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Conjugate Augmented Decoupled 3-D Parameters

Estimation Method for Near-Field Sources
Hua Chen, Member, IEEE, Zhiwei Jiang, Wei Liu, Senior Member, IEEE,

Ye Tian, Member, IEEE and Gang Wang, Senior Member, IEEE

Abstract—A near-field (NF) source localization method is
proposed for two-dimensional (2-D) direction-of-arrival (DOA)
and range estimation based on a symmetrical cross array. It first
employs the conjugate symmetry property of signal autocorrela-
tion for different time delays to construct a conjugate augmented
spatial-temporal cross correlation matrix, then the extended
steering vector is decoupled to avoid the usual multi-dimensional
(M-D) search based on the properties of the Khatri-Rao product,
and finally three one-dimensional (1-D) MUSIC type searches
are employed to obtain the results. The proposed method can
realize automatic pairing of multiple parameters associated with
each source and it also works in the underdetermined case.
Furthermore, the stochastic Cramer-Rao lower bound (CRB)
with different time delays is derived. Compared with two ex-
isting methods, simulation results demonstrate that the proposed
method provides satisfactory estimation performance for both the
DOA and range parameters at low signal-to-noise ratio (SNR)
and with a small number of snapshots.

Index Terms—Near-field, spatial-temporal, multiple-
dimensionality decoupled, cross array, automatically paired

I. INTRODUCTION

Source localization has a wide range of applications such as

radar, sonar and wireless communications [1–4]. According to

the distance from sources to the array, they can be divided into

near-field (NF) and far-field (FF) ones. In FF source localiza-

tion, also known as direction of arrival (DOA) estimation, the

plane wave assumption is normally adopted. For NF sources,

their wavefront curvature cannot be ignored as they lie in the

Fresnel area of the array aperture. Thus, the waveform of NF

sources characterized by both the DOA and range parameters

is depicted with a spherical curvature, which varies nonlinearly

with the array position.

Many efforts have been devoted to localization of FF

sources, such as the subspace based methods [5, 6] and the

sparsity based methods [7, 8]. However, these high resolution

DOA estimation methods are not directly applicable to the
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case with NF sources, as the propagation delay of NF sources,

utilizing Fresnel approximation [9], varies quadratically with

respect to sensor locations. In [10], a passive DOA and range

estimation method for NF sources based on the maximum

likelihood (ML) approach is proposed, which has a high

parameter estimation accuracy by constructing a highly non-

linear cost function with multi-dimensional (M-D) search. In

[11], an improved two-dimensional (2-D) MUSIC algorithm

is introduced to estimate the DOA and range of NF sources,

involving a 2-D search procedure. A clear drawback of the

methods in [10, 11] is their high computational complexity,

and furthermore, they suffer from the pairing problem in the

presence of multiple NF sources. On the basis of NF 2-D

MUSIC, a method based on polynomial rooting instead of

searching for range and bearing estimation is derived in [12],

which reduces the computational cost to a certain extent,

but again suffering from the same pairing problem. Then,

an oblique projection based MUSIC (OPMUSIC) algorithm

is proposed in [13], requiring several 1-D searches with a

relatively low complexity, and in [14], the number of required

searches is reduced to one. Employing higher order statistics,

a two stage-MUSIC (TSMUSIC) algorithm [15] is proposed

by constructing two different matrices to estimate the DOA

and range, respectively. But the complexity of TSMUSIC is

high due to the cumulant elements involved in the process.

One common limitation for the above-mentioned methods

is that they are only focused on the problem of 2-D parameter

positioning for NF sources, namely azimuth and range. In

the three-dimensional (3-D) NF source model, the estimated

parameters include not only azimuth and range, but also

elevation, thus leading to an even more complicated param-

eter pairing problem. Although several methods have been

reported for localization of NF sources using the spherical

coordinates system (azimuth, elevation, and range), they are

only efficacious for overdetermined or single source estimation

[16–18]. Moreover, two cumulant based localization methods

are introduced for 3-D NF sources in [19, 20]. Although the

algorithms proposed in [13, 15] can also be directly extended

to 3-D NF source positioning, they require more array sensors

than the number of sources.

In this paper, a conjugate augmented spatial-temporal lo-

calization method for NF sources1 is proposed employing a

cross array. We first use the spatial-temporal characteristics of

the array received data and the conjugate symmetry property

1Becasuse an FF source can be considered as a special NF one when range
r approaches ∞, the proposed method can also be adapted to mixed NF and
FF sources.
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of signal autocorrelation to increase the degrees of freedoms

(DOFs), and then use the properties of the Khatri-Rao product

and the 1-D MUSIC algorithm to obtain the estimated angle

or range. This method can realize automatic pairing of the

estimated parameters, and more importantly, it can correctly

retrieve the parameter information in the underdetermined

case, i.e. when the number of sources is larger than or equal

to the number of array sensors.

Notations: Matrices and vectors are denoted by boldfaced

capital letters and lower-case letters, respectively. For an inte-

ger M , [M ] is defined as the set
{

−M, · · · , 0, · · · , M
}

.

|·| denotes the absolute value of a scalar or cardinality of a set.

The superscript (·) T , (·) ∗, (·)H and (·)−1 stand for transpose,

conjugate, conjugate transpose, and inverse, respectively. The

notations E {·}, δ(·), ⊗, ⊙, ID, JD represent the statistical

expectation, Dirac function, Kronecker product, Khatri-Rao

(KR) product, the D×D identity matrix, the D×D exchange

matrix with ones on its antidiagonal and zeros elsewhere,

respectively. diag{Z} represents diagonal elements of the

matrix Z. blkdiag{Z1,Z2} represents a block diagonal matrix

with diagonal entries Z1 and Z2. tr(·), vec(·), and det[·]
denote the trace, vectorization and determinant of a matrix,

respectively.

II. SIGNAL MODEL

...

..
.
..
.

...

..

....

kj

kq

ka
kb

kr

ks

x

y

z

d

..

Fig. 1. 3-D localization configuration for NF sources.

As shown in Fig. 1, there are K NF, narrowband, spa-

tially and temporally uncorrelated sources {sk(n)}
K
k=1 (n =

1, 2, ..., N , N denotes the number of snapshots) impinging

onto a symmetric cross array consisting of two uniform linear

arrays (ULAs). The ULA on x-axis is denoted as array x,

whose element indices are [Mx] =
{

−Mx, · · · , Mx

}

and the total number of sensors is given by Nx = |[Mx]|.
Similarly, the ULA on y-axis is represented as array y, whose

indices are denoted as [My] =
{

−My, · · · , My

}

and

its number of sensors is Ny = |[My]|. The element spacing of

each array is d (d ≤ λ/4, where λ denotes signal wavelength).

In Fig. 1, let θk and ϕk denote the elevation and azimuth

angles of the k-th signal, respectively, and αk and βk denote

the angles between the k-th signal and the x and y axes,

respectively. If αk and βk are determined, θk and ϕk can be

uniquely identified. Let the array center be the phase reference

point, the signals received by the two ULAs can be expressed

as:

xm(n) =
K
∑

k=1

sk(n)e
−jτmx,k + nmx

(n) (1)

ym(n) =
K
∑

k=1

sk(n)e
−jτmy,k + nmy

(n) (2)

where xm(n) and ym(n) are the received signals of the m-th

sensor of array x and array y, respectively, τmx,k and τmy,k

are the phase delays of the k-th signal to the m-th sensor of

array x and array y, respectively, nmx
(n) and nmy

(n) are the

corresponding Gaussian noises. With the Fresnel approxima-

tion in [20], τmx,k and τmy,k can be expressed as,

τmx,k=ωxkm+ φxkm
2 (3)

τmy,k=ωykm+ φykm
2 (4)

where

ωxk = − 2πd
λ cosαk, φxk = πd2

λrk
sin2αk

ωyk = − 2πd
λ cosβk, φyk = πd2

λrk
sin2βk.

(5)

Further, (1) and (2) can be written in a more compact form

as follows,

x(n) =Axs(n)+nx(n) (6)

y(n) =Ays(n)+ny(n), (7)

where x(n) and y(n) denote the output vectors of array x

and array y, respectively, Ax= [a(ωx1, φx1), ...,a(ωxk, φxk)]
with a(ωxk, φxk) = [e−j[ωxk(−Mx)+φxk(−Mx)

2], · · · ,
e−j(ωxkMx+φxkMx

2)]T denotes the manifold matrix of array

x, and Ay is similarly defined. nx(n) and ny(n) represent

the additive Gaussian noise vectors for the two ULAs.

Since ωxk and φxk are only related to αk and rk,

a(ωxk, φxk) is simplified into ax(αk, rk) in the follow-

ing derivations and similarly, a(ωyk, φyk) is simplified in-

to ay(βk, rk), and the pair (ωk, φk) can be determined by

(αk, βk, rk) based on the array signal model.

III. PROPOSED METHOD

A. Algorithm Description

In order to make full use of the spatial-temporal 2-D

characteristics, x(n) and y(n) are divided into L frames

according to the principle of maximum overlap in the time

domain [21]. The l-th (l = 1, 2, · · · , L) frame data can be

expressed as:

Xl = [x(l),x(l + 1), · · · ,x(l +N − L)]
Yl = [y(l),y(l + 1), · · · ,y(l +N − L)]

(8)

With the array signal model described in Section 2, the

delay cross-correlation item of measured data x(n) and y(n)
satisfies the following relationship

rm1,m2
(l − 1 + L)

= E{xm1
(n+ l − 1)y∗m2

(n)}

=

K
∑

k1=1

[ax,m1
(αk1

, rk1
)a∗y,m2

(βk1
, rk1

)

×Rss(k1, l − 1 + L)] + δ(m1)δ(m2)δ(l − 1)σ2
w

(9)
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rm1,m2
(−(l − 1) + L)

= E{xm1
(n)y∗m2

(n+ l − 1)}

=
K
∑

k1=1

[ax,m1
(αk1

, rk1
)a∗y,m2

(βk1
, rk1

)

×Rss(k1,−(l − 1) + L)] + δ(m1)δ(m2)δ(l − 1)σ2
w
(10)

where m1 = −Mx, · · · , 0, · · · ,Mx,m2 = −My, · · · , 0, · · · ,

My, l = 1, 2, · · · , L, σ2
w denotes the noise power, Rss(k1, l1)

represents the entry at the k1-th row and l1-th (l1 = 1, 2, · · · ,
2L−1) column of the signal delay autocorrelation matrix Rss,

Rss(:, l1) = diag{E{Sl+l1−LS
H
l }}, and Sl = [s(l), s(l +

1), · · · , s(l +N − L)].
By arranging rm1,m2

(l1)(l1 = 1, 2, · · · , 2L− 1), we have

Rxy = [rxy(1), rxy(2), · · · , rxy(2L− 1)]
= (A∗

y(β, r)⊙Ax(α, r))Rss + σ2
wRw0

(11)

where rxy(l1) = [r−Mx,−My
(l1), · · · , rMx,−My

(l1), · · · ,
r−Mx,My

(l1), · · · , rMx,My
(l1)]

T . Note that there is only one

nonzero element in Rw0, that is, Rw0(
NxNy+1

2 , L) = 1.

As indicated in [21], the signal delay autocorrelation func-

tion is of conjugate symmetry, and then we can have the

following expressions

r∗xy(l2 + L)

= [(A∗

y(β, r)⊙Ax(α, r))Rss(:, l2 + L)]∗ + σ2
wδ(l2)rw0

= [(Ay(β, r)⊙A∗

x(α, r))Rss(:, L− l2)] + σ2
wδ(l2)rw0

(12)
r∗xy(L− l2)

= [(A∗

y(β, r)⊙Ax(α, r))Rss(:, L− l2)]
∗ + σ2

wδ(l2)rw0

= [(Ay(β, r)⊙A∗

x(α, r))Rss(:, l2 + L)] + σ2
wδ(l2)rw0

(13)

where l2 = 1, 2, · · · , L − 1 and rw0 is an extremely sparse

vector, with only rw0(
NxNy+1

2 ) = 1 and other elements equal

to 0.

By combining equations from (11) to (13), the following

conjugate augmented cross-correlation matrix can be con-

structed

R̃xy =

[

Rxy

R∗
xyJ(2L−1)

]

=

[

A∗
y(β, r)⊙Ax(α, r)

Ay(β, r)⊙A∗
x(α, r)

]

Rss + σ2
w

[

Rw0

Rw0J(2L−1)

]

= ÃxyRss + σ2
wR̃w0

(14)

Then, calculate the covariance matrix of R̃xy as

R̃=E
{

R̃xyR̃
H
xy

}

=ÃxyR̃sÃ
H
xy + σ4

wR̃w (15)

where R̃s = E
{

RssR
H
ss

}

is the covariance matrix of signal

delay autocorrelation matrix Rss, and R̃w is extremely sparse,

with only R̃w(
NxNy+1

2 ,
NxNy+1

2 ) = 1.

Performing eigenvalue decomposition (EVD) on R̃, we

obtain:

R̃ = UsΣsU
H
s +UnΣnU

H
n (16)

where Us and Un are signal subspace and noise subspace,

respectively, and Σs and Σn are the corresponding diagonal

eigenvalue matrices.

According to the relationship between Khatri-Rao product

and Kronecker product, (11) can be rewritten as:

Rxy

= [a∗y(β1, r1)⊗ ax(α1, r1), · · · ,a
∗

y(βK , rK)⊗ ax(αK , rK)]

×Rss + σ2
wRw0

(17)

For simplicity, ax(α, r), ay(β, r) and ãxy represent an

arbitrary column vector of Ax, Ay and R̃xy respectively.

According to the symmetry of array structure, a∗y(β, r) can

be decomposed into the following form [14, 22]:

a∗y(β, r)

=























ej(−My)ωy

ej(−My+1)ωy

. . .

1
. .

.

ej(My−1)ωy

ejMyωy







































ej(−My)
2φy

ej(−My+1)2φy

...

ej(−1)
2φy

1

















= ζ∗

y (β)υ
∗

y(β, r)
(18)

where ζy(β) ∈ C
Ny×(My+1) only contains the angle β

information of the source, and υy(β, r) ∈ C
(My+1)×1 contains

both the angle β and range information as shown in Eq. (5).

Then, a∗y(β, r)⊗ ax(α, r) can be rewritten as:

a∗y(β, r)⊗ax(α, r) = (ζ∗

y (β)υ
∗

y(β, r))⊗ (INx
ax(α, r)) (19)

Similarly,

ay(β, r)⊗a∗x(α, r) = (ζy(β)υy(β, r))⊗ (INx
a∗x(α, r)) (20)

Therefore,

ãxy =

[

(ζ∗
y (β)υ

∗
y(β, r))⊗ (INx

ax(α, r))
(ζy(β)υy(β, r))⊗ (INx

a∗x(α, r))

]

(21)

According to the property of the Kronecker product, we

have

(A⊗B)(C⊗D) = AC⊗BD. (22)

Then, (21) can be rewritten as follows

ãxy =

[

(ζ∗
y (β)υ

∗
y(β, r))⊗ (INx

ax(α, r))
(ζy(β)υy(β, r))⊗ (INx

a∗x(α, r))

]

=

[

(ζ∗
y (β)⊗ INx

)(υ∗
y(β, r)⊗ ax(α, r))

(ζy(β)⊗ INx
)(υy(β, r)⊗ a∗x(α, r))

]

=

[

C1(β)(υ
∗
y(β, r)⊗ ax(α, r))

C2(β)(υy(β, r)⊗ a∗x(α, r))

]

=

[

C1(β)
C2(β)

] [

(υ∗
y(β, r)⊗ ax(α, r))

(υy(β, r)⊗ a∗x(α, r))

]

(23)

where C1(β) = ζ∗
y (β)⊗INx

and C2(β) = ζy(β)⊗INx
, both

of which contain only the angle β information of the source.

Next, define C(β) that is only related to β:

C(β) =

[

C1(β)
C2(β)

]

(24)
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Based on the rank reduction principle [9, 22], a new matrix

can be constructed that is related to angle β:

D(β) = CH(β)UnU
H
n C(β) (25)

With (25), an estimator about β can be obtained:

β̂ = argmax
β

1

det[D(β)]
(26)

With the same operation as (18), ax(α, r) can be decom-

posed into:

ax(α, r) = ζx(α)υx(α, r) (27)

Rewrite equation (23) as:

ãxy

=

[

C1(β)
C2(β)

] [

(υ∗
y(β, r)⊗ ax(α, r))

(υy(β, r)⊗ a∗x(α, r))

]

=

[

C1(β)
C2(β)

]

×

[

(IMy+1υ
∗
y(β, r)⊗ ζx(α)υx(α, r))

(IMy+1υy(β, r)⊗ ζ∗
x(α)υ

∗
x(α, r))

]

=

[

C1(β)
C2(β)

]

×

[

(IMy+1 ⊗ ζx(α))(υ
∗
y(β, r)⊗ υx(α, r))

(IMy+1 ⊗ ζ∗
x(α))(υy(β, r)⊗ υ∗

x(α, r))

]

=

[

C1(β)
C2(β)

] [

E1(α)(υ
∗
y(β, r)⊗ υx(α, r))

E2(α)(υy(β, r)⊗ υ∗
x(α, r))

]

=

[

C1(β)
C2(β)

] [

E1(α)
E2(α)

]

×

[

(υ∗
y(β, r)⊗ υx(α, r))

(υy(β, r)⊗ υ∗
x(α, r))

]

(28)

where ζx(α) ∈ C
Nx×(Mx+1), E1(α) = IMy+1 ⊗ ζx(α) and

E2(α) = IMy+1 ⊗ ζ∗
x(α), all of which contain only the angle

α information of the source, while υx(α, r) ∈ C
(Mx+1)×1

contains both the angle α and range information. Then, we

define E(α) that is only related to α:

E(α)=

[

E1(α)
E2(α)

]

(29)

Based on (29), another matrix related to both angle α and

β can be constructed:

F(β, α) = EH(α)CH(β)UnU
H
n C(β)E(α). (30)

Substituting the estimated parameter β̂ into F(β̂, α), another

estimator in regard to the angle parameter α̂ can be obtained:

α̂ = argmax
α

1

det[F(β̂, α)]
(31)

After obtaining the angle parameters of NF sources accord-

ing to (26) and (31), substitute α̂, β̂ into the classic MUSIC

spectral function to construct the spectral peak search function

about the range parameter r as follows:

r̂k = argmax
r

f(α̂k, β̂k, r) =
1

ãHxy(α̂, β̂, r)UnUH
n ãxy(α̂, β̂, r)

(32)

TABLE I
SUMMARY OF THE PROPOSED METHOD.

Input: N snapshots of the two ULA output vectors: {x(t), y(t)}Nn=1
.

Output: 2-D DOA and range estimates of NF signals: α̂k , β̂k and r̂k .

Step 1 Construct the conjugate augmented cross-correlation matrix

R̃xy with (11) and (14).

Step 2 Estimate and perform subspace decomposition on R̃ to get Un.
Step 3 Construct and search through D(β) to obtain angles βk with (26).

Step 4 Construct and search through F(β̂, α) to obtain angles αk with (31).

Step 5 Construct and search through f(α̂, β̂, r) to obtain ranges rk with (32).

At this point, the paired 2-D DOA and range parameters can

be automatically obtained without any additional operation.

The proposed method is summarized in Table I.

Remark 1: As several 1-D spatial spectrum searching proce-

dures are required in the proposed method, the computationally

efficient root-MUSIC method [23] can be applied to estimate

the 2-D DOA and range parameters to reduce the complexity.

As for the ESPRIT method [24], we have to construct some

rotation invariant matrices that can not be easily achieved in

this method.

Remark 2: The advantage of the proposed method is clari-

fied as follows: 1) The proposed method employs the conjugate

symmetry property of signal autocorrelation for different time

delays to construct a conjugate augmented spatial-temporal

cross correlation matrix; 2) three 1-D MUSIC-type searches

are constructed, based on the properties of the Khatri-Rao

product on the extended steering vector, which avoids the usual

M-D search; 3) the proposed method can realize automatic

pairing of multiple parameters associated with each source

and it also works in the underdetermined case, as opposed to

two existing representative algorithms [13, 15]; 4) the proposed

method provides satisfactory estimation performance for both

the DOA and range parameters in both low signal-to-noise

ratio (SNR) and small number of snapshots conditions.

B. Discussion

1) Maximum Number of Distinguishable Sources

We first analyze (25) about the spectral function of β.

CH(β)Un ∈ C
2Nx(My+1)×(2NxNy−K) has full row rank, so

we have

2Nx(My + 1) ≤ 2NxNy −K ⇒

K ≤ 2Nx(Ny −My − 1) = Nx(Ny − 1)
(33)

From (33), it can be seen that if β is to be correctly

estimated, the upper limit of K is Nx(Ny−1), i.e., the number

of sources must not be greater than Nx(Ny − 1). In the same

way, we analyze the spectral functions of α and r, namely

(31) and (32), and can also obtain an upper limit for K. It is

easy to see that these two upper limits are both higher than

the value in (33), so it is omitted here.

Next, construct another delay cross-correlation function

rm1,m2
(l− 1+L) = E{ym2

(n+ l− 1)x∗
m1

(n)}, and then the

spectrum search function will be firstly constructed related to

α, whose function form is the same as in (25), i.e.

D(α) = CH(α)UnU
H
n C(α) (34)
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where CH(α)Un ∈ C
2Ny(Mx+1)×(2NyNx−K). Since

CH(α)Un is of full row rank, we have

2Ny(Mx + 1) ≤ 2NyNx −K ⇒

K ≤ 2Ny(Nx −Mx − 1) = Ny(Nx − 1)
(35)

Combining (33) and (35) together, it can be concluded that

the proposed algorithm can detect at most min{Nx(Ny − 1),
Ny(Nx − 1)} targets.

2) Computational Complexity

For computational complexity, we mainly consider the

following parts: construction of the expansion matrices,

EVD implementation and MUSIC spectral search. The

method in [15] constructs one Nx × Nx, one Ny × Ny , one

(4My + 1) × (4My + 1) and one (4Mx + 1) × (4Mx + 1)
matrices, and implements their EVDs, so it has a complexity

of O
{

9(N2
x +N2

y )N + 9(4Mx + 1)
2
N + 9(4My + 1)

2
N

+4/3(N3
x +N3

y )+4/3(4Mx + 1)3+4/3(4My + 1)
3

+πN2
x/∆θα + πN2

y /∆θβ
}

, where ∆θα and ∆θβ are

the search intervals for α and β, respectively. With

similar analysis, the complexity of the method in [13]

is O
{

(N2
x +N2

y )N +(Mx + 2)2Mx + (My + 2)2My +
4/3(N3

x+N3
y )+4/3(Mx + 2)3+4/3(My + 2)3+π(Mx + 2)2

+π(My + 2)
2
/∆θβ +Ran ·K · (N2

x +N2
y )/∆r

}

/∆θα,

where Ran = 2D2/λ− 0.62(D2/λ)1/2 (D denotes the array

aperture), and ∆r is the search interval for r. However,

the proposed algorithm constructs one 2NxNy × (2L − 1)
matrix and then implements its EVD, followed by three 1-D

searches. Therefore, the proposed algorithm has a complexity

of O
{

NxNy(N − L+ 1)(2L− 1) + (2NxNy)
2(2L− 1)

+4/3(2NxNy)
3 + πNx(Ny + 1)(2NxNy)

2/∆θβ
+ πK · (Nx + 1)(Ny + 1)

2
Nx(NxNy)/∆θα+

Ran ·K(2NxNy)
2
/∆r

}

, which is higher than those of [13]

and [15].

IV. CRAMER-RAO LOWER BOUND

In this section, we analyze the stochastic Cramer-Rao lower

bound (CRB), which is an estimation benchmark for the vari-

ance of unbiased estimators. Under the stochastic assumption,

a closed-form expression of the stochastic CRB is derived for

both 2-D DOA and range parameters of NF sources, which is

summarized in the following.

By concatenating the received data of the two ULA arrays

in (8), namely,

Zl =

[

Xl

Yl

]

, (36)

the time delays covariance matrix of Zl can be calculated as

follows,

R̃l1 = Zl+l1−LZH
l . (37)

Then, define a vector of unknown parameters as Φ =
[

ΩT ρT σ2
w

]T
, Ω =

[

α β r
]T

with α =
[θ1, θ2, ..., θK ]T , β = [β1, β2, ..., βK ]T , r = [r1, r2, ..., rK ]T ,

and ρ = [ρ1,ρ2, ...,ρ2L−1]
T is a K(2L − 1) × 1

vector with each element ρl1 represented as ρl1 =
[Pl1(1, 1), · · · ,Pl1(k, k), · · · ,Pl1(K,K)], where Pl1 =
Sl1−L+lS

H
l .
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Fig. 2. 3-D scattergram of six NF sources.

According to the Slepian-Bangs formulation [25, 26], the

Fisher information matrix (FIM) of Φ, which is based on the

time delays covariance matrices R̃1, R̃2, . . . , R̃2L−1, is given

by

FIMi,j =

2L−1
∑

l1=1

(N + L− 1)tr

(

∂R̃l1

∂Φi
R̃−1

l1

∂R̃l1

∂Φj
R̃−1

l1

)

.

(38)

By vectorizing the matrix R̃l1 , we have

r̃l1 = vec(R̃l1)

= (

[

A∗
x(α, r)

A∗
y(β, r)

]

⊙

[

Ax(α, r)
Ay(β, r)

]

)Pl1 + σ2
wvec(Rwl1

)

(39)

where

Rwl1
=

{

IMxMy
, l1 = L

0, l1 ̸= L
(40)

With (39), (38) can be rewritten in a compact matrix form

as follows,

FIM =

(

∂r̃

∂ΦT

)H

C−1
r̃

(

∂r̃

∂ΦT

)

(41)

where r̃ = [̃rT1 , . . . , r̃
T
2L−1]

T , and Cr̃ =
blkdiag

{

Cr̃1
, · · · ,Cr̃2L−1

}

with each element

Cr̃l1
= 1

N+L−1R̃
T
l1
⊗ R̃l1 .

Next, we partition ∂r̃
∂ΦT as

∂r̃

∂ΦT
= [ D̃ Λ̃ ] (42)

where D̃ = [D̃T
1 , . . . , D̃

T
2L−1]

T and Λ̃ = [Λ̃T
1 , . . . , Λ̃

T
2L−1]

T

with the element denoted as D̃l1 = (
∂r̃l1
∂α ,

∂r̃l1
∂β ,

∂r̃l1
∂r ) and

Λ̃l1 = (
∂r̃l1
∂ρ ,

∂r̃l1
∂σ2

w
).

By left-multiplying matrix C
−

1

2

r̃
with D̃ and Λ̃ in (42), we

obtain
˜̃
D = C

−
1

2

r̃
D̃ and

˜̃
Λ = C

−
1

2

r̃
Λ̃. Further, (41) can be

changed to

FIM =





˜̃
D

H ˜̃
D

˜̃
D

H ˜̃
Λ

˜̃
Λ

H ˜̃
D

˜̃
Λ

H ˜̃
Λ



 (43)

Finally, the CRB of the parameter of interest Ω, namely the

2-D DOAs and ranges can be obtained as

CRBΩ = ˜̃
D

H

Π⊥

˜̃
Λ

˜̃
D (44)
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Fig. 3. RMSE versus SNR in Example 2 (N = 400, L = 50, K=2, (50◦, 60◦, 0.8λ) and (90◦, 100◦, 1.3λ)).
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Fig. 4. RMSE versus snapshots in Example 3 (SNR = 5dB, L = 50, K= 2).
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Fig. 5. RMSE versus frames in Example 4 (SNR = 5dB, N = 100, K=2).

where Π⊥

˜̃
Λ

= I− ˜̃
Λ( ˜̃Λ

H ˜̃
Λ)−1 ˜̃Λ

H

.

V. SIMULATION RESULTS

In this section, simulation results are provided to demon-

strate the performance of the proposed algorithm, in compari-

son with OPMUSIC [13] and TSMUSIC [15], where d = λ/4,

all NF signals are of equal power σ2
s , and the SNR is defined

as 10log10
(

σ2
s/σ

2
w

)

. Define the estimation root-mean-square

error (RMSE) from V Monte Carlo trials as:

RMSE =

√

√

√

√

1

KV

V
∑

v=1

K
∑

k=1

(

x̂
(v)
k − xk

)2

. (45)

Example 1: Test for maximum number of distinguish-

able sources - There are six uncorrelated NF sources

from (20◦, 35◦, 0.2λ), (40◦, 55◦, 0.25λ), (60◦, 80◦, 0.3λ),
(80◦, 95◦, 0.35λ), (100◦, 115◦, 0.4λ), and (120◦, 135◦, 0.45λ)
impinging onto a symmetric cross array with Mx = My = 1
, i.e., each ULA has only 3 sensors and the total number

of elements of the cross array is 5. The SNR, the number

of snapshots N , the number of frames L and Monte Carlo

trials are set to be 30dB, 1000, 100 and 50, respectively. The

estimation result is shown in Fig. 2, where it can be seen

that all the six NF sources have been identified and the 3-D

parameters can be paired correctly, showing that the proposed
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Fig. 6. RMSE versus frames in Example 5 (SNR = 10dB, K=2, (50◦, 60◦, (0.8 +△λ)λ) and (90◦, 100◦, 1.9λ)).

algorithm is working effectively for the underdetermined case.

Example 2: RMSE versus SNR - The performance of the

proposed algorithm is studied with respect to SNR. There are

three uncorrelated NF sources impinging onto a symmetric

cross array with Mx = My = 2. The number of snapshots

N , frames L and Monte Carlo trials are set to be 400, 50 and

500, respectively. From Fig. 3, we can see that the estimation

performance of the proposed algorithm is better than the

other two algorithms, especially for low SNR regions. This is

because the proposed method makes better use of space-time

information of the incident signals than the other methods.

Example 3: RMSE versus Snapshots - In this example, the

performance of the proposed algorithm is studied with respect

to the number of snapshots. The number of signals and the

number of array elements are the same as in Example 2. The

SNR is set to 5dB. The number of frames L is 50. The results

are provided in Fig. 4, from which we can see that the RMSE

of all algorithms decreases with the increase of number of

snapshots, and the estimation accuracy of the proposed method

is better than those of the other methods in both 2-D DOA and

range parameters.

Example 4: RMSE versus Frames - In this example, we

investigates the effect of different number of frames on the

estimation performance of the proposed algorithm. The sim-

ulation parameter settings are the same as in Example 3,

except for the number of frames and snapshots. The number of

snapshots N is 100 and the number of frames L varies from 2

to 99. As shown in Fig. 5, when L becomes too large (L=99),

little data is available in each frame which has a significant

detrimental effect on subsequent subspace angle estimation

accuracy, leading to a sharp increase in the RMSE.

Example 5: RMSE versus Range separation - In the last

set of simulations, the parameter settings are the same as

Example 1, except that the SNR is fixed at 15 dB, and the

range separation △λ of the first source varies from 0.1λ to

1.1λ. The RMSE versus the range separation is shown in Fig.

6. It can be seen that the 2-D angle estimates in all three

algorithms are insensitive to range separation, except for the

range estimates. In addition, it can be seen that the range

estimate has good accuracy for small range separations, as

the first source is closer to the array, which is consistent with

the analysis in [15].

VI. CONCLUSIONS

In this work, a new localization method for NF sources

has been proposed using a cross array. It can realize 3-D

parameter estimation for the underdetermined case with au-

tomatic pairing, and as it does not require simultaneous multi-

dimensional search, it has a low computational complexity. In

addition, the stochastic CRB was derived for the circumstance

with different time delays as a performance benchmark. As

demonstrated by computer simulations, it has outperformed

two existing representative algorithms.
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