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Abstract

A new framework is presented for evaluating the performance of self-consistent field methods 

in Kohn–Sham density functional theory (DFT). The aims of this work are two-fold. First, we 

explore the properties of Kohn–Sham DFT as it pertains to the convergence of self-consistent 

field iterations. Sources of inefficiencies and instabilities are identified, and methods to 

mitigate these difficulties are discussed. Second, we introduce a framework to assess the 

relative utility of algorithms in the present context, comprising a representative benchmark 

suite of over fifty Kohn–Sham simulation inputs, the scf-xn suite. This provides a new tool to 

develop, evaluate and compare new algorithms in a fair, well-defined and transparent manner.
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1. Preface

Compute power, which refers here to both the performance 

and accessibility of computer hardware, has grown signifi-

cantly over the past half-century. This increase has led to the 

rise of computational science as a discipline. In the present 

context, we are concerned with the hierarchy of methods that 

has emerged for calculating the properties of molecular and 

solid state systems by approximating the Schrödinger equa-

tion [1–3]. In particular, the most prominent method from this 

hierarchy over the past few decades has proven to be density 

functional theory (DFT) within the Kohn–Sham framework 

[4, 5]. For a variety of reasons, practitioners in both the phys-

ics and chemistry communities have deemed this level of the-

ory appropriate to tackle a range of problems at an acceptable 

computational cost [6–8]. It is, therefore, of paramount impor-

tance that implementations of Kohn–Sham DFT optimally uti-

lise the available computational resources.

Many distinct implementations to Kohn–Sham theory 

exist, differing according to the choice of basis set, whether to 

use a density matrix or explicit wavefunction formulation etc, 

each with advantages and disadvantages in the computational 

domain [2, 9–18]. When one has decided on such an approach, 

its effectiveness is limited by the efficiency and reliability of 

the available numerical algorithms. This work reviews an 

aspect of Kohn–Sham theory that is more-or-less universal 

across many of these approaches; that is, how one iterates a 

density towards so-called self-consistency. This is convention-

ally referred to as the self-consistent field procedure, and is the 

most common source of numerical divergence when solving 

the equations of Kohn–Sham theory in silico [19]. This work 

examines the effectiveness of the methods and algorithms 

used in the self-consistent field procedure, reviewing a wide 

range of available methods drawn from the literature, study-

ing the causes of divergences and inefficiencies and exploring 

how the available algorithms mitigate these potential issues. 

In order to assess the performance of the algorithms, a test 

suite is presented comprising a wide range of representative 

simulations. This test suite allows the algorithms to be judged 

according to both their robustness (ability to find a solution to 

the Kohn–Sham equations) and efficiency (speed with which 

a given solution is found) in a transparent and unbiased man-

ner. The test suite and the associated workflow constitute a 

powerful new framework for the development, testing and 

assessment of new methods and algorithms. Throughout this 

work care has been taken to present the wide range of differ-

ent methods in a consistent way, such that the similarities and 

differences of the methods are readily apparent.

2. Introduction

2.1. Background

The concept of self-consistency has been prevalent across 

many domains of physics, typically as a characteristic 

requirement when one invokes a mean-field approximation. 

For example, Hartree theory replaces the two-body Coulomb 

interaction between electrically-charged quantum particles 

with a mean-field, the Hartree potential, generated by the 

distribution of the electric charge in the system. Each par-

ticle is influenced by the Hartree potential, which in turn 

alters the distribution of charge in the system. This charge 

distribution can then be used to construct a new Hartree 

potential. The Hartree potential is self-consistent when 

these two fields are the same, i.e. the potential leads to a 

charge distribution which gives rise to the same potential. 

In fact, this was the context in which self-consistency was 

first introduced,

‘If the final field is the same as the initial field, the field will 

be called ‘self-consistent’, and the determination of self- 

consistent fields for various atoms is the main object of this 

paper’.

–D.R. Hartree (1927) [20].

Later refined by Fock [21] and Slater [22], Hartree–Fock theory 

became widely adopted in computational quantum chemistry 

to compute ground state properties of molecules [3]. Whilst 

Hartree and Hartree–Fock theory are mean-field approx imations, 

Hohenberg et al [5, 23] showed that a mean-field exists which 

reproduces the ground-state energy and particle density exactly. 

This ‘density functional theory’ allows, in principle, the compu-

tation of the exact electronic structure of any quantum system; 

however the exact density functional is not known, and must be 

approximated in any practical application of DFT. For a more 

detailed examination of the origins and physical foundations 

of Kohn–Sham theory, the reader is directed to the following 

resources [1, 4, 24], and references therein.

This work concerns the need to achieve self-consistency 

in the context of DFT simulations of atoms, molecules and 

mat erials. Namely, we focus on computing the particle den-

sity ρ(x) for a set of atomic species and positions within 

the framework of Kohn–Sham DFT. Each of the N particles 

in the system are influenced by an external potential vext 

which is uniquely defined by the species and positions of 

the atoms, the level of approximation employed, and more. 

For the purposes of this article, finding the ground state 

energy E in Kohn–Sham theory is viewed as a constrained 

minimisation problem,

E[vext] = inf
{φi}

{

EKS[{φi}]
∣

∣

∣
φi ∈ H1(R3)

∫

R3

φ∗
i (x)φj(x) = δij

i, j ∈ [1, N]
}

,

 

(1)

EKS[{φi}] =

N∑
i=1

1

2

∫
R3

|∇φi(x)|
2 +

1

2

∫
R3×R3

ρ(x)ρ(x′)

|x − x′|

+

∫
R3

ρ(x)vext(x) + Exc[ρ],

 

(2)
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where atomic units are used, and, for now, spin degrees of 

freedom are omitted. The particle density, ρ(x), is defined in 

terms of the single-particle orbitals, {φi}, via

ρ(x) =

N∑
i=1

|φi(x)|
2. (3)

That is, one must minimise the Kohn–Sham objective func-

tional equation (1) over a set of N orthogonal, normalisable 

functions {φi} whose first derivative is also normalisable, 

i.e. they exist in the Sobolev space H1(R3). The exchange-

correlation functional Exc is a yet undetermined functional 

of the density designed to capture the effects of exchange and 

correlation missing from the remainder of the functional. In 

principle, the Hohenberg–Kohn theorems guarantee that the 

Kohn–Sham objective functional is a functional of the den-

sity alone [23]. However, in the case of Kohn–Sham theory, 

recourse to an orbital-dependent functional is necessitated by 

the definition of the single-particle kinetic energy.

Explicit constrained variation of the orbitals allows one to 

approach the optimisation problem in equation  (1) directly. 

This can be done, for example, with a series of line searches 

in the direction of steepest descent of Eks with respect to the 

orbitals [25, 26]. Alternatively, assuming differentiability 

[27], the associated Lagrangian problem can be formulated, 

and the functional derivative of the Lagrangian set to zero. 

This yields the Euler–Lagrange equations for the problem, the 

solution of which is a stationary point of the functional. In 

the present context, the Euler–Lagrange equations constitute 

a nonlinear eigenvalue problem,

HKS[ρ]φi(x) = ǫiφi(x), (4)

where the Hamiltonian operator Hks depends on its eigenvec-

tors via

HKS[ρ] = −
1

2
∇2 + vext + vh[ρ] + vxc[ρ], (5)

vh[ρ](x) =

∫

R3

ρ(x′)

|x − x′|
, (6)

vxc[ρ] =
δExc

δρ
. (7)

These are the Kohn–Sham equations. The eigenvalues (quasi-

particle energies) ǫi are the Lagrange multipliers associated 

with the orbital orthonormality constraint. Solving the Kohn–

Sham equations to find a stationary point of the Kohn–Sham 

functional is a necessary but not sufficient condition for 

(local) optimality. A sufficient condition would require the 

second derivative (curvature) about the stationary point to 

be everywhere positive. Furthermore, in general, the Kohn–

Sham functional for some approximate Exc is not a convex 

functional of the orbitals, meaning that verifying global opti-

mality is a difficult task. In practice, solving the Kohn–Sham 

equations with certain methods of biasing the solution toward 

a (possibly local) minimum are often chosen rather than direct 

minimisation methods [28]. The advantages and drawbacks of 

each approach will be examined in section 4.

It is now possible to formally define what is meant by 

self-consistency. In order to construct the Kohn–Sham 

Hamiltonian, one requires a density as input ρin to compute 

the Hartree and exchange-correlation potentials. An output 

density ρout  is then calculated (non-linearly) from the eigen-

functions of the Kohn–Sham Hamiltonian

HKS[ρ
in]φi(x) = ǫiφi(x), (8)

ρout(x) =
N∑

i=1

|φi(x)|
2. (9)

In general, the input density is not equal to the output density. 

For a given external potential and exchange-correlation func-

tional, the density ρ∗ is self-consistent when ρ∗ = ρin = ρout, 

and hence the non-linear eigenvalue problem of equations (8) 

and (9) is solved. The non-linearity in equation (9) necessitates 

an iterative procedure that takes an initial estimate of the den-

sity as input and iterates this density toward a  self-consistent 

solution of the Kohn–Sham equations: the self-consistent field 

procedure, figure 1. As one might expect, an infinity of self-

consistent densities exist for a given external potential and 

exchange-correlation functional [29]. However, we are inter-

ested primarily in the subset of these densities that are local 

minima of the Kohn–Sham objective functional.

Modern computational implementations of Kohn–Sham 

theory can vary significantly due to various factors. The key 

distinguishing factor is the choice of basis set, which leads 

to the related problem of whether one treats all the electrons 

in the computation explicitly, or treats core electrons with a 

Figure 1. An iterative algorithm generates a series of perturbations 
to the density δρn in order to converge the initial guess density (top) 
to the fixed-point density ρ∗ (bottom). Example for an fcc four atom 
aluminium unit cell.
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pseudopotential [30]. Despite these differences, perhaps with 

the exception of linear scaling methods [14], the  self-consistent 

field techniques to be discussed here are adaptable to most 

implementations. Indeed, some of the most popular software, 

such as vasp [15, 31] , abinit [10, 32], quantum espresso 

[33], and castep [34], use similar default methods to achieve 

self-consistency: preconditioned multisecant methods, which 

are discussed in section 4.

2.2. Review purpose and structure

The overarching goal of this work is to quantify the utility 

of a given algorithm for reaching self-consistency in Kohn–

Sham theory. In turn, this allows us to compare and analyse 

the performance of a sample of existing algorithms from the 

literature. Assessing these algorithms requires the creation of 

a test suite of Kohn–Sham inputs, representative of a range of 

numerical issues. This test suite generates a standard which 

can be used to test, improve, and present new algorithms 

designed by method developers. Furthermore, the test suite 

allows DFT developers to more effectively assess which algo-

rithms they wish to implement. With these aims in mind, this 

article is structured in two partitions, as follows.

The first part constitutes a review of self-consistency 

in Kohn–Sham theory. As such, the relevant sections  are 

ideal for an interested party who is not actively involved 

in development to gain a more in-depth understanding of 

 self-consistency from an algorithmic perspective. In par-

ticular, this review collates decades of past literature on 

self-consistency in Kohn–Sham theory, thus elucidating con-

clusions that have become conventional wisdom. Section 3 

examines the Kohn–Sham framework abstractly from a 

mathematical and computational perspective in order to 

study where and why algorithms encounter difficulties. This 

involves, for example, a discussion on the nature of so-called 

‘charge-sloshing’, the initial guess density, sources of ill-con-

ditioning, and more. Section 4 then examines and categorises 

the range of available algorithms in present literature. A focus 

will be placed on detailing the algorithms which have proven 

to be particularly successful.

The second part then utilises the analysis presented in the 

prior sections to perform a study akin to recent benchmarking 

efforts such as GW100 [35] and the ∆-project [36] for assess-

ing reproducibility in GW and DFT codes respectively. Whilst 

the study presented here will take on a similar structure to 

these examples, it differs in the following way. The aim of the 

∆-project is to assess an ‘error’ for each DFT software in a 

given computable property compared to a reference software 

over a set of test systems. Here, we instead aim to assess the 

utility of an algorithm, rather than an error, which we do with 

two competing measures: efficiency and robustness, defined 

in section 5. A test suite of Kohn–Sham inputs is then con-

structed to target weaknesses in contemporary algorithms and 

exploit the difficulties discussed in section 3. This test suite 

is designed to be representative of the range of systems prac-

titioners may encounter and with which they may have diffi-

culties reaching convergence. Each algorithm is then assigned 

a robustness and efficiency score when tested over the full 

suite. The methods of Pareto analysis then provide a pre-

scription for the definition of optimal when there exist two or 

more competing measures of utility. Section 6 demonstrates 

these concepts by using this workflow on a selection of algo-

rithms described in section 4, implemented in the plane-wave, 

pseudo potential software castep. This study allows conclu-

sions to be drawn about the current state of self-consistency 

algorithms in Kohn–Sham codes. Finally, we discuss how one 

might utilise the test suite and workflow demonstrated here to 

present and assess future methods and algorithms.

3. Self-consistency in Kohn–Sham theory

In computational implementations of Kohn–Sham theory, 

when a user has supplied the external potential (e.g. atomic 

species and positions) and exchange-correlation approx-

imation, the Kohn–Sham energy functional is completely 

specified. The remaining parameters that are not related to 

self-consistency, such as Brillouin-zone sampling (‘k-point 

sampling’), symmetry tolerances, and so on, tune either the 

accuracy or efficiency of the calculation. In the context of self-

consistency, the user has control over a variety of parameters 

that can alter the convergence properties of the calculation. 

Hence, if a calculation is diverging due to the self-consistent 

field iterations (or converging inefficiently), the user has two 

options: adjust the parameters of the self-consistency method, 

or switch to a more reliable fall-back method. This section elu-

cidates the self-consistent field iterations so one can more 

transparently see why one’s iterations may be divergent or 

inefficient. No claim is made for providing a strictly detailed 

and rigorous treatment of the mathematical problem at hand. 

Instead, literature is cited throughout such that the interested 

reader can venture further in detail than this article provides.

3.1. Computational implementation

The central approximation involved in converting the frame-

work of Kohn–Sham theory into a form suitable for computa-

tion is called the finite-basis approximation, or the Galerkin 

approximation [28]. The orbitals φi are continuous functions 

of a continuous three dimensional variable, x. These functions 

are equivalent to vectors existing in an infinite dimensional 

vector space, spanned by a complete basis χµ. Provided this 

basis does indeed span the space, the orbitals can be expressed 

exactly as

φi(x) =

∞∑
µ=1

αiµχµ(x). (10)

Note that the basis set is required to be complete, but not nec-

essarily orthogonal,
∫

R3

χµ(x)χν(x) = Sµν = δµν . (11)

If the basis is non-orthogonal, the finite-basis Kohn–Sham 

equations generalise to include the overlap matrix, Sµν �= δµν, 

see [28] for more details. This distinction does not affect the 

ensuing analysis, and so the basis set is hereafter taken to be 

J. Phys.: Condens. Matter 31 (2019) 453001
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orthogonal for clarity. Once the basis is specified, the equa-

tions can be rearranged and solved for the infinity of coeffi-

cients to the basis αµi . In practice, one must truncate the basis 

such that it is no longer complete and instead captures only the 

most relevant regions of the formally infinite Hilbert space,

φi(x) ≈

Nb∑
µ=1

αiµχµ(x). (12)

The characteristic size of the basis Nb will depend primarily on 

the choice of basis functions. Within the finite-basis approx-

imation, the Kohn–Sham Hamiltonian becomes an Nb × Nb 

matrix, of which a subset of the eigenvalues and eigenvec-

tors is required to progress toward a solution of the non-linear 

eigenvalue problem, equations  (8) and (9). Basis functions 

which are localised about the atomic cores [37] are a popular 

choice. These tend to be particularly accurate per basis func-

tion, meaning Nb is typically the same order of magnitude as 

the number of electrons, N. Methods utilising local basis func-

tions are often able to form and diagonalise the Kohn–Sham 

Hamiltonian matrix explicitly. In such implementations, the 

Kohn–Sham energy functional can be expressed in terms of 

the density matrix,

D(x, x′) =

N∑
i=1

φ∗

i (x)φi(x
′)

=

Nb∑
µν=0

Dµνχ
∗

µ
(x)χν(x

′),

 

(13)

ρ(x) = D(x, x), (14)

rather than the orbitals, where the density matrix is also of 

dimension Nb × Nb. The Kohn–Sham energy functional has 

a closed-form expression in terms of the density matrix (see 

[28] and section  4.2), and therefore the constrained optim-

isation in equation (1) becomes an optimisation over allowed 

variations in the density matrix. From the point of view of the 

work to follow, the ability to construct, store, and optimise the 

density matrix directly is the distinguishing characteristic of 

localised basis sets with respect to the basis set considered in 

the following work: namely, the set of Nb plane-waves,

χG(x) = eiG.x, (15)

with the same periodicity as the unit cell [15, 31], labelled by 

the frequency of the plane-wave G. This basis set is delocal-

ised, meaning the functions χG are non-zero across the whole 

unit cell. The introduction of a delocalised basis results in a 

reduction in accuracy per basis function, which in turn necessi-

tates a much larger value of Nb to reproduce the same accuracy 

as a computation using localised basis sets. The advantage of a 

plane-wave, or similar, basis set lies elsewhere [15, 31]. This 

will become relevant in section 4, as certain algorithms exploit 

the ability to construct D(x, x′) explicitly. Nevertheless, much 

of the analysis to follow in this section  will remain largely 

independent of basis set. The discussion will, however, be 

framed in the language of an entirely plane-wave basis set.

3.2. The Kohn–Sham map

As already stated, Kohn–Sham theory is a constrained optim-

isation problem, equation (1). The associated Euler–Lagrange 

equations provide a method for transforming the optimisation 

problem into a fixed-point problem: the Kohn–Sham equa-

tions. That is, we seek the density ρ∗ such that it is a fixed-

point of the discretised Kohn–Sham map,

K : RNb
→ R

Nb , (16)

K[ρ∗] = ρ∗. (17)

In general, K[ρin] = ρout , where K is defined using equa-

tions (8) and (9). That is, K takes an input density which is 

used to construct the Hartree and exchange-correlation poten-

tials, then the associated Kohn–Sham Hamiltonian is diagon-

alised, and an output density is constructed as the sum of the 

square of N eigenfunctions. Formally, the Kohn–Sham map is 

a map from the set of non-interacting v-representable densi-

ties onto itself. Here, a non-interacting v-representable den-

sity is a density that can be constructed via equation (9) for 

a given Kohn–Sham Hamiltonian. The ‘size’ of this set, as a 

subset of RNb, is an open problem [27]. Hence, it is entirely 

possible that algorithms generate input densities that are not 

non-interacting v-representable; however this appears to not 

be an issue in practice4. The aim now is to generate a converg-

ing sequence of densities {ρin
0 , ρin

1 , ..., ρin
n } starting from an ini-

tial guess density ρin
0 , where ρin

n ≈ ρ∗ to within some desired 

tolerance. The ease with which this sequence can be generated 

in practice depends on the functional properties of K, which 

are examined later in this section.

3.3. Defining convergence

The Kohn–Sham map K, can be used to define a new map R, 

the residual

R[ρ∗] = K[ρ∗]− ρ∗ = 0, (18)

which transforms the fixed-point problem into a root-finding 

problem. An absolute scalar measure of convergence is thus 

provided by the norm of the residual ||R[ρin]||2, where ||.||2 is 

used to denote the vector L2-norm. However, ||R||2 is a quanti ty 

which lacks transparent physical interpretation, making it dif-

ficult to assess just how converged a calculation is by consid-

eration of ||R||2 alone. Hence, convergence is conventionally 

defined in terms of fluctuations in the total energy, a more 

tractable measure. When fluctuations in the total energy are 

sufficiently low to satisfy the accuracy requirements of the 

users’ calculation, the iterations are terminated and the calcul-

ation is converged. In practice, the total energy is often not 

calculated by evaluating the Kohn–Sham energy functional 

Eks[ρ
in
n ]. Instead, the Harris-Foulkes functional Ẽks is defined 

[38],

4 This observation is based on the fact that, in general, one can always find 

an algorithm that converges to a fixed-point density.

J. Phys.: Condens. Matter 31 (2019) 453001
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ẼKS =

N∑

i=1

1

2

∫

R3

|∇φi|
2 +

1

2

∫

R3

ρ
out(x)vh[ρ

in]

+
1

2

∫

R3

(
ρ

out(x)− ρ
in(x)

)
vh[ρ

in]

+

∫

R3

(
ρ

out(x)− ρ
in(x)

)
vxc[ρ

in] + Exc[ρ
in]

+

∫

R3

ρ
out(x)vext(x),

 

(19)

which can be shown to give the exact ground state energy cor-

rect to quadratic order in the density error about the fixed-

point density ρ∗—i.e. it is correct to O((ρ∗ − δρ)2). Note that 

it is not the Harris-Foulkes functional that is minimised dur-

ing the computation, as it possesses incorrect behaviour away 

from ρ∗ [39, 40]. However, evaluating the energy using this 

functional when near ρ∗ allows one to terminate the iterations 

at a desired accuracy earlier than if one evaluates the energy 

using the Kohn–Sham functional, which is correct to linear 

order in the density. Finally, recall that ||R||2 → 0 is the crite-

rion for solving the Kohn–Sham equations, not for finding a 

minimum of the Kohn–Sham functional. Indeed, to verify that 

a local minimiser of the Kohn–Sham functional is obtained, 

one would need to ensure all eigenvalues of the Hessian were 

positive. Such a procedure is not practical in plane-wave 

codes, and hence the exit criterion for algorithms in section 4 

is based solely on fluctuations in the total energy.

3.4. Some unique properties of K

Identifying properties unique to K can help guide and narrow 

the choice of algorithms in section 4. Firstly, we note that it 

is computationally expensive to ‘query the oracle’, mean-

ing evaluate K for a given input density to generate the pair 

{ρin
i , ρout

i } on the ith iteration. This is because, when one has 

specified ρin, finding the corresponding ρout  requires one to 

construct and diagonalise the Kohn–Sham Hamiltonian. In 

plane-wave codes, this diagonalisation is done iteratively, and 

only the relevant N eigenfunctions and eigenvalues are com-

puted. This procedure scales as approximately O(N3), and is 

(in a sense) the bottleneck of the computation [15]. Hence, 

an algorithm that uses all past iterative data optimally so 

as to reduce evaluations of K is desirable. Here, the past 

iterative data constitutes the set of n iterative density pairs 

{(ρin
i , ρout

i ) | i ∈ [0, n]}. In order to utilise this set to gener-

ate the subsequent density ρin
n+1 from some algorithm, one is 

required to store the history of iterative densities in memory. 

Each density is represented by an array that scales with Nb
5, 

meaning as the iteration number n grows large, so does the 

memory requirement of storing the entire history. Therefore, a 

limited memory algorithm is also desirable here, meaning no 

more than m of the most recent density pairs are stored. The 

final feature of computational Kohn–Sham theory that we will 

mention here is the accuracy of the initial guess, ρin
0 . A discus-

sion on the generation of the initial guess is left to later in this 

section, but it suffices to note that the initial guess is typically 

‘close’ to the converged density ρ∗. By ‘close’ we mean that 

a linear response approximation can be employed effectively, 

see section 4. As perhaps would be expected when this is the 

case, some of the most successful algorithms are able to utilise 

the past iterations cleverly with limited memory requirements, 

and employ some form of linearising approximation.

3.5. Fixed-point and damped iterations

As mentioned previously, convergence of the self-consistent 

field iterations depends on the functional properties K, where 

we recall that each K is specified by the framework of Kohn–

Sham theory plus an exchange-correlation approximation 

and external potential. Despite little being known about the 

precise functional properties of K [41–43], empirical wisdom 

allows us to make certain broad statements about it. For the 

sake of analysis, we now introduce the fixed-point iteration,

ρin
n+1 = ρout

n = K[ρin
n ]. (20)

This is perhaps the most simple iterative scheme one could 

envisage, yet it remains profoundly important from the point 

of view of functional analysis [44]. An example algorithm 

that makes use of the fixed-point iteration scheme is given in 

figure 2. This algorithm, on iteration n, constructs and diag-

onalises the Kohn–Sham Hamiltonian for a given ρin
n , and 

computes the output density ρout
n  from the N eigenvectors 

corre sponding to the lowest N eigenvalues, otherwise known 

as the aufbau principle. The fixed-point iteration is then used 

Figure 2. A flowchart detailing an example algorithm for achieving 
self-consistency using fixed-point (or Roothaan) iterations.

5 For example, in plane-wave codes, the density is represented by an array of 

size 8Nb, see [2] for more details.
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as one sets ρin
n+1 = ρ

out
n , and the procedure is repeated. For 

the algorithm in figure  2 to converge, K must be so-called 

locally k-contractive in the region of the initial guess. For the 

Kohn–Sham map to be k-contractive under the L2-norm, it 

must satisfy

||K(ρ1)− K(ρ2)||2 � k||ρ1 − ρ2||2 (21)

for some real number 0  <  k  <  1. The intuition here is that, for 

any two points in the ‘contractive region’, the map K brings 

these points closer in the L2-norm. A contractive region is sim-

ply defined as a domain in density space where equation (21) 

is true for all densities within this domain. Successive applica-

tion of K—the fixed-point iteration scheme—thus continues to 

bring these points closer toward a locally unique fixed-point, 

ρ∗. (See the Banach fixed-point theorem [45] or its generalisa-

tions [46] for k-contractive maps). Unfortunately, as section 6 

shows, the Kohn–Sham map is not locally k-contractive for 

the vast majority of Kohn–Sham inputs. However, perhaps 

surprisingly, certain calculations do lead to a k-contractive 

Kohn–Sham map, such as spin-independent fcc aluminium at 

the PBE [47] level of theory, figure 3. In these cases, sophis-

ticated acceleration algorithms tend to do little-to-nothing to 

assist convergence. The fixed-point iteration is also referred to 

as the Roothaan iteration in the physics and quantum chem-

istry communities [48]. It has been demonstrated that, in the 

context of Hartree–Fock theory, the Roothaan algorithm either 

converges linearly toward a solution or oscillates between two 

densities about the solution [49]. It is expected that this behav-

iour will carry over to Kohn–Sham theory [50].

We now define a new iterative scheme, the damped itera-

tion (or one of its many other aliases, such as Krasnosel’skii–

Mann or averaged iteration [51, 52]) such that

ρin
n+1 = ρin

n + α(K[ρin
n ]− ρin

n )

= ρin
n + αR[ρin

n ].
 (22)

Hereafter, we refer to a scheme utilising the damped iteration 

as linear mixing. This scheme constitutes a series of steps in the 

residual L2-norm steepest descent direction R weighted by the 

parameter α ∈ (0, 1). It can be shown that provided K is non-

expansive, there always exists some α such that the damped 

iteration converges [53–55]. Here, non-expansive refers to an 

instance whereby k  =  1 in equation (21), i.e. densities do not 

get further apart upon successive application of K. This prop-

erty is typically assumed, just as we also assume differentia-

bility of Eks, in theorems relating to convergence features of 

algorithms discussed in section 4 (e.g. [56]). Indeed, the past 

few decades of computation using Kohn–Sham theory has lead 

to the wisdom that one can always find some α such that one’s 

calculation converges [50], albeit often impractically slowly. 

Fortunately, rather large damping parameters of α ∼ 0.5 are 

sometimes able to significantly improve convergence, as dem-

onstrated in figure 4 [57]. In this sense, the Kohn–Sham map is 

relatively well-behaved, although many problems of physical 

interest are not so well-behaved. In these cases, sophisticated 

algorithms are required in order to accelerate and stabilise 

convergence. However, as section 6 demonstrates, even when 

recourse to a sophisticated algorithm is required, most inputs 

excluding those belonging to certain problematic classes are 

able to converge effectively. This is a testament to the Kohn–

Sham map often being dominated by its linear response within 

some relatively large region about the current iterate, a prop-

erty which is examined further in section 3.7.

The behaviour of K discussed here could be interpreted 

as arising due to the lack of convexity of the underlying 

Figure 3. Iterative convergence in the residual L2-norm ||R||2 toward a fixed-point using fixed-point iterations. Simulation of a four atom fcc 

aluminium unit cell, with k-point spacing of 2π × 0.04 Å
−1

 using the PBE functional.
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functional Eks used to generate it. Convexity is defined for-

mally in section 4, but for now it suffices to note that it can be 

taken to mean Eks has a unique minimum, which is the unique 

fixed-point of K, and moreover this minimum is global [58]. 

In other words, solving the Euler–Lagrange equations  is a 

necessary and sufficient condition to verify global optimality. 

While this is clearly an attractive quality for an energy func-

tional, not least because only the global minimum has direct 

physical meaning in Kohn–Sham theory, it is not the case here 

(in general). The lack of convexity of Eks is particularly pro-

nounced in spin-dependent Kohn–Sham theory, where it is not 

uncommon for many minima to exist, which are interpreted 

as representing different meta-stable spin states of the system 

[59]. In this case, one could, for example, employ some form 

of global optimisation in an attempt to explore the landscape 

of local minima with hopes of finding the global minimum.

In summary, while a large class of Kohn–Sham inputs are 

well-behaved and convergent for relatively high values of the 

damping parameter, many inputs, especially the increasingly 

complex ones involved in modern technologies, are not. The 

remainder of this section explores the precise characteristics 

of K that lead to ill-behaved convergence.

3.6. The Aufbau principle and fractional occupancy

The question remains of how one might go about choosing 

which N eigenfunctions of the Kohn–Sham Hamiltonian 

are used to iteratively construct the output densities toward 

convergence. For Nb  ≫  N, there is of course a large number 

of permutations of N eigenfunctions from which to choose. 

While it is perhaps taken for granted, [29] demonstrates that, 

in the case of Hartree–Fock theory, the lowest energy solution 

to the Hartree–Fock equations will necessarily be one which 

corresponds to the N eigenvectors with the lowest eigenvalues 

of Hks. This is otherwise known as the aufbau principle, and 

appears in the algorithm presented in figure 2. These eigen-

functions φi are termed ‘occupied’ orbitals, with associated 

quasi-particle energies ǫi. However, just because the exact 

ground state solution satisfies the aufbau principle does not 

guarantee that doing so at each iteration is optimal [43, 49, 60]. 

Furthermore, iteratively satisfying the aufbau principle does 

not guarantee a global, or even local, minimum of Eks will 

be obtained as a solution to the Kohn–Sham equations [28]. 

Nevertheless, iteratively satisfying the aufbau pricinple has 

proven a successful heuristic for finding minima of Eks via 

the Kohn–Sham equations. Here, the aufbau principle serves 

to bias our solution of the Kohn–Sham equations  toward a 

minimum of Eks, rather than an inflection point or maximum.

Iterative procedures utilising the aufbau principle are well-

defined and work best primarily when the input possesses a 

Kohn–Sham gap, i.e. when it is not a (Kohn–Sham) metal. 

The Kohn–Sham gap is defined in the limit of large system 

size as

Egap = ǫN+1 − ǫN , (23)

otherwise known as the HOMO-LUMO gap—the difference 

in energy between the highest energy occupied and lowest 

energy unoccupied (molecular) orbitals. When this gap dis-

appears, meaning there exists a non-zero density of states at 

the Fermi energy, convergence becomes increasingly difficult 

[25, 26]. Here, the Fermi energy µ is defined as the energy 

of the highest occupied orbital, which is the Lagrange mul-

tiplier corresponding to the constraint that the particle num-

ber N remain fixed in the minimisation of the Kohn–Sham 
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Figure 4. Iterative convergence in the residual L2-norm ||R||2 using damped iterations with α = 0.5, and undamped iterations α = 1. 

Simulation of a four atom fcc silicon unit cell, with k-point spacing of 2π × 0.04 Å
−1

 using the PBE functional.
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energy functional. Such cases are prone to the phenomenon 

of occupancy sloshing: iterations become hindered by a con-

tinual iterative switching of binary occupation of orbitals 

whose energies are close to the Fermi energy. In some circum-

stances, an aufbau solution to the Kohn–Sham equations does 

not exist for binary occupation of orbitals [27, 61–63]. For 

example, [61] demonstrates that, in the case of the C2 mol-

ecule, the Kohn–Sham solution possesses a ‘hole’ below the 

highest occupied orbital. In the context of self-consistent field 

iterations, this would mean any algorithm would continue 

to switch orbital occupancies at each iteration ad infinitum. 

This occurrence is a consequence of degeneracy in the highest 

occupied Kohn–Sham orbitals, which can occur even in the 

absence of symmetry and degeneracy in the exact many-body 

system. Here, and in other cases like this, the density should 

be constructed from a density matrix

D =

q∑
i=1

λiΨ
∗

i (x1, ..., xN)Ψi(x
′

1, ..., x′N) (24)

via

ρ(x) = TrDρ̂(x). (25)

The wavefunctions {Ψi} are Slater determinants of Kohn–

Sham orbitals corresponding to each degenerate solution 

within some q-fold degenerate subspace. After rearrangement, 

we find that the density can now be written as

ρ(x) =
∑
ǫi<µ

|φi(x)|
2 +

∑
ǫi=µ

fi|φi(x)|
2,

 (26)

where the fractional occupancies fi are determined as some 

combination of the weights λi in equation (24). This form of 

the density allows one to see more transparently that we have 

now introduced fractional occupancy of the orbitals whose 

energy is degenerate at the Fermi energy. In the example of 

C2 in [61], the degenerate subspace is first identified, and 

then the occupancies f i are varied smoothly until the energies 

of the identified orbitals are equal. This procedure, termed 

evaporation of the hole, yielded accurate energy predictions 

when compared to configuration interaction calculations. In 

this case, the Kohn–Sham degeneracy is interpreted as being 

due to the presence of strong electron correlation. These 

degeneracies lead to densities that are so-called ensemble 

 non-interacting v-representable. That is, the exact Kohn–

Sham density can no longer be constructed from a pure state 

via the sum of the square of orbitals as in equation  (3), but 

instead must be constructed from some ensemble of states via 

equations (24) and (25). The extension of Kohn–Sham theory 

to include fractional occupancy is described well in [64, 65].

This so-called ensemble extension to Kohn–Sham theory 

is also utilised when constructing a non-interacting theory 

of Mermin’s finite temperature formulation of DFT [66]. 

It is this version of Kohn–Sham theory that is usually used 

in modern Kohn–Sham codes that include fractional occu-

pancy. As we are interested primarily in how this extension 

mitigates convergence issues, the reader interested in an in-

depth discussion of finite temperature Kohn–Sham theory is 

referred to [25, 64], and references therein. Here, it suffices 

to observe that we now seek to minimise the following free 

energy functional

E[{φi}, { fi}, T] =

∞∑
i=1

1

2
fi

∫
R3

|∇φi|
2

+
1

2

∫
R3×R3

ρ(x)ρ(x′)

|x − x′|

+

∫
R3

ρ(x)vext(x) + Exc[ρ]

− TS[{ fi}],

 

(27)

where the entropy functional and density are defined respec-

tively as

S =

∞∑
i=1

fi ln( fi) + (1 − fi) ln(1 − fi), (28)

ρ(x) =

∞∑
i=1

fi|φi(x)|
2. (29)

The real-valued fractional occupancies fi ∈ [0, 1] now consti-

tute additional variational parameters alongside the orbitals. 

Minimisation of the finite temperature Kohn–Sham functional 

can be tackled directly as in [26], which is discussed in sec-

tion  4 and tested in section  6. Alternatively, the associated 

fixed-point problem can be formulated, whereby the occupan-

cies are given a fixed functional form dependent on both T and 

the Kohn–Sham Hamiltonian eigenenergies ǫi. This is other-

wise known as the smearing scheme, an example of which is 

the Fermi–Dirac function,

fi =
1

e(ǫi−µ)/T + 1
. (30)

The electronic temperature T is now an input parameter which 

determines the degree of broadening of occupancies about the 

Fermi energy, figure 5. At each iteration, the occupancies are 

updated with new values of ǫi, and this process is continued 

toward convergence. This procedure demonstrably mitigates 

occupancy sloshing for Kohn–Sham metals with large density 

of states at the Fermi energy [67, 68]6. Furthermore, intro-

ducing finite temperature also assists with sampling of the 

Brillouin zone in periodic Kohn–Sham codes. That is, interpo-

lation techniques for evaluating integrals across the Brillouin 

zone are inaccurate when many band crossings (discontinuous 

changes of occupancy) exist, i.e. in Kohn–Sham metals. This 

necessitates a fine sampling of k-space in order to accurately 

evaluate the integrals. As discussed, fractional occupancies 

negate these discontinuities, allowing for a coarser sampling of 

the Brillouin zone, meaning interpolation techniques become 

increasingly accurate—see [67, 69] for more details. In any 

case, finite electronic temperatures are a valuable numerical 

tool to assist convergence of the self-consistent field iterations 

in the event of inputs with large density of states at the Fermi 

energy. Hence, the test suite in section 5 includes many such 

6 Note that is it possible to approximately recover the zero-temperature solu-

tion [65].
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systems, and in particular a variety of electronic temperatures 

are considered.

3.7. The initial guess

As one might expect, a more accurate initial guess of the vari-

able to be optimised leads monotonically to more efficient and 

stable convergence rates [70]. In the case of self-consistent 

field methodology, and for plane-wave and similar codes, the 

initial guess charge density is often computed as a sum of 

pseudoatomic densities [15, 31]. That is, once the exchange-

correlation and pseudopotential for the atomic species in the 

computation has been specified, the charge density for these 

atoms in vacuum is calculated. Then, each individual density 

is overlaid at positions centered on the atomic cores in order to 

construct the initial guess density, figure 6. This figure demon-

strates visually the accuracy of this prescription for generating 

initial guess charge densities. Note that different consider-

ations are required in order to generate an initial guess for the 

density matrix or orbitals. The accuracy of the initial guess is, 

in part, responsible for the relative success of methods that 

employ linearising approximations, such as quasi-Newton 

methods, see section  4. Notable cases in which the initial 

guess density is relatively poor include polar materials such 

as magnesium oxide. The initial guess is charge neutral by 

construction, meaning the charge is required to shift onto the 

electro-negative species for convergence. Furthermore, inputs 

whereby the atomic species are subject to large inter-atomic 

forces can also lead to inaccurate initial guesses. This is partly 

due to the fact that the initial guess becomes exact in the limit 

of large atomic separation, and since large inter-atomic forces 

imply low inter-atomic separation, this can result in poten-

tially inaccurate initial guess densities. Such inputs are gen-

erated routinely during structure searching applications [71]. 

The test suite includes various examples of these ‘far-from-

equilibrium’ systems.

Spin polarised Kohn–Sham theory presents more serious 

issues: there is no widely successful method for generating 

initial guess spin densities. In the spin polarised or ‘unre-

stricted’ formalism, the following spin densities are intro-

duced (see [2]),

ρ
↑(x) =

∞∑
i=1

f
↑
i |φ

↑
i (x)|

2

 

(31)

ρ↓(x) =

∞∑
i=1

f
↓
i |φ

↓
i (x)|

2,

 

(32)

generated from spin up and down particles occupying sepa-

rate spin orbitals {φ↑
i ,φ

↓
i }. This leads now to two coupled 

 non-linear eigenvalue problems, one for each spin. A method 

for generating the initial guess spin densities is thus required, 

rather than just the initial guess charge density. As one, in 

general, has no knowledge of the spin state a priori, this ini-

tial guess can be relatively far away from the ground state. In 

practice, one conventionally deals with charge and spin densi-

ties, rather than spin up and spin down densities,

ρcharge(x) = ρ↑(x) + ρ↓(x), (33)

ρspin(x) = ρ↑(x)− ρ↓(x). (34)

The charge density can be initialised similarly to the spin-

independent case, with a sum of independent pseudoatomic 

charge densities. The spin density can be initialised to zero, 
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Figure 5. Functional dependence of the occupancy f  of a given 
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smearing scheme.

Figure 6. The difference between the initial guess density, 
constructed from a sum of isolated pseudoatomic densities, and the 
converged density, for a graphene nanoribbon along one dimension 
(above). The density is plotted along a one-dimensional slice across 
the axis shown in the above image.
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or be scaled by specifying some magnetic character on the 

atoms, e.g. ferromagnetic. Such a prescription typically leads 

to initial guess densities that are further away in the residual 

L2-norm than spin-independent initial guess charge densities. 

This observation at least partially accounts for the reason that 

spin polarised systems tend to be much harder to converge 

than spin unpolarised systems. For this reason, and others 

cited in the following section, many spin polarised inputs are 

included in the test suite. Recently, various schemes have been 

proposed that aim to better predict self-consistent densities to 

use as the initial guess [70, 72]. In particular, [70] considers a 

data-derived approach to predicting and assessing uncertainty 

in a guess density away from the ground state.

3.8. Ill-conditioning and charge sloshing

The condition of a problem, loosely speaking, can be taken 

as characteristic of the difficulty a black-box algorithm will 

have in solving the problem. Due to the complexity of the 

Kohn–Sham map, evaluating its condition number directly 

is impossible in practice. However, within the context of lin-

ear response theory, it is possible to explore certain causes of 

ill-conditioning generic to either all, or certain broad classes, 

of inputs. Hence, we begin by linearising the map K about a 

fixed-point7,

ρ∗ + δρout
n =K[ρ∗ + δρin

n ],

≈K[ρ∗] +
δK[ρin

n ]

δρin
n

∣

∣

∣

∣

ρ∗

δρin
n ,

=⇒ δρout
n =

δK[ρin
n ]

δρin
n

∣

∣

∣

∣

ρ∗

δρin
n .

 

(35)

This is the definition of linearisation in the present context, 

i.e. a small change in the input density yields a change in the 

output density proportional to the initial change, where the 

constant of proportionality is shown by the components of 

the Jacobian of the map K,

JK(x, x′) =
δK[ρin

n ]

δρin
n

∣

∣

∣

∣

ρ∗

(x, x′)

=
δρout

n

δρin
n

∣

∣

∣

∣

ρ∗

(x, x′).

 (36)

Within the language of linear response theory, the Jacobian 

can be identified with the non-interacting charge dielectric 

via

ε0(x, x′) = I − JK(x, x′),
 (37)

which is the linear response function of the residual map, 

rather than the Kohn–Sham map. The dielectric can be 

expanded as such

ε0(x, x′) = I −

∫

R3

dx′′
δv

in
hxc(x

′′)

δρin(x′)

δρout(x)

δv
in
hxc(x

′′)
,

 

(38)

where vhxc = vh + vxc, which are the only two potentials 

which have a dependence on the density. Hence, the dielectric 

is given is terms of the non-interacting susceptibility χ0 as

ε0(x, x′) = I −

∫

dx′′
(

fh(x
′, x′′) + fxc(x

′, x′′)
)

χ0(x, x′′),

 (39)

where fh and fxc are the kernels of the Hartree (Coulomb) and 

exchange-correlation integrals. Therefore, the linear response 

of a system to a density perturbation is given by the interplay 

between the exchange-correlation and Coulomb kernels, and 

the susceptibility

χ0 =
δρout

δv
in
hxc

, (40)

which is highly system dependent [57, 73]. As the non-inter-

acting susceptibility plays a central role in the description of 

many physical phenomena, such as absorption spectra, it is 

a relatively well-studied object [74, 75]. The remainder of 

this section classifies certain generic behaviours of ε0 so that 

causes of divergence in the self-consistency iterations can be 

studied. First, in order to see why the linear response function 

is important for self-consistency iterations, note that one may 

consider each iteration as a perturbation in the density about 

the current iterate. Knowledge of the exact response function 

χ0, and subsequently ε0, would thus allow one to take a con-

trolled step toward the fixed-point density, depending on how 

well-behaved8 the map is about the current iterate. An iterative 

scheme utilising the exact response function is given by

ρin
n+1 = ρin

n + ε
−1
0 R[ρin

n ], (41)

which one may recognise as Newton’s method. While 

Newton’s method is not global, it has many attractive fea-

tures, see section 4.1. However, one is rarely privileged with 

knowledge of the exact dielectric as it is vastly expensive to 

compute and store [78–81]. In practice, one is left to estimate, 

or iteratively build, this response function. Cases in which the 

input is very sensitive to density perturbations, characterised 

by large eigenvalues of the discretised ε−1
0 , tend to amplify 

errors in iterates, and thus potentially move one away from 

the fixed-point.

Consider now completely neglecting higher order terms 

in the Taylor expansion of the Kohn–Sham map, and let us 

examine the map as if it were linear. This allows us to borrow 

results from numerical analysis of linear systems, and apply 

these results as well-motivated heuristics to convergence in 

the non-linear case. In particular, assuming linearity, absolute 

convergence can be identified as

δρin
n+1 → 0 as n → ∞,

=⇒(ε−1
0 )nδρin

0 → 0
 (42)

7 Note that one can linearise about any density, not necessarily a fixed-point 

density. We have chosen the density about which we linearise to be the 

fixed-point density for the sake of analysis and due to the accuracy of the 

initial guess.

8 By ‘well-behaved’ here, we mean that the higher order than linear terms 

can be ignored without much detriment.
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using equation  (35), meaning λi < 1 for all i, where λi are 

the eigenvalues of the inverse dielectic matrix, which have 

been shown to be real and positive for some appropriate fxc 

[57]. Hence, simply multiplying the dielectric by a scalar α 

such that λmax is below unity can ensure convergence. This 

comes at the cost of reducing the efficiency of convergence for 

comp onents of the density corresponding to low eigenvalues 

of the dielectric matrix. Defining the condition number of the 

dielectric as

κ =
λmax(ε

−1
0 )

λmin(ε
−1
0 )

, (43)

it can be seen that the efficiency of the linear mixing proce-

dure is limited by how close this ratio is to unity. One ansatz 

for the scalar premultiplying the dielectric is

α =
2

λmax + λmin

, (44)

which ensures, as much as the linear approximation is valid, 

that components of the density corresponding to the maximal 

and minimal eigenvalues of ε−1
0  converge at the same rate [57, 

73, 82]. However, this form of α ignores the distribution (e.g. 

clustering) of eigenvalues [83], and is not commonly used in 

conjunction with more sophisticated schemes such as those 

in section 4. An additional strategy to improve convergence 

would be to construct a matrix, the preconditioner, such that 

when the preconditioner is applied to ε0, the eigenspectrum 

of the product is compressed toward unity. This is done in 

practice, see [15] for example, and is the core idea behind the 

Kerker preconditioner [84, 85], as discussed shortly.

It is clear from equation (43) that the convergence depends 

critically on the spectrum of the inverse dielectric matrix. The 

minimum eigenvalue is unity, and the large eigenvalues are 

dominated by the contributions from the Coulomb kernel, 

rather than the exchange-correlation kernel [73, 78, 86]. To see 

why this is, it is first asserted that the discretised Coulomb ker-

nel possesses large (divergent) eigenvalues due to its |x − x′|−1 

dependence, which will be demonstrated in the work to follow 

shortly. These large eigenvalues act as a generic amplifica-

tion factor when multiplied by the eigenvalues of χ0 in equa-

tion (39), thus resulting in large (divergent) eigenvalues in the 

dielectric. Conversely, the exchange-correlation kernel does 

not generically possess such large eigenvalues. In semi-local 

Kohn–Sham theory, the exchange-correlation kernel is a poly-

nomial of the density and potentially its higher order deriva-

tives. Crucially, it has a simple, local (explicit) dependence on 

position given by δ(x − x′),

fxc(x, x′) = δ(x − x′)
δvxc

δρ
, (45)

that cannot, by definition, introduce x-dependent ill-condition-

ing. As such, no generic amplification of the eigenvalues of 

χ0 occurs, and hence the exchange-correlation kernel can be 

ignored relative to the Coulomb kernel from the perspective of 

ill-conditioning. In other words, the following analysis utilises 

in the random phase approximation (RPA) by setting fxc = 0 

in equation  (39). As [78] notes, even in situations whereby 

the density vanishes in some region, meaning that negative 

powers of the density are divergent, the linear response func-

tion tempers this divergence, and the exchange-correlation 

contrib ution remains well-conditioned.

The principle categorisation one can make when analysing 

generic behaviour of the response function is the distinction 

between Kohn–Sham metals and insulators. Consider a homo-

geneous and isotropic system, i.e. the homogeneous electron 

gas, such that χ0(x, x′) → χ0(|x − x′|), which satisfies

δρout(x) =

∫

dx′ χ0(|x − x′|)δv
in
h (x

′). (46)

This is a convolution in real space, and hence a product in 

reciprocal space

δρ̃out(G) = χ̃0(|G|)δṽ
in
h (G), (47)

where we label the Fourier components G by convention. This 

susceptibility is local and homogeneous in reciprocal space, 

and relates perturbations in the input density to a response by 

the output density (within the RPA) via

δρ̃out(G) = fh(|G|)χ̃0(|G|)δρ̃in(G)

=
4πχ̃0(|G|)

|G|2
δρ̃in(G).

 (48)

The susceptibility of the homogeneous electron gas, which 

constitutes a simple metal in the present context, is derived 

from Thomas–Fermi theory as the Thomas–Fermi wavevec-

tor χ̃0 ∼ k2
tf

, which is constant9 [87]. It can therefore be seen 

that if there is any error in a trial input density, generated by 

an iterative algorithm, away from the optimal update, then 

this error is amplified by a factor of |G|−2 for |G| < 1, where 

|G| = 0 does not contribute. This sensitivity to error in iterates 

is identified as the source of charge sloshing, and is a some-

what generic feature of Kohn–Sham metals. Whilst the above 

derivation utilises Thomas–Fermi theory of the homogeneous 

electron gas to demonstrate constant susceptibility, it can be 

shown that all Kohn–Sham metals display this behaviour in 

the small |G| limit [75, 88]. A demonstration of charge slosh-

ing is illustrated in figure  7, whereby a linear mixing algo-

rithm purposefully takes slightly too large steps in the density. 

This leads to vast over-corrections in each iteration, giving the 

appearance that charge is ‘sloshing’ about the unit cell. This 

is not the only source of large eigenvalues of the dielectric in 

Kohn–Sham metals, as the susceptibility possesses inherently 

divergent eigenvalues independent from the amplification by 

the Coulomb kernel. To see this, consider the Adler–Wiser 

equation which is defined as

χ0(x, x′) =

N∑
n=1

∞∑
m=N+1

φn(x)φ
∗
m(x)φ

∗
n(x

′)φm(x
′)

ǫn − ǫm

, (49)

which is an expression from perturbation theory for the exact 

Kohn–Sham susceptibility [74, 75]. As [82] originally noted, 

the denominator ǫn − ǫm approaches zero when the input is 

gapless, i.e. it has a large density of states about the Fermi 

9 A detailed treatment of χ0 for inhomogeneous inputs is given within the 

framework of Lindhard theory [76].
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energy. If left untreated, this observation, in conjunction with 

the amplifying factor from the low |G| components of the 

Coulomb kernel, lead to significant ill-conditioning. The larg-

est condition numbers arise when |G| is extremely small; since 

G is a reciprocal lattice vector, this will occur for unit cells 

that are large in any (or all) of the three real-space dimensions. 

Whilst the dependence of the eigenvalues of the di electric 

on unit cell size is in practice complicated [73], it suffices 

Figure 7. An illustration of charge sloshing for a graphene nanoribbon unit cell (top right). The linear mixing algorithm is applied with 
damping parameter α = 0.8; this leads to an overcorrection in the density at each iteration, resulting in complete divergence.
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to note that increased unit cell size is a significant source of 

ill-conditioning. As compute power continues to grow, larger 

and larger systems are being tackled using Kohn–Sham the-

ory, and the increase in required number of self-consistency 

iterations as a result of this instability poses serious issues for 

Kohn–Sham calculations. Inefficiencies of this kind are best 

dealt with using preconditioners, as section 4 demonstrates. 

On the other hand, insulators possess no such divergences in 

the eigenvalues of the dielectric matrix. It can be shown that in 

the low |G| limit the behaviour of the susceptibility for gapped 

materials is [75, 88]

χ̃0 ∝ |G|2. (50)

This functional dependence cancels the |G|−2 dependence 

from the Coulomb kernel, and thus the eigenvalues of the 

dielectric become constant for all G. This constant is unknown 

in general, and guaranteed convergence for simple insulators 

amounts to finding the damping parameter α such that this 

constant is below unity. This is in line with the empirical 

wisdom that insulators are much easier to converge than met-

als, provided that the insulator does not artificially assume a 

metallic character during the self-consistency iterations.

In this vein, inputs that are increasingly complex, i.e. 

 deviating from simple metals or insulators, are likely to 

exhibit problematic behaviour. As discussed in section  4, 

preconditioners are able to alleviate charge sloshing in sim-

ple metals. However, when a metal-insulator interface is used 

as input, there are regions with starkly different behaviour in 

the response function, which is difficult to capture analyti-

cally. Hence, preconditioning techniques may fail to assist, 

and even hinder, iterations in calculations on interfaces of 

this kind [73]. Furthermore, it is possible that artificial phase 

transitions between gapped and gapless phases occur during 

the self-consistency iterations. Many algorithms function by 

building up an approximation to the dielectric using past iter-

ates. The discontinuous change in behaviour of the di electric 

in differing phases causes parts of the iterative history to 

actively interfere in correctly modelling the dielectric. Hence, 

iterations become hindered or divergent. An artificial phase 

change of this kind is demonstrated to occur in [89] for an 

isolated iron atom. Various examples of the aforementioned 

problematic classes of inputs are included in the test suite.

Finally, a brief comment is provided on how the above 

analysis translates to spin-dependent Kohn–Sham theory. As 

discussed, in the spin-dependent case one solves two non-lin-

ear eigenvalue problems that independently look very similar 

to equations (8) and (9), but crucially are coupled through the 

Hartree and exchange-correlation potential. That is, an algo-

rithm that perturbs the spin up (spin down) density will lead 

to a response by the spin up (spin down) density given by the 

prior analysis. However, one must now also consider how a 

perturbation in the spin up density affects the spin down den-

sity, and vice versa, which is again through the Coulomb and 

exchange-correlation kernels. Hence, all of the above sources 

of ill-conditioning translate directly to the spin-dependent 

case, with the added difficulty that the number of optimisation 

parameters has doubled, and these parameters are coupled in 

such a way that potentially introduces further ill-condition-

ing. In other words, the response function now contains four 

components,

ε0 =

[

ε
↑↑
0 ε

↑↓
0

ε
↓↑
0 ε

↓↓
0

]

, (51)

where the diagonal elements describe the response of the spin 

up (spin down) density to perturbations in the spin up (spin 

down) density, and the off-diagonal elements describe the 

response of the spin up (spin down) density to perturbations 

in the spin down (spin up) density. Implementations of spin-

dependent Kohn–Sham theory often utilise the charge and 

spin densities, defined in equations (33) and (34), rather than 

the spin up and spin down densities. In this representation, 

the behaviour of the off-diagonal (coupling) elements is deter-

mined via the exchange-correlation potential, as the Hartree 

contribution cancels, see [2, 57]. To the authors’ knowledge, 

there is less literature on the manifestation of this coupling in 

the self-consistency iterations than on the spin-independent 

counterpart. Dederichs and Zeller [57] uses self-consistency 

in the Stoner model to demonstrate that the condition of the 

system is indeed worsened in the presence of magnetism due 

to the coupling. However, it is noted that the charge and spin 

densities decouple near self-consistency. In any case, for these 

reasons, and perhaps for reasons yet unexplored, empiricism 

demonstrates that spin polarised calculations are, in general, 

more difficult to converge than spin unpolarised calculations. 

Analysing this coupling in terms of self-consistency and ill-

conditioning is an avenue for further research, which could 

be used to assist self-consistency iterations through the use of 

improved preconditioners, see section 4.3.

4. Methods and algorithms

Having established a variety of sources of ill-conditioning in 

the non-linear Kohn–Sham map, we now examine methodol-

ogy used to find self-consistent densities that are fixed-points 

of this map. Of course, over the past few decades, a number of 

differing approaches to the self-consistency problem in Kohn–

Sham and Hartree–Fock theory have been reviewed, analysed, 

and advanced; see, for example, [19, 28, 49, 73, 89–92] and 

references therein. The aim of this section is to collate conclu-

sions from these studies, and many others, in order to pro-

vide a contemporary survey of self-consistency methodology 

in a pedagogical manner. This survey includes methodology 

suitable for software utilising either a localised or delocal-

ised basis set. However, only the subset of algorithms suitable 

for a delocalised basis set are implemented in castep for the 

benchmarking effort in section 6.

Consider the general iteration for solving the Kohn–Sham 

equations,

ρin
n+1 = fn({ρ

in
i , ρout

i }), (52)

where n is the current iteration number, i ∈ [1, n], and we seek 

a prescription for generating the update f n as a function of all 

past data in the history of iterates. The underlying black-box 
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methodology one uses to generate f n can be regarded as sepa-

rate to how one alters f n by preconditioning. Hence, we first 

review the black-box methodology, and then review precon-

ditioning strategies in section 4.3. Elementary algorithms for 

generating f n were first considered in section 3.5: the fixed-

point and linear mixing algorithms,

ρin
n+1 = ρout

n ,
 (53)

ρin
n+1 = ρin

n + α(K[ρin
n ]− ρin

n ), (54)

respectively. As stated, the linear mixing algorithm is a 

weighted step in the direction of the error and is identically 

zero at convergence. Hence, assuming K is continuous (in 

some sense) and non-expansive, this algorithm converges for 

sufficiently low fixed values of α [57]. It can be shown that 

this algorithm converges q-linearly toward the fixed-point 

density ρ∗ [93]; where q-linear convergence is defined as

||ρin
n+1 − ρ∗||2 � q||ρin

n − ρ∗||2. (55)

That is, the error decreases linearly iteration by iteration, 

and the gradient of this linear decrease is given by the fac-

tor q ∈ (0, 1), which is determined by the initial guess and 

the fixed parameter α. Assuming one chooses an appropriate 

value for α, the linear mixing algorithm is global, meaning it 

converges from any initial guess in the n → ∞ limit. The price 

one often pays for global convergence here is an impractically 

slow convergence rate, or q factor, for the problematic classes 

of inputs defined in the prior section. The remainder of this 

section considers methods for accelerating the linear mixing 

iterations, conventionally referred to as acceleration algo-

rithms. In particular, these algorithms exhibit q-superlinear  

convergence,

||ρin
n+1 − ρ∗||2 � γ||ρin

n − ρ∗||
q, (56)

for some positive real number γ , where q  >  1 and q  =  2 

defines quadratic convergence. These algorithms tend to sac-

rifice guaranteed global convergence, but can vastly improve 

the rate of convergence, as demonstrated in section 6.

Before introducing the various acceleration strategies, we 

remark that the difficulty in solving a constrained functional 

optimisation problem, or equally the associated Lagrangian 

fixed-point problem, is not primarily determined based on the 

linearity of a problem, or lack thereof. Rather, as [58] asserts 

and demonstrates, the characteristic difficulty of an optim-

isation problem depends on whether or not the underlying 

functional is convex,

F[αx + βy] � αF[x] + βF[y]. (57)

Here, F is a convex functional, x and y  are two elements in the 

domain of the functional, and α and β are two real numbers. 

Convex functionals have a unique minimum, and minimiser, 

which can be found, in some sense, in a controlled and effi-

cient manner, see [53, 58, 93] for more information on convex 

optimisation. The Kohn–Sham functional is demonstrably not 

convex in the general case. However, many of the algorithms 

to follow operate by solving an associated convex problem in 

order to compute the update f n. This is typically a quadratic 

programming problem, which is subsequently used to solve 

the non-convex Kohn–Sham problem. The most popular and 

successful class of updates in the present context are quasi-

Newton updates. As we will see, these updates differ chiefly 

based on the underlying quadratic programming problem one 

solves to compute f n.

4.1. The quasi-Newton update

First, we make some general comments about the Newton 

update. The Newton update is the optimal first order update 

in the density at the current iteration. In other words, if the 

current iterate is within the linear response radius of the root, 

then the exact Newton update would lead to convergence in 

one iteration by definition. That is, we seek the update δρn 

such that

R[ρin
n + δρn] ≈ R[ρin

n ] + J|ρin
n
δρn = 0, (58)

where J:  =  JR is the Jacobian of the residual, defined similarly 

to equation (36), evaluated at the current iterate. Rearranging 

for δρn, the update is given as

ρin
n+1 = ρin

n − J|−1
ρin

n
R[ρin

n ]. (59)

Assuming the Jacobian exists and is Lipschitz continuous10, 

this update is shown to have quadratic convergence in some 

region about the root [83]. The Jacobian must be computed 

numerically, which can be done with either the Adler–Wiser 

equation  equation (49) [74, 75], or with finite-difference 

numerical differentiation [94]. As section 4.3 will explore in 

more depth, in the absence of further approximation, both of 

these techniques are inadequate for modern calculations due 

to the computational complexity and the size of the basis set. 

The former strategy is an O(N4
b) process that requires the com-

putation and storage of all eigenvectors of the Kohn–Sham 

Hamiltonian [78, 79]. The latter strategy requires excessively 

many evaluations of K [95]. We now examine the class of 

methods that can be cast as a Newton step with some itera-

tively updated approximation to the Jacobian: quasi-Newton 

methods.

4.1.1. Broyden’s methods. Consider having knowledge of 

an approximate Jacobian at the previous iteration, Jn−1. We 

seek a prescription for generating an approximate Jacobian at 

the current iteration, Jn, such that the following quasi-Newton 

update can be performed,

ρin
n+1 = ρin

n − J−1
n Rn, (60)

where Rn := R[ρin
n ]. First, note that all methods of this kind 

must begin from some initial estimate of the Jacobian, J0. For 

lack of a better option, this can be taken as a scaled identity, 

J0 = αI. Although, in the present context, the Kerker matrix is 

used, which is defined in section 4.3. We begin with a descrip-

tion of Broyden’s two methods [96]. These methods, as they 

are about to be presented, are not commonly used in modern 

Kohn–Sham software. However, the conceptual foundation of 

10 Lipschitz continuity refers to all real k � 0 in equation (21).
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Broyden’s methods, that is, low rank updates to a Jacobian 

that satisfies secant conditions, remain foundational to con-

temporary methodology. First, the meaning of a secant con-

dition is defined. For illustrative purposes, a finite-difference 

approximation for the derivative of a one-dimensional func-

tion f  at the current iterate xn is given by

f ′(xn) =
f (xn)− f (xn−1)

xn − xn−1

, (61)

which is increasingly accurate as the iterates become closer. 

Since the Jacobian is the derivative of the residual map, the 

Nb-dimensional equivalent of this finite-difference equation is

Jn(ρ
in
n − ρin

n−1) = Rn − Rn−1, (62)

where hereafter we define ∆ρin
n = ρin

n − ρin
n−1

 and 

∆Rn = Rn − Rn−1. If the nth Jacobian satisfies equation (62), 

it is said to satisfy the secant condition of the current iteration, 

and thus belongs to Broyden’s family of methods. Since Jn 

is an Nb × Nb matrix, and the secant condition only specifies 

how Jn acts on the vector ∆ρin
n , there are a remaining N2

b − Nb 

components of the Jacobian that are yet unspecified. Broyden 

fixes these remaining components by requiring Jn acts on all 

vectors orthogonal to ∆ρin
n  similarly to Jn−1. This is equivalent 

to requiring that the Jacobian of the current iteration solves the 

following constrained quadratic programming problem,

minimise ||Jn − Jn−1||f (63)

subject to Jn∆ρin
n = ∆Rn, (64)

as demonstrated by [97, 98], which defines Broyden’s first 

method. The Frobenius norm ||.||f  of a square matrix A is 

defined as

||A||f =

√

√

√

√

N
∑

i,j=1

|aij|2. (65)

In other words, the current Jacobian Jn is required to satisfy 

the current secant condition, and otherwise minimise the dif-

ference between itself and the previous Jacobian Jn−1 in the 

sense of the Frobenius norm. Note that the nth Jacobian satis-

fies all of the previous n secant equations provided the past 

iterates are mutually orthogonal, (∆ρin
i )

†∆ρin
j = 0 for i �= j. 

However, the space of past iterates is often linearly indepen-

dent, but not mutually orthogonal. Therefore, if one requires 

Jn to satisfy only the most recent secant equation, one loses 

information about past secant equations, i.e. Jn no longer sat-

isfies the past secant equations. Schemes that ensure Jn satis-

fies multiple previous secant equations are studied in the next 

section.

The constrained optimsiation problem of equation  (63) 

has a unique analytic solution, which is obtained in [97, 98] 

by means of unconstrained optimisation using the method of 

Lagrange multipliers,

Jn = Jn−1 +
∆Rn − Jn−1∆ρin

n

||∆ρin
n ||

2
2

(∆ρin
n )

†. (66)

The notation uv
†
 defines the outer product of the vectors 

u, v. One can now observe from equation (66) that this pre-

scription has lead transparently to a rank-one update of the 

Jacobian at each iteration. The full quasi-Newton update for 

Broyden’s first method involves subsequently inverting equa-

tion  (66), applying it to residual vector, and performing the 

quasi-Newton step equation  (60). The apparent excessive 

cost of inverting equation  (66) is negated as the inverse of 

a rank-one matrix can be computed analytically using the 

Sherman–Morrison–Woodbury formula [99]. Furthermore, as 

matrix-vector multiplication is associative, one can compute 

the vector J−1
n Rn without constructing or storing Jn explicitly, 

and instead using a series of vector–vector products. This was 

originally demonstrated in [100], so that at a given instance 

Broyden’s first method only requires the storage of two Nb-

length vectors, and the computation of a few vector–vector 

products. Broyden’s second method optimises the comp-

onents of the matrix Hn := J−1
n  directly via

minimise ||Hn − Hn−1||f (67)

subject to ∆ρin
n = Hn∆Rn, (68)

instead of optimising the Jacobian, then subsequently invert-

ing. Hereafter, methods that optimise the Jacobian are referred 

to as ‘type-I’ methods, and methods that optimise the inverse 

Jacobian are referred to as ‘type-II’ methods, see [91]. Note 

that the constraint in equation (68) is simply the inverse secant 

condition. Similarly to Broyden’s first method, this has the 

analytic solution,

Hn = Hn−1 +
∆ρin

n − Hn−1∆Rn

||∆Rn||22
(∆Rn)

†, (69)

which can be substituted directly into the quasi-Newton step11. 

The conventional wisdom has emerged that Broyden’s sec-

ond method tends to provide more robust and efficient conv-

ergence than Broyden’s first method. However, both methods 

are shown to be q  −  superlinearly convergent [83, 97] in the 

sense that

lim
n→∞

||ρin
n+1 − ρ∗||2

||ρin
n − ρ∗||2

= 0, (70)

which is a necessary condition for some q  >  1 in equa-

tion  (56). Broyden’s second method is implemented and 

tested in section 6.

4.1.2. Multisecant Broyden’s methods. A natural extension 

to Broyden’s methods is to consider all prior secant conditions 

at each iteration, rather than just the most recent secant condi-

tion. This leads to a so-called generalised or multisecant ver-

sion of Broyden’s methods, which are examined extensively 

in both optimisation and electronic structure literature [83, 91, 

100, 102]. The ensuing summary follows a similar structure to 

that of [91]. A multisecant method is defined as a method that 

11 Note that an alternate form of Broyden’s updates in terms of the initial 

estimate J0 can be determined via recursion. This is omitted here but can be 

found, for example, in [15, 31, 101].
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generates an iterative Jacobian Jn such that this Jacobian satis-

fies the most recent m secant conditions. That is, the following 

Nb × m matrices are defined

∆Rn := (∆Rn−m+1,∆Rn−m+2, ...,∆Rn) (71)

∆Pn := (∆ρin
n−m+1,∆ρin

n−m+2, ...,∆ρin
n ) (72)

such that a Jacobian satisfying the previous m secant condi-

tions must satisfy the matrix equation

Jn∆Pn = ∆Rn. (73)

The parameter m introduced here defines the history length, 

i.e. the number of iterates that are stored and used for secant 

conditions. If m is less than the full history size n then the 

method takes on its modified limited memory form. If m  =  n, 

then the method satisfies all prior secant conditions. The gen-

eralisation of Broyden’s two methods is now readily estab-

lished: alter the constraints in the optimisation problems 

equations  (63) and (67) to reflect the multisecant condition 

equation (73). The multisecant version of Broyden’s first and 

second method respectively are

minimise ||Jn − Jn−1||f

subject to Jn∆Pn = ∆Rn,
 (74)

minimise ||Hn − Hn−1||f

subject to ∆Pn = Hn∆Rn,
 (75)

which are of type-I and type-II respectively. These both have a 

unique analytic solution in the form of a rank-m update,

Jn = Jn−1 + (∆Rn − Jn−1∆Pn)(∆P
†
n∆Pn)

−1∆P
†
n ,

Hn = Hn−1 + (∆Pn − Hn−1∆Rn)(∆R
†
n∆Rn)

−1∆R
†
n,

which are found by solving the associated Lagrangian prob-

lems. The former Jacobian update can be inverted similarly 

to Broyden’s first method with the Sherman–Morrison–

Woodbury formula. As [89, 92] conclude, and section 6 also 

examines, the type-II variant tends to outperform the type-I 

variant in the context of multisecant Broyden’s methods, in 

line with the conventional wisdom from Broyden’s original 

methods. As stated previously, if the space of past iterates is 

mutually orthogonal, this method is equivalent to Broyden’s 

original methods.

Finally, we remark on the connection between the above 

methods and the method examined by Eyert, Vanderbilt & 

Louie and Johnson in [101–103]. First, the following uncon-

strained minimisation problem for variations in Hn is defined,

minimise w0||Hn − Hn−1||f

+

n∑
i=n−m+1

wi||∆Pn − Hn∆Rn||
2
2,

 
(76)

where we choose to update the inverse Jacobian Hn−1, 

although a similar method can be formulated in terms of 

Jacobian updates. The weights {w0, wi} are introduced as 

free parameters that act as penalty coefficients. That is, the 

weights are chosen to signify how ‘important’ it is to satisfy 

the corresponding constraint. In this sense, inspection of 

equation (76) shows that w0 controls the degree to which the 

inverse Jacobian can change iteration-to-iteration, and wi con-

trols the degree to which the ith secant equation  should be 

satisfied by Hn. Therefore, this method also constitutes a mul-

tisecant method, but the multisecant conditions are allowed to 

be weighted according to relative importance. Various com-

mon fixed-point methods can be recovered as special cases 

of these weights. Notably, as [15, 31] demonstrate, the choice 

wi  =  0 for i  <  n, and w0 << wn, leads to Broyden’s second 

method. This can be intuited from equation (76): the weights 

wi now favour exclusively the most recent secant condition, 

and in directions orthogonal to that secant condition, the mini-

mum norm condition on Hn is applied. In the original work of 

[102, 103], the weights wi = (R†
i Ri)

−1 are considered, which 

favour secant conditions closer to convergence. This was used 

in the context of electronic structure calculations with success 

in [101–103]. However, as [101] demonstrates, the optimal 

set of weights require w0 → 0, and if {wi} are to be non-zero, 

these weights in fact cancel in the update formula. Hence, 

wi  =  1 can be set without loss of generality, and the method 

can be identified with a standard multisecant method; see 

[101] for additional detail. An interesting aspect of the mul-

tisecant methods discussed here are their relationship Pulay’s 

or Anderson’s method—a ubiquitous method in electronic 

structure theory software—which is now examined.

4.1.3. Pulay’s method. Pulay’s method [104, 105], or the dis-

crete inversion in the iterative subspace (DIIS), as it is known 

in electronic structure literature, or Anderson’s method, as it is 

known in optimisation literature [106], has proven extremely 

effective at converging Kohn–Sham calculations. The simplic-

ity of its formulation combined with its impressive efficiency 

and robustness has lead to Pulay’s method becoming the 

default algorithm in a range of Kohn–Sham codes [10, 15, 33, 

34, 107, 108]. The past few decades of wisdom suggest that 

Pulay’s method systematically outperforms the unmodified 

Broyden’s methods in both the single and multisecant form-

ulation. This conclusion will be tested in section 6. First, a 

brief review of Pulay’s method as it was originally formulated 

is given.

Consider constructing a so-called ‘optimum’ residual—a 

residual whose argument is an optimum density—as a linear 

combination of past residuals in the m-dimensional iterative 

subspace,

R[ρin
opt] =

n∑
i=n−m+1

ciR[ρ
in
i ]. (77)

Here, optimum is defined by the method one chooses to fix 

the coefficients ci. In Pulay’s method, these coefficients are 

fixed by requiring that the L2-norm of the residual is minimal, 

i.e. solve

minimise ||R[ρin
opt]||

2
2

subject to
∑

i

ci = 1,
 (78)
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where the constraint that the coefficients must sum to unity 

is an exact requirement at convergence. Substitution of equa-

tions (77) into (78), and use of Lagrange multipliers, allows 

the optimisation problem to be cast as an (n + 1)-dimensional 

linear system,
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,

for n � m, which is readily generalised for n  >  m. Assuming 

the space of past iterates is of full rank (comprised of linearly 

independent vectors), solution of this linear system provides 

the set of coefficients ci. Given these coefficients, the density 

update remains to be defined. Following [56, 90, 91, 101, 

109], the optimum residual can be first be expanded as such,

R[ρin
opt] =

n∑
i=n−m+1

ciK[ρin
i ]−

n∑
i=n−m+1

ciρ
in
i . (79)

If K is assumed to be linear, the rightmost term in equa-

tion (79) can be interpreted as the optimal input density,

ρin
opt =

n∑
i=n−m+1

ciρ
in
i . (80)

Hence, the optimal update can take the standard undamped 

form

ρin
n+1 = ρin

opt + R[ρin
opt] (81)

=
n∑

i=n−m+1

ciK[ρin
i ]. (82)

This update is favoured over ρin
n+1 = ρin

opt  so that the algo-

rithm does not stagnate in the subspace of past input densities. 

Alternatively, as originally studied in [106], a damped step 

can be taken,

ρin
n+1 = ρin

opt + αR[ρin
opt], (83)

for α ∈ (0, 1). An example algorithm that implements this 

form ulation of Pulay’s method is given in algorithm 1.

Algorithm 1. Pulay’s algorithm.

1: Input: tol, ρin
0 , m,α

2: for n = 0, 1, 2,...

3:   Compute R[ρin
n ] and store the pair {ρin

n , R[ρin
n ]}

4:   Solve equation (78) for {ci}

5:   if n � m

6:     Set ρin
n+1 =

∑n

i=1 ci(ρ
in
i + αR[ρin

i ])

7:   else

8:     Set ρin
n+1 =

∑n

i=n−m+1 ci(ρ
in
i + αR[ρin

i ])

9:   if ||R[ρin
n ]||2 < tol, exit

Table 1. A table consisting of each algorithm tested and its corresponding parameter set, efficiency score, and robustness score.

Method Parameters Robustness Efficiency

Pulay II (2) α = 0.8, |G0|  =  1.5 0.775 0.0118

Pulay II α = 0.8, |G0|  =  0.0 0.637 0.0085

Pulay II α = 0.2, |G0|  =  1.5 0.689 0.0088

Pulay II α = 0.4, |G0|  =  1.0 0.741 0.0094

Pulay II (3) α = 1.0, |G0|  =  1.5 0.741 0.0161

Pulay II α = 1.0, |G0|  =  1.5, m  =  10 0.827 0.0063

Pulay II α = 0.6, |G0|  =  2.5 0.775 0.0097

Pulay II α = 0.1, |G0|  =  1.5 0.637 0.0046

Broyden II α = 0.8, |G0|  =  1.5 0.706 0.0118

Broyden II α = 0.2, |G0|  =  1.5 0.672 0.0090

Multisecant Broyden I α = 0.8, |G0|  =  1.5 0.620 0.0056

Multisecant Broyden II α = 0.8, |G0|  =  1.5 0.706 0.0179

MSB1 Greed controlled, |G0|  =  1.5 0.689 0.0098

MSB2 Greed controlled, |G0|  =  1.5 0.793 0.0097

Two-Step Steepest Descenta N/A 0.689 0.0070

Guar. Red. Pulay α = 0.8 0.448 0.0103

Restarted Pulay α = 0.8, |G0|  =  1.54, m  =  10 0.819 0.0088

Linear α = 0.2 0.328 0.0154

Linear α = 0.05 0.534 0.0033

Kerker α = 0.8, |G0|  =  1.5 0.500 0.0025

Fixed-Point N/A 0.054 0.0344

Periodic Pulay (1) α = 0.2, |G0|  =  1.5, k  =  2 0.828 0.0063

Periodic Pulayb
α = 0.6, |G0|  =  1.5, k  =  2 0.705 0.0062

EDFT α = 0.8, |G0|  =  1.5 0.948 0.000 03

a As proposed in [149].
b Performed with k Pulay steps in between each linear step.
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At a first glance, Pulay’s method bears little resemblance 

to the secant-based methods discussed in the previous sec-

tion. However, as described in [56, 91, 109], a rearrangement 

of the optimisation problem in equation (78) reveals a close 

relationship between Pulay’s method and type-II multisecant 

methods. A more detailed treatment of this correspondence is 

found in [56, 91, 109]; here, we simply state that the following 

unconstrained optimisation problem

minimise ||Rn −∆Rnγ||2,
 (84)

for variations in γ = (γn−m+1, γn−m+2, ..., γn) is equivalent to 

Pulay’s optimisation problem equation (78). The new coeffi-

cients {γi} are related to the old coefficients {ci} such that the 

update in equation (83) now takes the form

ρin
n+1 = ρin

n + αRn − (∆Pn + α∆Rn)γ, (85)

where γ  on iteration n is solved by

γ = (∆R
†
n∆Rn)

−1∆R
†
nRn. (86)

The parallel between Pulay’s method and multisecant meth-

ods becomes apparent when these equations are combined to 

give the final update,

ρin
n+1 = ρin

n + HnRn, (87)

Hn = αI − (∆Pn − α∆Rn)(∆R
†
n∆Rn)

−1∆R
†
n. (88)

By comparison with the updated inverse Jacobian in equa-

tion  (75), we can observe that Pulay’s method is a type-II 

quasi-Newton step where the iterative inverse Jacobian is 

updated according to

minimise ||Hn − H0||f

subject to ∆Pn = Hn∆Rn.
 (89)

In other words, this optimisation problem minimises the dif-

ference between the components of the inverse Jacobian Hn 

and the initial guess inverse Jacobian H0, while also requir-

ing the previous m secant conditions to be fulfilled. Note that 

H0 = αI  is required in order to recover the update in equa-

tion (88). This reformulation not only connects Pulay’s method 

to the type-II variant of multisecant Broyden’s method, but 

also uncovers another flavour of Pulay’s method,

minimise ||Jn − J0||f

subject to Jn∆Pn = ∆Rn,
 (90)

which is of type-I, i.e. the Jacobian is optimised, rather than the 

inverse Jacobian. This form of Pulay’s method, as originally 

described in [91], has seen comparatively less application 

and testing in the context of Kohn–Sham codes [56]. These 

methods differ from multisecant Broyden methods precisely 

when m  >  n, in which case the multisecant Broyden methods 

retain information from all prior secant equations implicitly, 

whereas Pulay’s method(s) ignore completely secant equa-

tions not in the (size m) history.

A few modifications to Pulay’s method are now examined; 

although we note that these modifications are adaptable to all 

the secant-based methods discussed previously. First, the work 

in [110], based on [111], suggests that alternating between 

Pulay and linear mixing steps can improve the robustnesss 

of the iterations over standard Pulay—the ‘Periodic Pulay’ 

method. Each new Pulay step utilises the history from the 

linear mixing and past Pulay steps to solve the optimisation 

subproblem equation (78). This is demonstrated to have a sta-

bilising effect as the linear mixing history data is used well by 

the Pulay extrapolation. In [110], an input parameter k deter-

mines the number of linear mixing steps performed between 

each Pulay step, i.e. k linear steps per Pulay step. As suggested 

in the original work, the values k  =  2 are tested in section 6 

with a damping parameter of α = 0.2 for both the Pulay and 

linear mixing steps.

Second, [112] considers occasionally flushing the history 

every time a certain criterion is met, rather than iteratively 

overriding the history—‘Restarted Pulay’. This criterion 

is chosen to be whenever the current iteration number is an 

integer multiple of the maximum history size, i.e. n  =  am for 

some a ∈ Z
+. For inputs with a considerable degree of non-

linearity, either due to a poor initial guess, or inherent to the 

Kohn–Sham map, the history can actively interfere with mod-

elling an accurate iterative Jacobian at the current iteration. 

Restarted Pulay thus represents a strategy for dealing with this 

issue by periodically removing the history.

The final technique we discuss here is the ‘Guaranteed 

Reduction Pulay’ algorithm of [113]. The approach of 

Guaranteed Reduction Pulay involves ensuring that the Pulay 

predicted optimal residual ||Ropt||2 decreases each iteration. 

This is achieved by rearranging the stored history of residu-

als {Ri} such that, at a given iteration, the Pulay predicted 

optimal residual is added to the history, rather than the resid-

ual obtained from evaluating the Kohn–Sham map. The sub-

sequent iteration then involves a linear mixing step, which 

generates a new exact residual that is added to the history. 

The coefficients {ci} of the now current iteration are deter-

mined by solving Pulay’s optimisation problem equation (78). 

However, note that the previous Pulay predicted optimal 

residual is an element of the set of residuals that are used to 

determine {ci}. Hence, the addition of the residual from the 

linear mixing step can only lower the Pulay predicted optimal 

residual, or at worst leave it the same. This new reduced Pulay 

predicted optimal residual replaces the exact linear mixing 

residual in the history, and the process repeats. As expected, 

this method performs best when the predicted optimal residual 

accurately models what the residual would have been were the 

optimal density evaluated with the Kohn–Sham map. Pulay’s 

method predicts the residual increasingly well the closer it is 

to the linear response regime from the root. Therefore, when 

the behaviour of Kohn–Sham map is highly non-linear, the 

guaranteed reductions in the predicted residual tend to stag-

nate, while the exact residual does not decrease. All three of 

these techniques are benchmarked in section 6.

4.1.4. Modern multisecant-based algorithms. Here, we high-

light one modern use of multisecant methods in particular, 

the methods outlined in [89, 92], which are now default self-

consistency methods in wien2k [114]. These algorithms can 

be considered a sophisticated modern variant of the standard 

multisecant already methods discussed. Furthermore, they are 
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designed with the aim of converging Kohn–Sham calcul ations. 

The range of strategies utilised make [89, 92] an interesting 

case to isolate and examine here. The most recent published 

form of these algorithms is that given in [89] titled ‘multise-

cant rank one’ (MSR1). However, this algorithm is designed 

to converge both the atomic (geometry optimisation) and elec-

tronic degrees of freedom. Hence, we focus on the techniques 

that are relevant to the self-consistent field iterations, and the 

reader is referred to [89, 92] for a more in-depth treatment.

First, the updates considered in [89, 92] are defined in 

equations (90) and (89), which are of the form

Hn = αI + (∆Pn − α∆Rn)(∆R
†
nWn)

−1W†.
 (91)

The initial guess inverse Jacobian is H0 = αI , and Wn = ∆Pn, 

Wn = ∆Rn define a type-I and type-II update respectively. It 

is demonstrated in [92], and further verified in section 6, that 

type-II methods are superior for the self-consistency problem 

than type-I methods. However, if atomic degrees of freedom 

are included, it is advantageous to consider a linear combina-

tion of updates,

Wn = Yn + βSn, (92)

for β ∈ R�0. The parameter β controls the degree to which the 

method takes a type-II step, β = 0, or a type-I step, β → ∞. 

As noted in [89], this is similar to a technique used in [115] 

whereby a criterion is defined to assess whether a type-I or 

type-II step will be optimal, and then the corresponding step 

is taken. In MSR1, the parameter β is determined based on 

an ansatz that seeks to ensure the eigenvalues of the Jacobian 

are positive, as they should be in the case that the fixed-point 

corresponds to a variational minimum. However, as stated, in 

the context of density mixing type-II methods consistently 

outperform type-I methods, meaning we hereafter consider 

β = 0.

Second, a core feature of the methods in [89, 92] involve 

partitioning of the full update into a predicted and unpredicted 

component, which are now defined. Consider the update gen-

erated from equation (91),

ρin
n+1 = ρin

n + HnRn, (93)

which is now split in two,

ρin
n+1 = ρin

n + (Hp
n + Hu

n)Rn. (94)

Since we are now considering the type-II variant, Wn = ∆Rn, 

the unpredicted component of the update, Hu
nRn , is defined as 

the orthogonal projection of the current residual Rn onto the 

past residual differences,

(Hu
nRn)

†∆Rn = 0. (95)

In other words, the unpredicted vector is the part of the full 

update that is not described within the iterative subspace of 

residuals. In this sense, the remaining update can be consid-

ered to be the part of the update that the iterative subspace does 

describe. Equation (95) is shown in [92] to have the solution,

Hu
nRn = −(I −∆Rn(∆R

†
n∆Rn)

−1∆R
†
n)Rn. (96)

The update now takes the rearranged form

Hu
nRn = (I −∆Rn(∆R

†
n∆Rn)

−1∆R
†
n)Rn, (97)

H p
n Rn = −Sn(∆R

†
n∆Rn)

−1W†
n Rn. (98)

This partitioning is used to introduce the concept of algo-

rithmic greed, which is quantified with an iterative damping 

parameter αn that multiplies the unpredicted update, rather 

than the full update,

ρin
n+1 = ρin

n + (Hp
n + αnHu

n)Rn. (99)

In the implementation tested in section  6, the unpredicted 

direction is also Kerker preconditioned (see section  4.3). 

References [89, 92] refer to the updating of the parameter αn 

as an implicit trust region. That is, αn is allowed to increase, 

within some bounds, provided the algorithm is performing 

well, by some definition of ‘well’ which defines the greed 

controls. If the algorithm is performing poorly, the damping 

parameter is decreased accordingly, thus reducing the need 

for user intervention. The precise greed controls for MSR1 

are found in [89]; the controls used for section 6 are slightly 

modified for performance in the plane-wave pseudopoten-

tial setting. Furthermore, the matrix inverse in equation (91) 

is Tikhonov regularised [116] to prevent spurious behaviour 

due to rank-deficiencies, and the matrices involved are scaled 

appropriately. The method that has been described thus far is 

similar to ‘multisecant Broyden 2’ (MSB2) of [92]. The type-I 

variant, MSB1, can be derived in a similar fashion, and both 

are tested in section 6.

Both of these methods remain prone to charge slosh-

ing due to the primary form of step length control being an 

implicit trust region, the greed controls. Hence, particularly 

ill-conditioned simulations can still lead to divergence of the 

self-consistency iterations. In this context, a further stabilis-

ing measure is taken in the form of an explicit trust region. 

Given Rn as a descent direction on iteration n, the trust region 

subproblem can take a standard form

minimise ||Rn − H−1
n X||22 (100)

subject to ||X||2 − δ2 = 0 (101)

for variations in X with some trust region radius δ. The vari-

able X is the new trial step generated from the trust-region 

subproblem, and the scalar ||X||2 is the trail total step length, 

where the exact step length is ||HnRn||2. If the exact step length 

exceeds the trust region radius δ, then the trust region problem 

is required to be solved to generate this new step. Details on 

how the trust-region subproblem is solved are given in [83, 

89]. As [89] also states, the trust region problem does not need 

to be defined in terms of the full update, ||HnRn||2. Instead, the 

trust region problem can be solved for the predicted comp-

onent of the update, ||H p
n Rn||2. This is motivated by the fact 

that the size of the step in the unpredicted direction is already 

restricted by the greed controls. Note that δ is also iteratively 

updated based on algorithmic progress. The inclusion of an 

explicit trust region for the predicted update, in conjunction 
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with the strategies described earlier, are able to significantly 

stabalise the self-consistency iterations [89, 92].

A second method we highlight is a global variant of the 

type-I Pulay update [56], which has not yet been tested in 

the context of self-consistency iterations. (However, note 

that this method utilises a selection of the techniques from 

section 4.1.3 that do perform well for self-consistency itera-

tions). First, similarly to the previous method, the Jacobian is 

required to be non-singular, which is achieved here through 

a form of Powell regularisation [117]. The regularisation 

parameter that is introduced, in some sense, scales the update 

between an unregularised Pulay step, and a fixed-point step, 

and thus must be chosen appropriately as not to negatively 

impact the efficiency of the method. The remaining modifi-

cations are aimed at stabilising the iterations and preventing 

stagnation in the reduction of the residual norm. Type-I meth-

ods, more so than type-II methods, tend to suffer from stagna-

tion due to rank-deficiency in the iterative subspace of density 

differences ∆Pn, see [56]. Rank-deficiency is avoided using 

a technique derived from the Restarted Pulay method [112] 

in the previous section, i.e. occasionally restart the history 

of stored iterates. Here, the restart condition can be triggered 

based on two separate criteria, the first of which is whenever 

the number of iterates stored reaches a maximum value m, 

similarly to [112]. The second of the restart criteria is based on 

ensuring the iterative subspace remains approximately of full 

rank. This is done by first using Gram–Schmit orthonormali-

sation on set of vectors used to construct ∆Pn in order to gen-

erate a new set of vectors with the same span, ∆P̂n. Elements 

of this new set of vectors are identically zero if the original set 

had linear dependencies. The condition

||(∆P̂n)i||2 < τ ||(∆Pn)i||2 (102)

is therefore used to quantify the degree of linear independence 

we require from the iterative subspace, parametised by τ . If 

this condition is triggered, for some sensible value of τ , the 

iterative history is deemed too linearly dependent, and the his-

tory is reset.

Given that update Jacobian is now bounded, and the itera-

tive history is linearly independent, global convergence is fur-

ther guaranteed by using techniques similar to the Periodic 

Pulay method [110, 118, 119]. That is, linear mixing steps 

are included in between Pulay steps, and added to the history. 

However, instead of performing the linear mixing steps with a 

fixed period, the linear mixing steps are performed based on a 

criterion that ensures progress is made. Namely, the following 

inequality is defined

||Rn||2 � D||R0||2(n
′ + 1)−(1+ε) (103)

for parameters D and ε, where n′ is the number of Pulay steps 

performed so far in the simulation. If the inequality is not sat-

isfied, linear mixing steps are performed until the inequality 

is satisfied again, and then Pulay steps are resumed. In other 

words, if the Pulay steps are not making sufficient progress, 

then linear steps are performed until a certain amount of prog-

ress, defined by D and ε, has been made, and then Pulay steps 

are continued. The proof of global convergence for this algo-

rithm is given in [56].

4.2. Density matrix optimisation

The methods introduced previously define density mixing 

schemes, by which we mean the one-particle density is itera-

tively updated in order to find a fixed-point of the Kohn–Sham 

equations. Density mixing is common in implementations that 

utilise some form of delocalised basis set. In these implemen-

tations, both the Kohn–Sham Hamiltonian and the density 

matrix can be prohibitive to compute and store due to the size 

of the basis Nb. However, in the context of localised basis sets, 

it is common to formulate Kohn–Sham theory so that the den-

sity matrix equation (13) is the optimised variable, rather than 

the density12. The Kohn–Sham energy functional has a closed-

form expression in terms of the density matrix,

EKS[D] =−
1

2

∫

R3

∇2
x′D(x, x′)|x=x′

+

∫

R3×R3

D(x, x)D(x′, x′)

|x − x′|

+

∫

R3

vextD(x, x) + Exc[D(x, x)]
 

(104)

which is now minimised over allowed variations in D,
∫

R3

D(x, x) = N,

 (105)

D† = D, (106)
∫

R3

D(x, x′′)D(x′′, x′) = D(x, x′),
 

(107)

for binary occupancy of the Kohn–Sham orbitals. These con-

ditions define the set of density matrices D which form the 

domain of Eks[D], i.e. the set of density matrices for which 

the Kohn–Sham functional is defined. These are necessary but 

not sufficient conditions for a density matrix to be so-called 

N-representable, meaning it can be constructed from an anti-

symmetric wavefunction [120]. The first condition forces the 

density matrix to correspond to an N-particle system. The 

second condition forces the density matrix to be Hermition, 

which is true by construction. The third condition is called 

idempotency, which leads to the requirement that the eigen-

values of discretised density matrix, the orbital occupancies, 

are f i  =  {0,1} [28]. The Kohn–Sham Hamiltonan, sometimes 

referred to as the Fock matrix, can also be constructed and 

used to solve the Kohn–Sham equations for a self-consistent 

density matrix. As expected, a variety of self-consistent field 

techniques exist that are well suited to the this formulation, 

such as leveling shifting and its modern variants [121–124], 

methods that minimise a local model energy functional [122, 

125–127], and more [19, 60, 128–131]. As many of these 

12 Note that denisty mixing schemes are usually translated to density matrix 

mixing schemes relatively straightforwardly, e.g. [28].
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methods are not readily adaptable to the plane-wave setting, 

we keep the discussion here brief, and instead refer readers 

to the following review articles [19, 130, 132, 133] and refer-

ences therein. In fact, we highlight one class of methods in 

particular, the relaxed constraints algorithms given in [49, 60, 

129, 131, 134]. A member of this class, ‘Energy DIIS’, is now 

the default self-consistency method in gaussian09 [18].

Relaxed constraints algorithms are introduced in the con-

text of Hartree–Fock theory, where, unlike in extended Kohn–

Sham theory discussed in section 3.6, the notion of fractional 

occupancy is not a part of the framework. Relaxed constraints 

algorithms operate by permitting fractional occupation of the 

Hartree–Fock orbitals as a tool to reach convergence. The 

binary occupation fixed-point solution is recovered at the end 

of the calculation. First, consider the set of allowed discretised 

density matrices,

D =
{

D | TrD = N, D† = D, D2 = D
}

.
 (108)

It is now apparent that the idempotency condition equa-

tion (107) requires that the eigenvalues of the density matrix, 

the orbital occupancies, are binary, fi ∈ {0, 1}. The extension 

to fractional occupancy, as described in section 3.6, thus alters 

the set of allowed density matrices,

D̃ =
{

D | TrD = N, D† = D, D2
� D

}

; (109)

i.e. the eigenvalues of the density matrix must now satisfy 

f 2
i � fi , which is the case for 0 � fi � 1. Relaxed constraint 

algorithms are now founded based on two theorems, the 

proofs of which are given in [135]. The first theorem states 

that the Hartree–Fock functional varied over D has the same 

stationary points as the Hartree–Fock functional varied over 

D̃. In other words, minimising the Hartree–Fock functional 

over D̃ will always lead to physical (binary occupation) solu-

tions. The second theorem states that the set D̃ is convex. This 

means that, given a convex combination of density matrices 

D1, D2 ∈ D̃,

D = (1 − γ)D1 + γD2, (110)

for γ ∈ [0, 1], then D ∈ D̃ . This is not the case for elements of 

D. Algorithms that utilise these theorems in conjunction with 

the set D̃ belong to the class of relaxed constraints algorithms.

The question remains of how these theorems translate to 

the Kohn–Sham functional equation (104). In fact, the former 

theorem no longer holds [134], meaning that the functional 

varied over D̃ does lead to different stationary points than in 

the case of binary occupation. This is expected, as these solu-

tions correspond to solutions of the extended Kohn–Sham 

theory developed in section  3.6. Therefore, the absence of 

the former theorem does not pose a problem, as solutions that 

are obtained that are members of D̃ retain meaning within 

extended Kohn–Sham theory. Furthermore, the set D̃ remains 

convex. The optimal damping algorithm was the first of the 

relaxed constraints algorithms, as examined in [60]. This 

algorithm seeks, at each iteration, to find an ‘optimal’ damp-

ing parameter αn in the linear mixing scheme equation (22). 

Consider the pair {Din
n , Dout

n } on iteration n. A trail density 

matrix is now constructed as a convex combination of this 

pair,

Dtrial = (1 − α)Din
n + αDout

n , (111)

for α ∈ [0, 1], where we note that Dout
n − Din

n  is a descent 

direction. The Kohn–Sham energy functional Eks[D
trial] is 

then minimised along this line-segment by varying α. The 

value of the damping parameter that leads to the minimum 

energy is the so-called optimal damping value αopt. The sub-

sequent input density matrix is thus

Din
n+1 = Dtrial = Din

n + α
opt(Dout

n − Din
n ). (112)

Note that this method works precisely because the elements 

along the line-segment equation (111) remain in the domain 

of Eks. Furthermore, it is much cheaper to evaluate the energy 

for a given density matrix, rather than construct and diagon-

alise the Fock matrix for a new output density matrix.

This method is improved by instead considering an (at 

most) m-dimensional iterative subspace of past density matri-

ces, rather than just the most recent pair. In other words, simi-

lar to Pulay’s method, a trail density matrix is constructed

Dtrial =

m∑
i=n−m+1

ciD
in
i (113)

for some unknown coefficients ci. These coefficients are then 

fixed as the coefficients that minimise Eks[D
trial]. An algo-

rithm to accomplish this is provided in [131]. However, note 

that only convex combinations of past density matrices are 

permissible, otherwise the resulting density matrix may not be 

a valid according to the conditions imposed in D̃. This obser-

vation necessitates the restriction 0 � ci � 1, which leads to 

the following constrained minimisation problem,

minimise EKS

[

m
∑

i=n−m+1

ciD
in
i

]

 (114)

subject to 0 � ci � 1. (115)

The coefficients that solve this problem form the optimal den-

sity matrix that is set equal to the subsequent input density 

matrix Din
n+1. This method is titled ‘Energy DIIS’ (EDIIS) 

and has been demonstrated to perform well in a variety of 

cases [130, 131]. Furthermore, this method is global, as the 

energy functional is required to be minimised at each iteration 

in equation (114). The minimisation of the energy functional 

is an interpolation step in the space of past density matri-

ces due to the constraint on the coefficients, and can be slow 

when the iterates are near convergence [131]. For this reason, 

EDIIS is commonly augmented with Pulay iterations (DIIS) 

when close to convergence, which demonstrably improves 

efficiency [130]. These methods, and similar methods, can 

be impractical in plane-wave codes as one is required to con-

struct and store the density matrix.

4.3. Preconditioning

Preconditioning refers to the modification of an optimisation 

problem such that the condition number of the problem is 

improved. Crucially, the modified problem is required to have 
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the same minimum, and minimiser, as the original problem. 

Algorithms applied to the modified problem thus have more 

stable and accelerated convergence. A preconditioner is most 

transparently defined for linear systems as being the matrix P 

such that

P−1Ax = P−1b, (116)

where the P−1A has a lower condition number equation (43) 

than A. In the case P  =  A the linear system is solved, and P 

is the exact preconditioner. The definition of a preconditioner 

for non-linear systems is less transparent. Consider the optim-

isation of the Kohn–Sham residual L2-norm, which now takes 

the preconditioned form

||P(R[ρ∗])||2 = 0.
 (117)

The preconditioned residual P(R) is required to have the same 

solution as R, but has, in some sense, improved convergence 

properties. The perfect preconditioner here would modify 

R such that only one step of appropriate size in the steepest 

descent direction is required for convergence. A successfully 

preconditioned problem therefore represents a problem whose 

landscape is easier to traverse toward a minimum using, for 

example, Newton’s algorithm. It is known that the Jacobian 

(Hessian) eigenvalue spectrum of the objective function deter-

mines the rate of convergence of Newton, and quasi-Newton, 

methods [58, 83, 97]. Therefore, a preconditioner should 

accomplish one or more of the following: reduce the num-

ber of eigenvalue clusters; reduce the width of the eignevalue 

clusters; or compress the spectrum as a whole. A discussion 

on the importance of the clustering of the eigenvalues, rather 

than just the condition number, can be found in [83, 89, 136]. 

To simplify matters, we consider P to be a matrix constant 

with respect to the optimised variable, the density, such that 

P(R) = PR. Hence, in the present context, preconditioning 

amounts to finding the matrix P such that the spectrum of the 

dielectric is more suitable for quasi-Newton algorithms. Note 

that the preconditioning matrix is permitted to change itera-

tion-to-iteration. The strategy used in practice is to identify 

the source of divergent eigenvalues of the dielectric, as exam-

ined in section 3, and temper this divergence in such a fashion 

that is generally applicable to all, or large classes, of Kohn–

Sham inputs. Depending on the implementation, the precon-

ditioning approach can differ. For example, in augmented 

plane-wave implementations [114], the unit cell is partitioned 

into the regions surrounding atomic cores, represented by 

local basis functions, and an interstitial region, represented 

by plane-waves. Naturally, due to the differing number of 

basis functions involved in each region, among other proper-

ties, the preconditioning for each region is separate [89, 92]. 

The following work assumes an entirely plane-wave basis set, 

although the preconditioners can be adapted for a variety of 

implementations.

Recall from section 3.8 that the Coulomb kernel, in combi-

nation with the susceptibility, is principally responsible for the 

large eigenvalues of the Kohn–Sham residual linear response 

function. As discussed, in the general case, the susceptibility is 

a complicated object about which it is difficult to make sweep-

ing statements. However, when the system is homogeneous 

and isotropic, the dielectric eigenvalues of gapped and gapless 

phases are approximately determined by

ǫ
−1
0 =

(

1 +
4πγ

|G|2

)−1

, (118)

ǫ
−1
0 = (1 + 4πγ)

−1
, (119)

for some a priori unknown system-dependent constant γ . In the 

case of the homogeneous electron gas, this constant in equa-

tion (118) is identified with the square of the Thomas–Fermi 

screening wavevector k2
tf

. Modest departures from homo-

geneity and isotropy remain accurately modelled by equa-

tions (118) and (119), particularly in the low |G| limit [75, 88]. 

Therefore, these model dielectrics can be used to improve the 

condition of the residual map by allowing P = ǫ
−1
0  for either 

equation  (118) or (119) depending on whether one suspects 

the input to be metallic or insulating. Collecting and relabel-

ling the unknown constants, the preconditioner becomes

P = α
|G|2

|G|2 + |G0|2
, (120)

where |G0| and α are parameters that are determined by the 

linear response of the input system; e.g. |G0|  =  0 for Kohn–

Sham insulators, and |G0| is related to the Wigner–Seitz 

radius for the homogeneous electron gas. The values of |G0| 

and α naturally differ depending on the input, although fix-

ing |G0|  =  1.5 Å  and α = 0.8 [15, 31] demonstrably improves 

convergence, see section 6. The modified Kohn–Sham prob-

lem is now solved
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α
|G|2

|G|2 + |G0|2
R[ρ∗(G)]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

= 0, (121)

which is referred to as Kerker preconditioned equation (120) 

[84, 85]. The Kerker preconditioner suppresses charge slosh-

ing, as defined in section 3.8, by damping eigenvalues of the 

dielectric corresponding to low |G| components of the den-

sity, see figure 8. It is these components that have a generi-

cally amplified response due to the Coulomb kernel. Note that 
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Figure 8. The Kerker preconditioner for various values of |G0|
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the optimal damping algorithm detailed in section 4.2 can be 

regarded as a preconditioner that updates the value of αn at 

each iteration. The adaptation of the Kerker preconditioner to 

real space implementations of Kohn–Sham theory more dif-

ficult. The dielectric response function of the homogeneous 

electron gas is non-local in real space, meaning the integral 

in equation  (39) leads to a dense Nb × Nb matrix that must 

be computed and stored. The susceptibility takes the Yukawa 

screening form in real space [76]. An efficient real space 

implementation of the Kerker preconditioner is given in [137].

One aspect of the preconditioning presented here is that, 

for increasingly homogeneous and isotropic inputs, the 

dependence of the dielectric condition number on unit cell 

dimension L ∼ G−1 cancels [73]. This is by construction, 

and is identified by examining the eigenvalues of the Kerker 

preconditioned dielectric. For inputs that are not so accom-

modating, while the Kerker preconditioner does help, the 

scaling of iterations with unit cell dimension persists [73, 

138]. Removing this scaling can be considered one of the pri-

mary goals of preconditioners in Kohn–Sham theory as large 

simulation cells are required for many modern applications. 

Moderate extensions to the Kerker preconditioner have been 

proposed [139], which involve more accurately modelling the 

dielectric response, e.g. [140]. However, in these examples, 

the main drawback of the Kerker preconditioner remains: 

there is no scope for systematically including anisotropy and 

inhomogeneity. Furthermore, the exchange-correlation kernel 

is ignored. This is a reasonable practice in non spin polarised 

systems, but in spin polarised systems, the spin density inter-

acts entirely through the exchange-correlation kernel, and is 

thus not preconditioned.

There have been various efforts to construct a precondi-

tioner that provides an improved description of inhomogene-

ous and anisotropic inputs. In the most extreme examples, 

computation of the exact linear response function is consid-

ered [78–81, 86, 141]. As discussed, the exact linear response 

function does not represent a preconditioning scheme, rather 

it is the exact Newton method. A density-dependent precondi-

tioner necessarily alters the Jacobian, equation (117), in a non-

trivial manner. Hence, it is not obvious the extent to which the 

condition of the modified problem will improve. Nevertheless, 

even approximate attempts at computing the exact response 

function, when treated as a Newton step, are able to improve 

the iterations over accelerated fixed-point algorithms such as 

Pulay’s method [78, 141]. The central difficulty in computing 

the exact susceptability, and subsequently the exact dielectric, 

is that it requires a summation over all unoccupied-occupied 

eigenfunction pairs equation (49). In plane-wave codes, both 

the computation and storage of all eigenfunctions of the 

Kohn–Sham Hamiltonian is infeasible.

Past attempts [79, 80] are able to implement and examine 

computation of the exact susceptibility with success, albeit 

with a basis set size now unsuited to modern computation. 

The problem of having to compute the full set of eigenfunc-

tions, and having too large a basis, can be remedied with a 

few differing approaches. First, the size of the effective basis 

can be reduced by recalling that the low |G| components of 

the density are those responsible for divergent eigenvalues 

of the dielectirc. Therefore, the susceptibility need only be 

computed for a reduced set of plane-waves—those with low 

frequency G. Working in this reduced space for the purposes 

of density mixing leads to a significant reduction in compute 

and memory overhead13 [15, 31, 78]. Second, we highlight 

two strategies to remove the infinite summation over unoc-

cupied eigenfunctions in the Adler–Wiser equation equation 

(49). The first strategy utilises density functional pertuba-

tion theory, and in particular the Sternheimer equation [142]. 

Solution of the Sternheimer equation allows one to obtain the 

first-order response in a perturbed quantity—here, the den-

sity in the direction of the residual—without requiring the 

full eigendecomposition of the Kohn–Sham Hamiltonian. 

This is utilised in, for example, the implementation of the 

GW approximation [143], and hence is available functionality 

within many Kohn–Sham codes. The density functional per-

tubation theory approach is used to construct a Newton step in 

[141] and is shown to significantly reduce the number of itera-

tions taken to converge when compared to Pulay’s method. 

The second strategy involves exploiting the completeness of 

eigenfunctions,

δ(x − x′) =

∞∑
j=1

φ∗
i (x)φj(x

′). (122)

This identity cannot be applied to the Adler–Wiser equa-

tion equation (49) without further approximation due to the 

denominator depending on the j th eigenenergy, ǫj . However, 

these eigenenergies can be replaced with some approximate 

constant value Ē  above a certain cut-off number of eigen-

functions Ncut-off. This allows equation (122) to transform the 

Adler–Wiser equation into a sum over Ncut-off << Nb eigen-

functions, which is used [78, 81] to successfully reduce the 

number of iterations taken to converge. However, note that 

these methods retain a poor scaling with the number of elec-

trons; O(N4) in the most recent examples. Whilst the prefac-

tor of the scaling is much reduced compared to earlier efforts 

[79], such methods, without further approximation or devel-

opment, are precluded for larger system sizes. A major advan-

tage of the methods discussed here though is the ability to take 

into account the spin linear response function. To the authors 

knoweldge, no other methods based around model dielectrics 

attempt to include the spin response function, and thus the 

spin density is often not preconditioned.

Finally, methods are examined that attempt to include 

inhomogeneity and anisotropy through model response func-

tions, rather than with the exact methods discussed prior. An 

extension to the Kerker preconditioner, which is based on 

Thomas–Fermi theory of the homogeneous electron gas, is 

considered [144]. Here, Thomas–Fermi–Von Weizäcker14 the-

ory is used, in combination with Pulay’s method, to generate 

the subsequent density. Crucially, this work does not restrict 

to the case of the homogeneous electron gas, and instead 

13 In fact, a reduced set of plane-waves is also used for the mixing algo-

rithms of section 4.1 in castep [15, 31]. The components of the density 

corresponding to G vectors outside this reduced space are treated with the 

fixed-point algorithm.
14 The Von Weizäcker kinetic energy extension to Thomas–Fermi theory 

serves to better model inhomogeneities in the density [87].
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numerically minimises the relevant functional. That is, the 

modified orbital-free functional

ETFW[ρ] =

∫

R3

∣

∣∇ρ(x)
1
2

∣

∣

2
+

3

5

∫

R3

ρ(x)
5
3

−

∫

R3

veff[ρ](x)ρ(x) + δE[ρin
n , ρ]

 

(123)

is minimised with respect to variations in ρ , where 

veff = vh + vxc + vext, the effective potential used to solve the 

Kohn–Sham equations. The details of the modification term 

δE[ρin
n , ρ] are given in [144], and is derived such that the mini-

miser of equation (123) can be used as the subsequent input 

density. Namely, the method calculates the repsonse that is 

required to bring the current input density to self-consistency 

within the framework of Thomas–Fermi–Von Weizäcker 

theory, and uses this as a model of the exact Kohn–Sham 

response. Minimisation of the Thomas–Fermi–Von Weizäcker 

functional, which is done using the conjugate gradient method 

[144], is vastly more efficient than minimisation of the Kohn–

Sham functional due to that fact it is orbital-free. In certain 

test cases this method is demonstrated to reduce the time taken 

to converge by up to a factor of three, and is implemented in 

the software package abinit [10, 32].

Alternatively, given an input that can be transparently par-

titioned into metallic and insulating regions, such as an inter-

face, inhomogeneity can be included explicitly by varying |G0| 

in each region. That is, set |G0|  =  0 for the insulating region, 

and have finite |G0| in the metallic region, which is considered 

in [73, 145]. This is non-trivial as the dielectric equation (39) 

becomes non-diagonal in both Fourier and real space, and 

hence becomes unfavourable to construct and store. However, 

note that one requires the dielectric applied to the residual 

vector Rn, rather than the dielectric itself. Therefore, inhomo-

geneity can be included using an algorithm that successively 

switches between Fourier and real space as to avoid construct-

ing the non-diagonal dielectric; see [145]. Furthermore, if the 

potential is treated as the optimisation variable rather than the 

density, a modified Poission equation  can be solved for the 

updated potential residual, see [73]. Here, the inhomogeneity 

is specified a priori with two functions that are now inputs 

to the calculation. These methods thus have the drawback 

that they are not black-box, as one is required to specify the 

inhomogeneity using prior knowledge of ones input system. 

Nonetheless, for specific systems, these frameworks provide 

an expert user with an additional degree of freedom for opti-

mising convergence.

4.4. Direct minimisation

Whilst self-consistent field methods are widespread, alterna-

tive techniques are available based on direct minimisation 

of the energy functional. These methods exploit the varia-

tional principle, and are thus global, varying {φi} to mini-

mise Eks[{φi}]. The density in these schemes is a dependent 

quanti ty, always derived directly from {φi} with no history 

of previous densities. From an initial guess set of orbitals, 

{φ
(0)
i }, a density

ρ(0)(x) =
∑

i

∣∣∣φ(0)
i (x)

∣∣∣
2

 (124)

is constructed, and the energy Eks[{φ
(0)
i }] and Kohn–Sham 

eigenvalue estimates ǫ
(0)
i  are evaluated, along with the energy 

gradient with respect to changes in {φ
(0)
i },

δEKS

δφi

∣

∣

∣

∣

φi=φ
(0)
i

= HKS[ρ]φ
(0)
i − ǫ

(0)
i φ

(0)
i . (125)

Since the energy gradients are the steepest ascent directions, 

the steepest descent direction is the negative of this. This 

steepest descent direction may be interpreted as a force acting 

on the degrees of freedom of the trial states {φ
(0)
i }. If masses 

are assigned to these degrees of freedom, then the states may 

be evolved forward in time according to a suitable equation of 

motion, and this forms the foundation of the Car–Parrinello 

method [17, 146]. By damping the motion appropriately, the 

system evolves towards the ground state.

An alternative approach is to consider the search for the 

ground state as a minimisation problem. A candidate search 

direction D
(0)
i  may be constructed to minimise the energy as,

D
(0)
i = −

δEKS

δφi

∣

∣

∣

∣

φi=φ
(0)
i

 (126)

i.e. the steepest descent direction. In practice more sophisti-

cated methods are used to construct a search direction, usu-

ally based on preconditioned quasi-Newton methods such as 

conjugate gradients.

Once a search direction has been obtained, an improved set 

of trial orbitals are constructed, e.g.

φ
(1)
i = φ

(0)
i + αD

(0)
i , (127)
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Figure 9. Comparison of the energy for a line-minimisation in the 
steepest descent direction with respect to the orbitals as a function 
of step-length α. The energy function is specified with fixed initial 
potentials (solid line) or with continually updated potentials along 
the line-minimisation (dashed line). The data is from the first step 
of a simulation of a conventional 8-atom fcc silicon cell, using the 
local density approximation.
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where α is a scalar parameter, chosen to minimise Eks[{φ
(1)
i }]. 

Note that, in general, {φ
(1)
i } will not be orthonormal and must 

be orthonormalised explicitly first. The search for an optimal 

value of α is known as the line-minimisation step. It is also 

important to note that, in the evaluation of Eks[{φ
(1)
i }], vh and 

vxc are always constructed from the density

ρ(1)(x) =
∑

i

∣

∣

∣
φ
(1)
i (x)

∣

∣

∣

2

. (128)

This is the critical difference between the self-consistent field 

methods and the direct energy minimisation methods. In self-

consistent field methods the corresponding optimisation of the 

orbitals is carried out using the original vh and vxc. Figure 9 

shows a direct comparison between these two approaches for 

a simulation of silicon, using an 8-atom conventional unit 

cell. The effect of updating the Kohn–Sham potential at each 

step along the line minimisation is to increase the curvature of 

the energy with respect to the step-length α leading to higher 

energies and an energy minimum at a smaller value of α. 

In contrast, the over-estimation of α when the energy curve 

along the steepest descent direction is computed with the fixed 

initial potential (from α = 0) can be considered one of the 

root causes of charge-sloshing instabilities in self-consistent 

field methods, see section 3.8.

The direct energy minimisation method discussed thus far 

is suitable for simulations with a band-gap. For metals and 

finite temperature insulators, however, it is not sufficient to 

consider only the lowest N eigenstates as occupied and there 

is an additional dependence on the partial occupancies f i. The 

ground state must now be found by searching over both the 

Kohn–Sham states and their occupancies. One of the most 

robust methods of this form is the ensemble density functional 

theory (EDFT) method of Marzari et al [26]. In EDFT every 

update of the trial states {φi} is followed by a direct energy-

minimisation over the density matrix in the basis of the trial 

states occupancies, {f ij}. This density matrix is nothing more 

than a generalisation of the occupancies to the case when the 

trial states {φi} do not diagonalise the subspace Hamiltonian 

h directly, where

hij =

∫

dx φ∗

i (x)HKS[ρ]φj(x). (129)

5. Test suite

The test suite [147] presented here differs from available test 

suites (e.g. [35, 36]) as it is required to sample the range of 

sources of ill-conditioning discussed in section 3. Therefore, 

it is the aim of this test suite that standard algorithms, such as 

Broyden’s methods, should fail to converge for approximately 

thirty to forty percent of cases. Furthermore, the standard 

algorithms should be inefficient, as defined in section 6, for 

the majority of the remainder of the systems. The test suite is 

designed to consume only moderate computational resources. 

Some of the most taxing inputs, such as large clusters with 

vacuum, require approximately sixty cores and a few hours. 

In its current version, which is subject to change, the test 

suite contains 56 systems. The geometries and relevant input 

parameters are given in [147] in the form of castep input files, 

but are readily converted using, for example, [148].

The content of the test suite is compiled from a range of 

sources, for example, self-consistency articles (e.g. [73, 89, 

92, 122, 123, 131, 144]), collaboration, and online databases. 

This content is now briefly motivated in terms of the theory in 

section 3. First, we recall that within semi-local Kohn–Sham 

theory, the exchange-correlation approximation can be largely 

ignored from the point of view of ill-conditioning. Hence, the 

exchange-correlation approximation is not varied across the 

test suite, and the PBE [47] level of theory is applied through-

out. A primary source of numerical difficulty, particularly rel-

evant to future applications, was identified as ill-conditioning 

arising from large unit cell dimensions. As such, a range of 

inputs with varying dimensionality is included. For example, 

we include a relatively large rubidium cluster, a rare earth 

silicide in the form of a long thin pillar, a slab of gold with a 

large vacuum, and so on. These additions should allow the test 

suite to be used to evaluate different preconditioners effec-

tively, rather than just black-box methodology. When neces-

sary, calculations are performed with spin polarisation, where 

any symmetry is broken by specifying some prior spin state. 

This initial spin polarisation is applied following Hund’s 

rules in order to ensure the algorithms converge to the same 

fixed-point. Approximately fifty percent of the test suite is 

spin polarised. Moreover, a particular emphases is placed on 

including inputs that are aligned with contemporary research. 

For example, superconductivity candidates, perovskites, and 

phases of matter that are far from their atomic equilibrium 

such as those generated by structure searching algorithms. 

The latter in particular can tend to introduce a very high den-

sity of states about the Fermi energy, and hence a variety of 

electronic temperatures is in the test suite for one such out of 

equilibrium system. Furthermore, isolated atoms in vacuum 

are conventionally difficult to converge, and in certain cases 

have been demonstrated to display artificial phase changes 

during the self-consistency iterations [89]. The test suite 

includes examples of isolated systems with varying atomic 

configurations, such as oxygen, nitrogen, iron, titanium, and 

vanadium. Finally, further to these classes of inputs, we also 

include examples of interfaces, highly inhomogeneous sys-

tems, electronegative systems, supercells of conventional 

metals, and poorly constructed problems (e.g. undersampling 

k-space).

6. Results and discussion

The aim of this section is to combine to the analysis of sec-

tion 3, a sample of the methods presented in section 4, and the 

test suite of section 5, in order to arrive at a workflow that can 

provide insight on the strengths and weaknesses of contempo-

rary self-consistency algorithms. Hence, the following work 

constitutes a benchmarking effort. However, the conclusions 

of this benchmark are not intended to be the focus of this sec-

tion. The reasons for this are two-fold. First, the benchmark is 
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not universal. That is, the benchmark omits a variety of suc-

cessful methods simply because these methods are unsuitable 

for the underlying DFT software used, for example, EDIIS 

[131]. Second, the utility measures are necessarily imperfect 

as a degree of detail is lost when condensing all convergence 

data to two scalar measures for each method. We elaborate 

on this comment after defining the utility measures. This sec-

tion is instead primarily intended to demonstrate a workflow 

that can be imitated by both methods developers and DFT 

software developers. That is, method developers are able to 

utilise the test suite, and similar measures of efficiency and 

robustness, to present and analyse new methodology in a 

more transparent and systematic fashion. Additionally, DFT 

software developers are able to do the same in order to assess 

whether they wish to replace old methodology with confi-

dence. Nonetheless, despite the caveats discussed with regards 

to the benchmark itself, the conclusions of the benchmark 

remain indicators of the kinds of techniques and principles 

that are proving successful, and can assist in guiding future 

method development.

As discussed previously, one must quantify utility precisely 

in order to compare and contrast differing algorithms. Here, 

this is done by introducing two separate measures, robustness 

and efficiency. Robustness is defined as the percentage of the 

test suite for which a given algorithm converges in less than 

a certain cut-off, which depends on how the efficiency meas-

ure is defined. Iterations are chosen as the efficiency measure, 

as discussed shortly, in which case we define two thousand 

iterations as the cut-off number of iterations after which an 

algorithm is said to have diverged—this choice depends on 

the content of the test suite. A robustness measure of r  =  0.6, 

for example, would indicate an algorithm converges 60% of 

the test suite in under two thousand iterations. Efficiency, in 

general, is a more complex quantity to measure. Many of the 

algorithms presented in section 4 require a negligible amount 

of time to compute the update in a given iteration, and hence 

number of iterations becomes an effective measure of effi-

ciency. However, there exist many methods that require a sig-

nificant amount of time per iteration to compute the update. 

Therefore, these methods demand another measure of effi-

ciency, such as wall-clock time. The use of wall-clock time as 

a measure of efficiency has transferability issues as it depends 

heavily on the computer architecture used, number of cores, 

efficiency and parallel scaling of the implementation, and so 

on. If one is required to use a measure such as wall-clock time, 

one must be very careful in assuring all potential sources of 

interfering causal influence, like changing computer archi-

tecture, are held constant. All but one of the methods to be 

tested here require negligible compute time per iteration, and 

hence we measure efficiency by number of iterations. For the 

remaining method that cannot be assessed using number of 

iterations, namely, ensemble DFT [26], we use wall-clock 

time to provide an estimated number of iterations, while 

ensuring all the aforementioned variables are held constant.

The quantity that defines the efficiency of a given algo-

rithm in the present context is given as

η =

(

1

Nconv

∑

i∈conv

ni

)−1

,

 

(130)

where Nconv is the number of inputs for which the algorithm 

converged, and ni is the iterations taken to converge for the 

ith member of the test suite. The inverse is included such 

that η is larger for a more efficient method. The normalisa-

tion factor Nconv is included in order to separate the measures 

of efficiency and robustness as much as possible. If this nor-

malisation were not included, algorithms that converge a sig-

nificantly higher percentage of the test suite would spuriously 

appear more inefficient than they actually are—this effect is 

still present, but diminished. A further complication is the 

following. Inputs which generically take a larger number of 

iterations to converge (e.g. large systems) will have a much 

higher method-to-method variance in iteration number than 

inputs which generically take significantly less iterations to 

converge. The inputs which lead to a large variance in itera-

tion number can act to drown out the contribution to the total 

efficiency of the inputs with less absolute variance (but equally 

high relative variance). For example, a method that performs 

well on one large system and poor on many small systems 

may lead to a improved efficiency η when compared to a 

method which performs well on many small systems and poor 

on one large system. This issue is not particularly pronounced 

here because iteration count as a measure of efficiency suf-

fers far less from this pathology than, for example, wall-clock 

time. Furthermore, one can recover the detail lost due to this 

issue by comparing any two methods individually, a workflow 

for which is provided later in this section. Therefore, the effi-

ciency and robustness measures outlined here are able to pro-

vide an approximate guide toward methodology that performs 

well. Further inspection of the convergence data can then 

allow one to make more to make more concrete conclusions.

As there exist two separate measures of utility, we must 

determine a prescription for how optimal can be defined here. 

This is done using the concept of Pareto optimality. Consider 

an algorithm X with associated efficiency and robustness 

scores, {X, ηX , rX}. If X is Pareto optimal, then there exists 

no algorithm {Y , ηY , rY} such that ηY > ηX and rY > rX . In 

other words, there is no algorithm that is both more efficient 

and more robust than X, and hence X has utility. Any algo-

rithm that is not Pareto optimal, or nearly Pareto optimal, 

has no utility as there exists another algorithm with signifi-

cantly higher individual utility scores. The set of all Pareto 

optimal algorithms, which includes differing parameter sets 

of the same underlying method, define the Pareto frontier. 

Algorithms that lie on, or lie close to, the Pareto frontier can 

be utilised in the sense that it is up to the developer to make 

a trade-off between robustness and efficiency. A developer 

might choose, for example, a particularly robust yet inefficient 

algorithm as a fall-back, and a slightly less robust yet more 

efficient algorithm as default, both of which should lie on the 

Pareto frontier.

As discussed previously, all possible parameters that could 

influence the convergence behaviour of the algorithm, that are 
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not directly related to the algorithm, must be held constant. 

In the benchmark presented here, this includes (unless stated 

otherwise): PBE exchange-correlation functional, Gaussian 

smearing scheme, electronic temperature T  =  300 K, history 

length m  =  20, k-point spacing 2π × 0.04 Å
−1

, and parallel-

ised over sixty four cores using Intel Xeon Gold 6142 pro-

cessors at 2.6 GHz. Note that the energy tolerance required 

for convergence, the cut-off energy, and the pseudopotential 

are varied across the members of the test suite, but not across 

the algorithms. Ultrasoft pseudopotentials are generated fol-

lowing the prescriptions of castep’s on-the-fly pseudopoten-

tial generator. A summary of these input parameters for each 

member of the test suite is given in [147].

The results of the benchmark are given in table 1, and illus-

trated in figure 10. The first observation of note is that Pulay’s 

algorithm, Kerker preconditioned using the default parameter 

set [15, 31], is Pareto optimal. In particular, Pulay’s method 

significantly outperforms Broyden’s methods in both the 

singlesecant and multisecant form. Despite Pulay’s method 

being Pareto optimal, there exist multiple algorithms that are 

more stable than Pulay’s method while sacrificing little effi-

ciency. The relationship between efficiency and robustness 

is generally non-linear, meaning it is worth sacrificing more 

than 10% efficiency for a method that is 10% more robust. 

Hence, algorithms more robust than Pulay’s method, that only 

incur a relatively small drop in efficiency, can be considered 

potential upgrades over Pulay’s method. From the algorithms 

tested here, these potential upgrades include certain param-

eterisations of Restarted Pulay [112], Periodic Pulay [110], 

and Marks & Lukes’ MSB2 [92]. The parameters used for 

these methods, as detailed in table 1, are not necessarily opti-

mal; by this we mean the parameters have not been tailored for 

performance over the test suite. Rather, these parameter sets 

are sensible choices that demonstrate improved convergence 

properties. It is feasible that parameter adjustments could lead 

to even more stable and efficient convergence. To this end, 

we provide a modest demonstration of how the representative-

ness of how the test suite can be used to determine optimal 

parameter sets. Figure 11 illustrates the results of calculations 

using eight different Kerker parameter sets for Pulay’s method 

Restarted Pulay

EDFT

Periodic Pulay (1)

MSB2

Pulay II (2)

Pulay II (3)

Multisecant Broyden II

Figure 10. Results of the benchmark tests of the algorithms in table 1. Each node corresponds to a separate algorithm placed corresponding 
to its robustness and efficiency across the test suite, with those that are on or close to the Pareto frontier explicitly labelled.

Figure 11. Results of the tests for differing Kerker parameter sets using Kerker preconditioned Pulay’s method. Each node corresponds to 
a separate parameter set placed corresponding to its robustness and efficiency across the test suite.
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over the test suite. As expected, removing the Kerker precon-

ditioner markedly reduces both the efficiency and robustness, 

as does setting the Kerker parameter |G0| too high, or too low. 

In fact, the default parameters |G0|  =  1.5 Å
−1

 and α = 0.8 

suggested in [15, 31] are found to be approximately optimal. 

Reducing the history size to m  =  10 rather than m  =  20 had a 

slight stabilising effect.

As expected, EDFT [25] is able to converge the vast major-

ity of the test suite—it is global by design. Note that the method 

is not 100% robust as two methods took over the maximum 

allowed time to converge. The cost of global convergence here 

is apparent: the efficiency is drastically reduced. Ensemble 

DFT should be used if and only if one expects divergent itera-

tions with self-consistent field methods. An interesting area of 

future work is to examine the extent to which  self-consistent 

field methods can match the robustness of EDFT whilst 

approximately maintaining the efficiency of self-consistent 

field methods. Recent sophisticated algorithms attempt this 

[56, 92, 131], see section 4.1.4, using some form of step-length 

control, i.e. line-searches or trust-regions. Incorporating some 

of the techniques that demonstrably stabalise iterations, such 

as adding linear mixing steps to the history or occasionally 

restarting the history, could be advantageous here. To con-

clude, this workflow, namely, assessing an algorithm utilis-

ing the test suite and similar measures of performance, can 

be used to confidently highlight the improvements possible 

with, for example, global self-consistent field methods. Note 

that a one-to-one comparison of algorithms can also be illus-

trated, figure 12. Here, we compare the efficiency of Pulay’s 

method versus Broyden’s second method, which brings to 

light the classes of systems for which one method outperforms 

the other. In this example, Pulay’s method is demonstrated 

to uniformly outperform Broyden’s second method over the 

test suite. In the case only two methods are being tested, pre-

senting the results in this form is preferable to figure 10, as it 

removes the aforementioned pathologies related to comparing 

only the efficiency and robustness scores. For example, we are 

able to observe that Pulay’s method does indeed uniformly 

outperform Broyden’s second method, as one might expect 

from a method with a significantly higher efficiency and 

robustness score.

7. Conclusion

Modern research utilising Kohn–Sham theory is progressively 

demanding self-consistent solutions from inputs that lead to 

significant ill-conditioning. This ill-conditioning can be a 

result of increased unit cell sizes, and/or related to the atomic 

species and positions involved. The core aim of this article is 

to elucidate these issues and provide a clearer path forward for 

algorithm development. We began in section 3 by examining 

a variety of properties of the Kohn–Sham map, whose fixed-

points define self-consistent densities. The topics covered in 

this section ranged from, for example, the definition of conv-

ergence, generation of the initial guess density, and sources 

of ill-conditioning within the linear response approximation. 

Following this, an overview of both standard and contempo-

rary methodology was provided. This overview was intended 

to be fairly brief, and aimed at providing a broad yet digestible 

introduction for interested practitioners and DFT software 

developers not actively involved in the development of self-

consistency methodology.

The analysis of section 3 revealed certain classes of inputs 

that induce difficulty in the self-consistency iterations. These 

classes include far-from-equilibrium systems, large units cells, 

highly degenerate systems, complex interfaces with differ-

ing electronic behaviour, and others. The insight gained from 

this analysis led to the creation of a test suite, the scf-xn suite, 

containing over fifty ill-conditioned inputs from a variety of 

sources. A selection of algorithms suitable to be implemented 

in castep were then benchmarked using this test suite, and 

their utility was quantified. The results of this benchmark led 

to a several observations of note. First, from the standard meth-

ods, which include unmodified versions of Pulay and general-

ised Broyden, the best performing was indeed Pulay’s original 

method. That being said, relatively simple modifications to 

these methods were able to demonstrate improved robust-

ness. These modifications involved interweaving linear mix-

ing steps in-between Pulay steps [110, 118, 119], and flushing 

the stored history of iterates after a given number of iterations 

[112]. Furthermore, considerable promise is shown by more 

sophisticated methods such as those in [56, 89, 92, 131]. These 

methods aim to converge the majority of cases with minimal 

user intervention. This will become increasingly important 

in the future as significant adjustments to default parameters 

may be required to force convergence in difficult cases due 

to increased ill-conditioning. Finally, the parameter space of 

Kerker preconditioned Pulay’s method was sampled using the 

test suite. This confirmed that the default parameters suggested 

by Kresse [15, 31] are indeed optimal. In par ticular, lower-

ing the damping parameter too much can negatively impact 

robustness as well as efficiency, due to the complexities inher-

ent within the Kohn–Sham functional landscape. The damping 

parameter in Pulay’s method should be kept as close to unity as 

possible, and reduced if and only if the iterations are divergent.
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Figure 12. A direct comparison of the efficiency measure of two 
algorithms. The plot is restricted to the range of 1–70 iterations for 
illustrative purposes.
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To conclude, we emphasise that the benchmark itself, 

while able to reveal certain well-performing methods and 

parameter sets, is not intended to be the focus of the latter 

part of this article. Rather, the workflow used in section 6 to 

generate this benchmark is the central development. That is, 

we present a workflow that comprises a test suite of difficult 

to converge inputs that are used to compare methodologies 

with some appropriate measure of efficiency and robustness. 

Indeed, if one were to replicate this workflow, the test suite 

need not be exactly the same as the version of scf-xn used 

here. Instead, one can augment the suite with any selection of 

systems, as long as due care is taken to ensure that the range 

of sources of ill-conditioning already included here is at least 

retained. It is hoped that the workflow presented enables and 

assists the development of self-consistency algorithms that are 

able to meet the needs of practitioners in modern applications.
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