model method, we first calculate the reverberant speech model

parameters using the model parameters of the clean speech model and the ATF

model which were modeled in the cepstral domain. Since the reverberant speech

data can be represented as a linear summation of the clean speech data and the342

ATF in the cepstral domain according to Equation 3, the mean vector (µ
(X

θi
i

)

cep,k )

and covariance matrix (Σ
(X

θi
i

)
cep,k ) of the reverberant speech can be represented as

linear summations of the mean vector and covariance matrix of the clean speech

and ATF [54].

µ
(X

θi
i

)
cep,k = µ

(Si)
cep,k + µ

(H
θi
i

)
cep,k ; (16)

Σ
(X

θi
i

)

cep,k = Σ
(Si)
cep,k +Σ

(H
θi
i

)

cep,k . (17)
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In the case of theDTRSmodel, the model parameters of the reverberant speech348

model are obtained by directly training the GMMs using the reverberant speech

data.

µ
(X

θi
i

)
cep,k =

∑

n

γk(n)X
θi
i (n)

∑

n γk(n)
(18)

Σ
(X

θi
i

)

cep,k =

∑

n

γk(n)(X
θi
i

(n)−µ
(X

θi
i

)

cep,k )T(X
θi
i

(n)−µ
(X

θi
i

)

cep,k )
∑

n
γk(n)

(19)

where γk(n) denotes posterior distribution. Note that in this research, we also

assume that the covariance matrix is diagonal for the case of the DTRS model

as well.354

Next, we calculate the model parameters λΘ
O of the mixed speech signal using

the model parameters of the reverberant speech model for each speaker obtained

from Equation 16 and 17 or from Equation 18 and 19. Since the mixed speech

signal can be represented as the linear summation of the reverberant speech

signals of each speaker in the spectral domain according to Equation 14, we

first transform λθi
Xi

from the cepstral domain to the linear spectral domain.360

The transformation of the model parameters from the cepstral domain to the

logarithmic spectral domain can be calculated by applying the inverse discrete

cosine transform to each normal distribution in the GMM.

µ
(X

θi
i

)
log = Γ−1µ

(X
θi
i

)
cep (20)

Σ
(X

θi
i

)
log = Γ−1Σ

(X
θi
i

)
cep (Γ−1)T (21)

where Γ represents the transformation matrix for the discrete cosine transform.

µ
(X

θi
i

)

log and Σ
(X

θi
i

)

log represent the mean vectors and covariance matrices of each

reverberant speech signal in the logarithmic spectral domain. Here, the covari-366

ance matrix of each of the models is defined as a diagonal matrix in the cepstral

domain. However, after undergoing the inverse discrete cosine transform, the

covariance matrix is no longer a diagonal matrix in the logarithmic spectral
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domain and has nonzero values for the covariance in the non-diagonal compo-

nents. The computations in the logarithmic spectral domain and the linear

spectral domain in the following sections are performed while taking this into372

consideration.

Next, the model parameters in the logarithmic spectral domain are trans-

formed to the linear spectral domain. In this research, we assume that the model

follows a normal distribution in the cepstral domain and in the logarithmic spec-

tral domain which is a linear transform of the cepstral domain. If it is assumed

that the logarithmic spectrum follows a normal distribution, then it is assumed378

that the linear spectrum, which is an exponential transform of the logarithmic

spectrum, follows a log-normal distribution. A log-normal distribution is a dis-

tribution in which the logarithm of the variable follows a normal distribution.

If we assume that the linear spectrum follows the log-normal distribution, then

the mean and covariance matrix can be obtained as follows using the mean and

covariance matrix of the normal distribution in the logarithmic spectral domain.384

µ
(X

θi
i

)
spc,p = exp

{

µ
(X

θi
i

)

log,p + σ
(X

θi
i

)2

log,pp /2

}

; (22)

σ
(X

θi
i

)2

spc,pq =µ
(X

θi
i

)
spc,p ·µ

(X
θi
i

)
spc,q ·

{

exp (σ
(X

θi
i

)2

log,pq )−1

}

, (23)

where µ
(X

θi
i

)
spc,p and σ

(X
θi
i

)2

spc,pq represent the p-th element of the mean vector and

the (p, q)-th element of the covariance matrix in the linear spectral domain,

respectively. Next, we compose the model parameters of the mixed speech signal

in the linear spectral domain from the model parameters of the reverberant

speech for each speaker. Here, the mean vector (µ
(OΘ)
spc,k) and the covariance390

matrix (Σ
(OΘ)
spc,k) of the mixed speech signal can be approximated as the linear

summation of the mean vectors and the covariance matrices of the reverberant

speech signals of each speaker in the linear spectral domain [55].

µ
(OΘ)
spc,k ≈

M
∑

i=1

µ
(X

θi
i

)

spc,k , Σ
(OΘ)
spc,k ≈

M
∑

i=1

Σ
(X

θi
i

)

spc,k (24)

Afterwards, we use the parameters of the mixed speech signal model (assumed

to be a log-normal distribution) to calculate the model parameters in the log-
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arithmic spectral domain (assumed to be a normal distribution). This can be396

calculated by carrying out the inverse of the procedure in Equations 22 and 23.

σ
(OΘ)2

log,pq = log

{

σ(OΘ)2

spc,pq

µ
(OΘ)
spc,p ·µ

(OΘ)
spc,q

+ 1

}

(25)

µ
(OΘ)
log,p = log µ

(OΘ)
spc,p − σ

(OΘ)2

log,pp /2 (26)

Finally, we apply the discrete cosine transform and transform the data to the

cepstral domain.

µ
(OΘ)
cep = Γµ

(OΘ)
log , Σ

(OΘ)
cep = ΓΣ

(OΘ)
log ΓT (27)

In this study, after transforming the data back to the cepstral domain, we

set the non-diagonal elements of the covariance matrix to be zero and redefine

the matrix as a diagonal matrix.402

3.5. Speaker localization by maximum likelihood criterion

Using the method described in the previous subsections, we first calculate

GMMs for the mixed speech signals for all combinations of speaker locations in

advance. Then we derive the likelihood of the composed mixed speech models

for the mixed speech signal under evaluation and return the pair of locations

that correspond to the GMM with maximum likelihood as the locations of each408

of the speakers.

Θ̂ = argmaxΘ Pr(O|λΘ
O), (28)

λΘ
O refers to the composed model of the mixed speech signal in the cepstral

domain for the combination of positions denoted by Θ.

4. Experiments

4.1. Experiment environment

In order to evaluate the proposed method, we performed a talker localiza-414

tion experiment involving a given speaker. For the speech data, we used data
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Figure 6: Experiment room environment for simulation.

of both male and female speakers randomly obtained from the ASJ research

continuous speech database (ASJ-JIPDEC) [56], and the number of speakers is

equal to a value of 2 in this research. We created reverberant speech signals for

each speaker by convolving the speech data with the impulse response that was

stored in the RWCP actual-environment speech and acoustics database [56].420

The reverberation time was 300 milliseconds. We conducted the experiment

for the case in which there were three sound source locations at 30◦, 90◦, and

150◦ and the case in which there were five sound source locations at 30◦, 70◦,

90◦, 130◦, and 150◦. Under these conditions, there were 9 combinations and

25 combinations of locations of the speakers, respectively. Figure 6 shows the

sound source locations used in the experiment described in this section.426

The speech signal was analyzed using a sampling frequency of 12 kHz, a

window width of 32 msec, and a frame shift of 8 msec. A 16-dimensional vector

of MFCCs was used as the features. In the CRS model, the GMM for the clean

speech signal of the designated speaker that was used for ATF estimation and

reverberant speech model composition was trained using 40 sentences for each

speaker. The number of mixture components in GMM was 64. The experiment432
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Figure 8: Single-talker localization accuracies (five positions)[%]

was performed using three different values for the number of sentences, which

were 1 sentence, 5 sentences, and 10 sentences, used for training the ATF SGMs

in the CRS models and the reverberant speech GMMs in the DTRS models.

The evaluation was performed using 100 1-second segments of speech. The ratio

of the power of the speakers in the evaluated mixed speech signal was an average

of approximately ±5.90 dB per segment, with a standard deviation of 2.54 dB.438

We returned the combination of locations that correspond to the mixed speech

GMM with the highest likelihood for each segment and evaluated the accuracy

rate. Note that the content of the data used for learning the clean speech signal,

the data used for learning the locations, and the data used for evaluation were

different from each other.
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4.2. Experiment results444

The difference between the CRS model and the DTRS model is the fact

that the CRS model calculates the model of the reverberant speech signal for

a single speaker by composing the clean speech model and the ATF, while the

DTRS model calculates the model by training it directly based on the rever-

berant speech. In order to evaluate the effect of this difference, we performed

sound source localization experiments for a single speaker independently for450

each speaker. We calculated the likelihood of the evaluation data (reverberant

speech) spoken by a single speaker for the reverberant speech models λθi
Xi

for

each location that were calculated using both methods and returned the loca-

tion that had the highest likelihood. We evaluated the accuracy rate of this

process. We assume that it is known which speaker is speaking.

The accuracy rate of the sound source localization for the case in which456

there were 3 locations and the case in which there were 5 locations are shown

in Figure 7 and Figure 8. The figures show that the CRS model has a higher

accuracy rate overall. In addition, the difference in the accuracy rate increases

as the number of sentences used for training the reverberant speech models

for each location decreases. This is because the DTRS model was unable to

learn the different variations in the phonemes in the reverberant speech based462

on small amounts of training data. On the other hand, in the CRS model,

the reverberant speech model was created by training the clean speech GMM

beforehand using 40 sentences and composing them. Therefore, the CRS model

was able to mitigate the amount of reduction in the accuracy even with small

amounts of training data.

In the case in which there were 5 locations for the sound source, the number468

of classes for detection is larger, and the distance between locations decreases.

Therefore, the localization accuracy rate is lower overall. However, in the case

in which the number of sentences in the training data for the reverberant speech

model was 1 sentence, the DTRS model had a 27.3 % decrease in the accuracy

rate on average compared to the case in which 10 sentences were used, while the

CRS model had only a 9.4% decrease. This result shows that the robustness474
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Figure 9: Two-talker localization accuracies [%], where the number of positions is three. Test

data consists of 100 speech segments having a time length 1 sec.
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Figure 11: Two-talker localization accuracies [%], where the number of positions is three. Test

data consists of 50 speech segments having a time length 5 sec.

against a decrease in the amount of training data is preserved even when the

number of locations increases. Since this method uses speech spoken by the user

in order to create the reverberant speech model, it is desirable for the amount

of training data per location to decrease as the number of locations increases.

While it is true that the CRS model requires several tens of sentences in order

to train the clean speech GMM, this amount does not depend on the number of480

locations. Therefore, this method is more effective as the number of locations

increases. On the other hand, in cases in which the number of locations is

small, it is possible that the amount of overall training data required in order

to directly learn the reverberant speech in the DTRS model could be smaller

than the amount of training data required in the CRS model.

Table 1 shows the comparison of results among for the proposed and the486

existing methods. Since relatively few methods have been proposed for sound

source localization using a single microphone, the method proposed was also

compared with the CSP algorithm [57]. Experimental results show that the pro-

posed methods based on both CRS and DTRS outperform existing method [58],

and are even competitive with the microphone array-based approach (CSP).

Figures 9 and 10 show the localization accuracy results for the cases of 3 and492

5 locations, respectively. In these experiments, we compared the CRS model,

the DTRS model, and an additional method, in which the mixed speech GMM

is trained without performing model composition. In the following sections, we
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Figure 12: Two-talker localization accuracies [%], where the number of positions is five. Test

data consists of 50 speech segments having a time length 5 sec.

Table 1: Comparison results with the proposed and existing methods (10 sentences) (%).

Method Three positions Five positions

Takiguchi et al [58] 84.1 64.1

CRS (Proposed) 97.2 86.8

DTRS (Proposed) 93.1 80.2

CSP (*microphone array) [57] 99.1 98.9
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refer to this model as the Directly-Trained Mixed Speech (DTMS) model. In the

DTMS model, we record the speech of speakers at different locations speaking

simultaneously and train the GMMs directly using the resulting mixed speech.498

This method is capable of training mixed speech GMMs without performing

model composition. In addition, “Both talker positions” represents the case in

which both speakers were localized correctly, and “At least one talker position

” denotes the case in which at least one speaker (as well as the case of both

speakers) was localized correctly.

If we let W represent the number of utterances for training for each location504

and Y represent the number of locations, then the number of actual utterances

per user is W ×Y (+40) for the CRS model, W ×Y for the DTRS model, and

W ×(Y 2) for the DTMS model, respectively. In addition, the expected value for

the proportion of cases in which both speakers are localized correctly is 11.1%

for the case of that there were 3 locations and 4.0% for the case in which there

were 5 locations. The expected value for the proportion of cases is 55.6%, when510

at least one speaker is localized correctly (3 locations for test) and 36.0% for

the case of 5 test locations.

Figures 9 and 10 show that the CRS model achieves a higher accuracy rate

than the other models for almost all conditions. Since the model considers

the combinations of phonemes in the mixed speech of speakers, the number of

variations is larger than the case of speech from only one speaker. Therefore, the516

CRS model achieves a high accuracy rate because it uses a sufficient amount

of data to train acoustic models for each speaker beforehand. A comparison

between the DTRS model and the DTMS model shows the accuracy rate differs

between the two models in cases in which the amount of training data is small.

However, the proportion of cases in which both speakers were localized correctly

was at most only 62.4% for the case where there were 3 locations, and 34.0% for522

the case in which there were 5 locations. This accuracy rate is not considered

very high in terms of practical application.

Next, we changed the evaluation speech signal to consist of 50 segments of

5-second long speech signals and performed the experiment. The sound source
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localization accuracy rate is shown in Figures 11 and 12. The figures show

that the accuracy rate has increased compared to the results for 5-second long528

evaluation speech signals. The accuracy rates for the DTRS and DTMS models

increased by a large amount compared to the CRS model for the cases in which

the amount of training data was large in particular. This is because the increase

in the length of the evaluation speech signals caused an increase in the amount

of information, which made it possible for models that were able to represent

mixed speech somewhat well, such as the DTRS model and DTMS model534

trained using 10 sentences, to localize speakers with a relatively high degree of

accuracy.

5. Conclusions

In this paper, we have proposed solutions to the localization task of talkers.

We address acoustic transfer function (ATF) which indicates changes of the

speech signal in a room independent of the number of microphones, and it thus540

can be used to discriminate talker locations in single microphone tasks. In

this study, we estimate the ATF from reverberant speech, using clean speech

model. We process the speech signal in the cepstrum domain, and propose

Composite Reverberant Speech (CRS) model and Direct Training Reverberant

Speech (DTRS) model to obtain reverberant speech model. In our study, we use

Gaussian Mixture Model (GMM) to model clean speech features, because the546

clean speech GMM is independent of talker’s utterance texts, we therefore can

process this task easily. Experiments are carried out to evaluate our methods,

which shows the effectiveness of the proposed methods. Therefore, the ATF is

a useful tool for estimating the localization task of talkers and we can obtain

ATF of a room from the observed signal (reverberant speech) model using the

clean speech model.552

Although our new method offers some strong advantages, we will focus our

future work on further improving it. First, the ATF estimation using Gaus-

sian Mixture Model is not optimal, and this method has a great impact on the
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quality of the reverberant environment. We still need a better feature model

to more accurately represent the transfer function, and this will further im-

prove the performance of estimation results. Second, there are theoretically558

superior methods for determining the location parameters, which should be

data-independent. Third, our model needs to be retrained when the environ-

mental conditions change significantly. Therefore, the generalization ability of

the proposed model is indeed insufficient, and there will be some limitations

in the scope of application. One of the most important pieces of future work

will be to find the essential factors underlying effective speaker localization and564

develop improved representation models for them. Additionally, we will explore

a more robust and general method for our future work.
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