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Abstract

Layout optimization provides a powerful means of identifying materially efficient structures. It has the potential to be 

particularly valuable when long-span structures are involved, since self-weight represents a significant proportion of the 

overall loading. However, previously proposed numerical layout optimization methods neglect or make non-conservative 

approximations in their modelling of self-weight and/or multiple load-cases. Combining these effects presents challenges 

that are not encountered when they are considered separately. In this paper, three formulations are presented to address 

this. One formulation makes use of equal stress catenary elements, whilst the other two make use of elements with bending 

resistance. Strengths and weaknesses of each formulation are discussed. Finally, an approach that combines formulations is 

proposed to more closely model real-world behaviour and to reduce computational expense. The efficacy of this approach 

is demonstrated through application to a number of 2D- and 3D-structural design problems.

Keywords Layout optimization · Truss topology optimization · Self-weight · Long spans · Equal stress catenary

1 Introduction

In very long-span structures the weight of the structure itself 

is often the dominant source of loading (Brancaleoni et al. 

2011), making it imperative that these structures are as light-

weight as possible. Structural optimization therefore has the 

potential to provide substantial benefits. However, in this 

case it is important that the self-weight loading is modelled 

accurately, to prevent misleading indications of optimality.

Widely used continuum topology optimization meth-

ods (e.g. Bendsoe and Sigmund 2003; Wang et al. 2003; 

Sigmund and Maute 2013) are not well suited to long-span 

structures. This is because a typical long-span bridge prob-

lem may include a design domain that is several kilometres 

in length, but structural elements that are of the order of 

centimetres in cross-section. Tackling such problems would 

require the use of very high resolutions when using con-

tinuum methods. For example, significant computational 

resources (up to 85 h of runtime on 16,000 CPU cores) were 

required by Baandrup et al. (2020) to solve a problem repre-

senting a small portion ( 
1

62
 of the bridge length) of the deck 

of a long-span bridge. This generated a form that was pri-

marily skeletal in nature, with regions of shell-like structure, 

further suggesting that a frame based optimization approach 

is likely to be more appropriate for such an application.

Discrete layout optimization methods can be used to 

obtain optimal structures consisting of individual elements 

(e.g. truss bars). This not only avoids difficulties in mod-

elling relatively small elements, but is also well suited to 

structures whose scale requires that they be assembled from 

many smaller components. The most common optimization 

approach for trusses is the ground structure-based layout 

optimization method (also sometimes referred to as the 

‘truss topology optimization’ method), originally proposed 

by Dorn et al. (1964). The efficiency of this method was 

improved by Gilbert and Tyas (2003), who implemented 

an adaptive ‘member adding’ method, taking advantage of 

the column generation mathematical programming proce-

dure (Gilmore and Gomory 1961; Lübbecke and Desrosiers 
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2005). This allows problems with very high resolution to be 

solved, whilst keeping run times and memory usage accept-

able. The visual clarity of the solutions obtained can be 

improved by adjusting the nodal positions using a geometry 

optimization rationalization step (He and Gilbert 2015).

Bridge-like structures have been previously studied using 

truss optimization approaches, as well as using analytical 

methods to directly address the Michell-Hemp optimality 

criteria (Michell 1904; Hemp 1978). However, in previous 

studies the self-weight of the structure is not generally con-

sidered, and so the results are applicable only to shorter spans.

Hemp (1974) proposed a solution to a single-span prob-

lem involving transmission of a distributed load to a pair 

of pinned supports, sometimes referred to as the ‘Hemp 

arch’ problem. This solution was shown to be optimal for 

non-uniform loading (Chan 1975), or unequal tension and 

compression strengths (Pichugin et al. 2012), although it is 

slightly sub-optimal for the problem originally posed. Sokół 

and Rozvany (2013) considered an extension of this to a 

multiple load-case problem.

Problems with infinitely many spans have been considered 

by Pichugin et al. (2015), Beghini and Baker (2015) and Fair-

clough et al. (2018). To date there appear to have been only 

a few cases of established structural optimization concepts 

being used by practising engineers to inspire real-world bridge 

designs (Graczykowski and Lewinski 2020), with issues such 

as lack of consideration of self-weight meaning that these 

have not been directly applicable to long-span structures.

Where self-weight has been considered within a numeri-

cal, ground structure-based, layout optimization process, it 

has almost universally been assumed that the weight of a 

member may be taken to act directly upon its end points 

(Bendsøe et al. 1994; Pritchard et al. 2005; Kanno 2012). 

This approach is appealing as it is conceptually simple and 

can be implemented without difficulty (no new variables or 

constraints are required in the layout optimization problem). 

However, as will become clear, this approach can give rise to 

unrealistic and non-conservative solutions, especially when 

the self-weight loading is significant. For example, Kanno 

and Yamada (2017) noted that this approach has a tendency 

to produce optimal structures with overlapping structural 

elements. They proposed an approach using mixed integer 

programming to directly prevent this. Whilst this was effec-

tive at addressing the overlapping members, the existence 

of these members is merely a symptom of a larger underly-

ing problem; the lumped mass approach introduces intrinsic 

non-conservative errors and the presence of excessively long 

elements is simply a manifestation of this.

Allowance for self-weight in analytical solutions was 

considered by Rozvany and Wang (1984), who proposed a 

modified form of the Prager-Shield optimality criteria. It can 

be shown that the lumped mass formulation tends towards 

an identical constraint only as the length of members tends 

to zero. Perhaps a more intuitive explanation of this effect 

is to consider the bending stresses that would be generated 

by self-weight when it is applied as a distributed load along 

the element. These bending stresses are neglected by the 

lumped mass approach.

Fairclough et al. (2018, 2022) developed an alternative 

approach involving the use of ‘catenary’ elements, which 

addresses the underlying issue by using elements which have 

the shape of a catenary of equal stress. This shape is defined 

by the presence of only axial stresses under the combined 

action of self-weight and axial load, and therefore avoids 

the issue of bending stresses mentioned previously. How-

ever, this approach is only applicable to problems involving 

a single load-case, whereas in the present contribution the 

goal is to extend this approach to scenarios involving mul-

tiple load-cases.

An alternative means of resisting the bending action gen-

erated by self-weight is to use members explicitly possess-

ing the required bending resistance. Pure bending structures 

have been widely studied in the context of beam grillage 

layout optimization (Rozvany 1972; Hill and Rozvany 1985; 

Bolbotowski et al. 2018). In this application the bending 

resistance of an element is linked by a linear relationship to 

the cross-sectional area; this can be achieved in practice by 

seeking the width of a cross-section of given (fixed) depth. 

Numerically, this leads to a linear optimization problem 

(Bolbotowski et al. 2018), which is quick to solve and for 

which globally optimal solutions can be obtained, whereas 

altering both width and depth leads to a more complex non-

convex problem. It is usual to neglect the influence of shear 

stresses generated by the bending, although Rozvany (1979) 

does consider a case where the area of an element is given 

by a linear expression involving the magnitudes of both the 

applied moment and shear force.

The nature of the Michell-Hemp criteria is such that 

when both axial and bending actions are permitted, solu-

tions involving the use of just axial elements will generally 

be favoured. Nonetheless, some practical applications have 

prompted activity in this area.

It has been found that the resulting non-convex problems 

can be solved effectively using gradient methods, such as the 

method of moving asymptotes (Pedersen 2003), and sequen-

tial conic programming (Lu et al. 2022). Alternatively meta-

heuristic methods that are unaffected by the convexity or 

otherwise of the problem have been widely applied to such 

problems (Liu et al. 2012; An and Huang 2017), though 

the optimality of the solutions obtained is uncertain. Addi-

tionally, formulations that involve picking catalogue cross-

sections have been used by Kureta and Kanno (2014), Van 

Mellaert et al. (2018), and Brütting et al. (2020). In this case 

integer programming methods must be employed (Gross-

mann et al. 1992), allowing optimal solutions to be obtained, 

albeit usually at high computational cost. Pre-existing frame 
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elements have also been considered in truss optimization 

formulations (Liang et al. 2000; Lu et al. 2018); however, in 

these problems the element dimensions are fixed and only 

the internal forces are subject to optimization, thus avoiding 

the need for non-convex constraints.

In this paper the focus is on developing computationally 

efficient means of solving layout optimization problems 

involving multiple load cases in the presence of self-weight, 

overcoming limitations associated with previously proposed 

methods. The paper focuses on the case where the goal is 

to minimize the volume of a structure comprising a rigid-

plastic material of given strength. Also, the aim is to develop 

a computationally efficient formulation that is potentially 

suitable for use in practice. As such, various approximations 

are required, though these are chosen so as to be conserva-

tive (i.e. to lead to overestimations in the volume of mate-

rial required), to ensure the results obtained are practically 

useful.

The paper is structured as follows: in Sect. 2 formulations 

that can be used to model self-weight within a layout opti-

mization model are described, including both existing and 

novel approaches. In Sect. 3 these approaches are compared 

for problems involving individual elements and small-scale 

structures. In Sect. 4 a means of combining formulations 

from Sect. 2 to enable practical problems to be solved in a 

computationally efficient manner is discussed. The resulting 

combined approach is then applied to a range of problems 

of practical interest in Sect. 5. Finally concluding remarks 

are presented in Sect. 6.

2  Problem formulations

In this section, a number of layout optimization formula-

tions are presented. Section 2.1 describes the standard for-

mulation in which self-weight is neglected. Various methods 

of handling self-weight are then presented. Specifically, in 

Sect. 2.2, the lumped mass approach is recalled; in Sect. 2.3 

the catenary element approach is described and then 

extended to now enable multiple load-cases to be handled; in 

Sects. 2.4 and 2.5 the self-weight of an element is assumed 

to be carried via bending action, assuming respectively rigid 

(moment-resisting) and pinned end connections.

Each of the aforementioned formulations can be han-

dled using the standard ground structure layout optimiza-

tion method, as shown in Fig. 1. Thus the problem is defined 

in terms of a design domain, supports, and applied loads 

(Fig. 1a), where the latter can be applied simultaneously (sin-

gle load-case) or separately (multiple load-cases). The domain 

is discretized with nodes (Fig. 1b), which are connected with 

potential members (Fig. 1c). Here, the adaptive member add-

ing approach proposed by Gilbert and Tyas (2003) is used, 

with adjacent connectivity employed for the initial ground 

structure. Finally, the optimization problem is formulated and 

solved to obtain the optimized minimum volume structure; 

when only a single load case is involved this may be in unsta-

ble equilibrium with the applied loads, as in Fig. 1d.

Static (equilibrium) formulations are presented here, 

but solutions for the kinematic (dual) problem are avail-

able through the use in this case of the MOSEK Aps (2020) 

primal-dual interior point solver.

2.1  Weightless formulation

The plastic truss layout optimization formulation for a truss 

comprising n nodes and m weightless members may be 

stated as follows: 

where the objective V is the total volume of the structure, 

calculated using � = [l1, l2,… , l
m
] , a vector containing the 

(1a)min
�,�k

V = �T�

(1b)subject to (��
k
= �

k
)∀k

(1c)(�
k
≤ �

T
)∀k

(1d)(−�
k
≤ �

C
)∀k

(1e)� ≥ �

(a) (b)

(c) (d)

Fig. 1  Layout optimization procedure: a definition of domain, loads 

and supports; b discretization of domain using nodes; c ground struc-

ture containing all potential members; d minimum volume solution 

(single load-case)
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length of each member, and � = [a1, a2,… , a
m
] , a vector 

containing optimization variables which represent the cross-

sectional areas of each member.

Constraint (1b) enforces equilibrium in each Cartesian 

direction at each node; this constraint is applied separately 

in each load-case, k. Also �k = [q1,k, q2,k,… , qm,k] contains 

optimization variables representing the axial force in each 

member in load-case k. For a two dimensional problem, 

�k = [f x
1,k

, f
y

1,k
, f x

2,k
,… , f

y

n,k
] is a vector containing the exter-

nally applied forces at each node in load-case k (for a three-

dimensional problem, f z components must also be included). 

Where there are supported degrees of freedom, either the 

reaction force may be explicitly treated as an optimization 

variable or, as is the case herein, the relevant constraint may 

be removed. Finally, � is a 2n × m (or, in three dimensions, 

3n × m ) matrix of direction cosines, such that the contribu-

tion of a single element i connecting nodes A and B may be 

written as:

where � is the angle between the element centreline and the 

positive x direction.

Finally, Eqs. (1c) and (1d) are strength or ‘yield’ con-

straints, with �
T
 and �

C
 being the limiting stresses in tension 

and compression, respectively.

2.2  Lumped formulation

In the standard lumped mass formulation the weight of an 

element is assumed to act directly on its end points. Con-

sidering the weightless formulation, only the equilibrium 

constraint Eq. (1b) needs to be changed to now include an 

additional term relating to the area of each member. Thus 

the contribution of a single element i to the equilibrium con-

straints changes from Eq. (2) to become:

where � is the density of the material, g is the acceleration 

due to gravity (which is assumed to act in the negative y 

direction) and l
i
 is the length of the member.

2.3  Catenary formulation

The formulation outlined here employs the equal stress 

catenary elements described by Fairclough et al. (2018) 

(2)

⎡
⎢⎢⎢⎣

− cos �

− sin �

cos �

sin �

⎤
⎥⎥⎥⎦

�
qi,k

�
=

⎡
⎢⎢⎢⎢⎣

f x
A,k

f
y

A,k

f x
B,k

f
y

B,k

⎤
⎥⎥⎥⎥⎦

(3)

⎡⎢⎢⎢⎣

− cos �

− sin �

cos �

sin �

⎤
⎥⎥⎥⎦

�
qi,k

�
+

⎡
⎢⎢⎢⎢⎣

0

−
�gli

2

0

−
�gli

2

⎤
⎥⎥⎥⎥⎦

�
ai

�
=

⎡
⎢⎢⎢⎢⎣

f x
A,k

f
y

A,k

f x
B,k

f
y

B,k

⎤⎥⎥⎥⎥⎦

for single load-case layout optimization problems; in this 

section the approach is extended to consider multiple load-

cases. These elements have a curved centreline, arching 

upwards when under compression, and sagging downwards 

when under tension; in the optimization it is convenient to 

treat tensile and compressive elements as separate elements 

interlinking a given pair of nodes. However, in the inter-

ests of clarity an element carrying a tensile force (only) is 

considered in the following, as shown in Fig. 2a, and the 

subscript i (as used in Eqs. (2) and (3)) is also omitted.

2.3.1  Equilibrium

Before considering multiple load-case scenarios, an alter-

native— but equivalent—perspective on the single load-

case formulation will be discussed. This model is shown in 

Fig. 2b, where the notional axial force q is separated from 

the self-weight forces W.

From Fairclough et al. (2018, Eq. (2.8)):

where WPQ and VPQ are the weight and volume of the section 

of catenary between P and Q, and q
x
 is the horizontal com-

ponent of the force in the element. Note that q
x
 is constant at 

(4)WPQ = �gVPQ = −qx(tan �Q − tan �P)

(a)

(b)

Fig. 2  Equal stress catenary element (single load-case): a form of 

element, showing end forces aligned to centre-line of element; b 

straight-line force transmission with lumped masses. The light and 

dark grey shaded areas in a correspond to the light and dark grey 

lumped masses in b 
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all points along the catenary, and is equal to q cos � , where 

� is as defined in Fig 2b. Also, � is the angle between the 

catenary centreline and the positive x axis at the subscripted 

point; see Fairclough et al. (2018) for details of how this is 

calculated.

The point M (shown in Fig. 2) is defined as the point at 

which the tangent to the element’s centreline is parallel to 

the straight line AB, i.e. �
M
= � . Point M is the dividing 

point when considering the catenary as a lumped mass, i.e. 

the weight of the section AM is applied at point A, and the 

weight of section MB is applied at point B. The weight of 

section AM can be calculated from Eq. (4) as follows:

The external force q is directed along the straight line AB, as 

shown in Fig. 2b. It is evident that the horizontal component 

is identical to that shown in Fig. 2a. It can also be seen that 

the total vertical load at A is −W
AM

− q sin � , which may be 

simplified using Eq. (5) to compute W
AM

 . Thus:

Similar logic may be used to confirm the forces at point B. 

Thus, the representation shown in Fig. 2b is fully equivalent 

to the one in Fig. 2a for single load-case problems. Signifi-

cantly, from the representation presented in Fig. 2b, it is easy 

to see how equilibrium equations for other load-cases can 

be established when the weights W
AM

 and W
MB

 are constant 

and only the axial force q varies.

For the multiple load case formulation, r can be defined 

as the maximum value of q, from which the required cross-

sectional area of the element can be calculated. Thus:

In each load-case k, the element force is given by qk , so that 

the required equilibrium constraint becomes:

However to provide easier comparison with the single load-

case formulation, and in the interests of numerical stability, 

it is convenient to use the value of r − qk as the optimiza-

tion variable, denoted as pk . Thus the equilibrium constraint 

becomes:

(5)
W

AM
= −q cos �(tan � − tan �

A
)

= −q(sin � − cos � tan �
A
)

(6)
q

y,A = q(sin � − cos � tan �A) − q sin �

= −q cos � tan �A

(7)W
AM

= −r(sin � − cos � tan �
A
)

(8)

⎡
⎢
⎢
⎢
⎣

0

cos � tan �
A − sin �

0

sin � − cos � tan �
B

⎤
⎥
⎥
⎥
⎦

r +

⎡
⎢
⎢
⎢
⎣

cos �

sin �

− cos �

− sin �

⎤
⎥
⎥
⎥
⎦

qk =

⎡
⎢
⎢
⎢
⎢
⎣

f x
A,k

f
y

A,k

f x
B,k

f
y

B,k

⎤
⎥
⎥
⎥
⎥
⎦

This also means that the coefficients of r are the same 

as in the single load-case formulation, so that the limits for 

vertical elements given by Fairclough et al. (2022) may also 

be used. (Note also that there are no difficulties in directly 

calculating the coefficients of pk for the case � = 90
◦.)

2.3.2  Yield conditions

Here, a simplified yield constraint based on the lumped mass 

approach will be used. The yield conditions in this case may 

be imposed by first conceptualizing a given element as in 

Fig. 3, where a core in the centre of the element is con-

sidered as a fully stressed catenary, and additional material 

located at the edges of the section is assumed to be lumped 

at element end-points.

For this simplified yield condition, the required optimiza-

tion constraint is simply that the stressed core of the catenary 

takes between 0% and 100% of the total cross-section, i.e. 

that 0 ≤ qk ≤ r . To re-write this using the preferred optimi-

zation variable gives:

Note that when pk = 0 (i.e. the element is fully utilized), 

this simplified yield condition precisely reproduces that pre-

sent in the single load-case formulation. As the utilization 

is reduced, some error is introduced by the assumption that 

unused material can be transmitted to the nodes at no addi-

tional cost, similar to the formulation in Sect. 2.2. In reality, 

as soon as the axial load, qk on an element is reduced from 

(9)

⎡
⎢
⎢
⎢
⎣

cos �

cos � tan �A

− cos �

− cos � tan �B

⎤
⎥
⎥
⎥
⎦

r +

⎡
⎢
⎢
⎢
⎣

− cos �

− sin �

cos �

sin �

⎤
⎥
⎥
⎥
⎦

pk =

⎡
⎢
⎢
⎢
⎢
⎣

f x
A,k

f
y

A,k

f x
B,k

f
y

B,k

⎤
⎥
⎥
⎥
⎥
⎦

(10)r ≥ pk ≥ 0

A
M

B

Fig. 3  Conceptual model of catenary element loaded at approxi-

mately half capacity ( qk = 0.5r ). The black region is considered to 

be fully stressed (and is equal to a catenary element where the maxi-

mum design load is equal to qk ), whilst the dark and light grey shaded 

regions are considered unstressed and are applied as lumped masses 

at points A and B, respectively
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its maximum value r, the internal equilibrium state involving 

purely axial stresses no longer holds, and bending moments 

are generated within the element.

It will be shown in Sect. 4 that this simplified approach is 

well suited to modelling the situation in the cables found in 

real-world cable-supported bridge structures. Also, even for 

other cases, this formulation provides an improvement over 

the lumped mass approach; the catenary element is capable 

of withstanding the internal effects of self-weight in, at least, 

the fully loaded case.

2.3.3  Volume

For this approach, the volume of the element is no longer 

simply defined as l
i
a

i
 as in Eq. (1a). Instead the volumes 

are calculated as in Eq. (3.4) of Fairclough et al. (2018), 

although now using the defining force r to give:

2.4  Beam formulation 1: rigid joints

The next two formulations are based on the use of beam ele-

ments, i.e. elements where the self-weight is applied contin-

uously along a straight, prismatic element, which is capable 

of carrying the induced bending stresses. As the elements 

are assumed to be prismatic, the volume can be calculated 

in the same way as in Eq. (1a).

In this section, it will be assumed that the connections 

between adjacent members are capable of transmitting 

moments; Sect. 2.5 will consider the case where these con-

nections are pinned. Again, subscript i is omitted for sake 

of clarity.

2.4.1  Equilibrium

The optimization variables here are the area, a, and, for each 

load-case k, the end moments mA,k, mB,k and the notional 

axial force qk (defined as the axial force at the mid-point). 

The self-weight produces a uniformly distributed load with 

total magnitude W = �gal , where l is the member length as 

shown in Fig. 4. End forces, vA, vB and qA, qB (Fig. 4), are 

found using equilibrium of the element, giving the values 

shown in Fig. 7. Thus the equilibrium equations in global 

coordinates are:

(11)Vi = r
cos �i

�g
(tan �

A
− tan �B)

where e.g. f x
A

, f
y

A
 are the forces in the x and y directions at A, 

and M
A
 is the total moment transmitted at A.

2.4.2  Yield constraints

For the purposes of calculating the yield constraints, the 

cross-section of the member will be split into two regions, 

with areas a
N

 and a
M

 , following the approach proposed by 

Lu et al. (2022). A region of area a
N

 carries the axial and 

shear forces acting on the element, with regions of total 

area a
M

 carrying the axial stresses generated by the applied 

moments, as shown in Fig. 5.

(12)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− cos � −
sin �

l
−

sin �

l

− sin �
cos �

l

cos �

l

0 1 0

cos �
sin �

l

sin �

l

sin � −
cos �

l
−

cos �

l

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
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Fig. 4  Nodal forces and moments acting on a beam element AB, 

where the element weight acts as a uniformly distributed downwards 

vertical load. Key geometric parameters are also indicated

(a) (b)

Fig. 5  Cross-sections with fixed bending depth d: a scenario with low 

value of axial loading and highest value of bending moment; b sce-

nario with high axial loading and lower applied moment
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This split may be different in each load-case, but in all 

cases the sum of the two areas must not be greater than the 

total area a, giving the following constraint:

The yield constraints for the two regions will be considered 

separately.

Moment yield The region with area a
M

 is divided into two 

equal areas, which occupy the top and bottom of the cross-

section, as shown in Fig. 5a. The plastic moment capacity of 

this region is given by the expression 
�d

2
a

M
 , where � is the 

limiting stress of the material, and d is the distance between 

the centroids of the two halves of the a
M

 region.

The moment yield constraints at the end-points A and B 

are given by:

(13)a
N,k

+ a
M,k

≤ a

This constraint is linear and convex only if d is constant; 

therefore the value of d must be pre-defined. Note that this 

may give a slight, conservative, error in the bending resist-

ance for cases when an element carries less moment loading, 

as shown in Fig. 5b.

When self-weight is considered, an additional parabolic 

distribution is added to the bending moment diagram; this is 

shown in the filled diagram on Fig. 6. The maximum abso-

lute value of bending moment may now occur at any point 

along the beam, which is problematic in a layout optimiza-

tion context. Thus a conservative piecewise linear approxi-

mation of the curve can be used, constructed from tangents 

to the curve located at mid- and end-points of the beam. 

With this representation the peak bending moment can occur 

only at the end-points, or at the transition points between 

piecewise linear elements, i.e. at beam quarter points.

The maximum bending moment contribution from self-

weight, M
sw

 , occurs at the midpoint of the parabolic distribu-

tion, and also at the quarter points of the approximated dis-

tribution. It is calculated based on the total element weight, 

distributed over a horizontal span x̄ = x
B
− x

A
 , thus:

Therefore expressions can be formulated with sagging 

moments as positive. When point A is to the left of point B 

(i.e. x̄ is positive) the relevant expression is:

and when point B is to the left of point A (i.e. x̄ is negative):

Both (16) and (17) may be applied to all elements; if the sign 

of x̄ is opposite from that mentioned, then those constraints 

will become less critical than (14), and so do not affect the 

solution. This becomes essential when movement of nodes 

may cause an element to change direction, for example if the 

method is extended to permit geometry optimization (He 

and Gilbert 2015).

Axial yield The region of the beam with area a
N

 is 

assumed to carry both axial and shear loading. When self-

weight is neglected, both axial and shear forces are con-

stant, having values of q and 
m

A
+m

B

l
 respectively, as shown 

by dashed lines in Fig. 7.

(14)

⎡⎢⎢⎢⎣
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⎡⎢⎢⎢⎣
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�

(15)M
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=
1

8
�gl|x|a
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0.25 − 0.75

0.75 − 0.25

] [

mA,k

mB,k

]

+
𝜌gx̄l
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Fig. 6  Bending moment diagrams for a beam element with and with-

out self-weight effects

(a)

(b)

Fig. 7  Force distributions along a beam element: a normal force; b 

shear force. Dashed lines show distribution in the case where self-

weight is neglected, solid lines show case where self-weight is con-

sidered
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However, when self-weight is considered, the distribu-

tions of normal and shear force are linear, as shown in Fig. 7. 

It will be (conservatively) assumed that the worst case for 

shear and normal forces are co-incident. For convenience 

here variables q
N

 , to be the largest absolute value of the 

normal force, and q
V
 , to be the largest absolute value of the 

shear force, are defined using the following constraints:

Noting that both of these forces are carried over the area 

a
N,k

 , they can be transformed into stresses. To combine the 

shear and normal stresses the Von Mises’ yield criterion can 

be employed, which can be rearranged to give the following 

conic constraint:

Alternatively, to maintain a linear formulation, this can be 

approximated using linear constraints. The simplest con-

servative way to do this is to use a plane which intersects 

the cone of Eq. (20) when qN,k = 0 and when qV ,k = 0 ; this 

(along with the non-negativity of qN,k and qV ,k , implied by 

Eqs. (21) and (22) respectively) defines a subset of the cone 

of Eq. (20). The required linear constraint is therefore:

Note that the use of the Von Mises yield constraint 

restricts elements to have equal stress limits in tension and 

compression.

2.5  Beam formulation 2: pinned joints

The beam formulation in the previous section provides a 

conservative method of modelling frames when both self 

weight and multiple load-cases must be considered. How-

ever, the optimization problem produced using this formu-

lation contains many more variables and constraints than 

an equivalent problem using the catenary or lumped mass 

formulations (see Appendix A for details).

In this section, a further formulation will be derived; this 

will use elements that are very similar to those described in 

the previous section, except that they will now be assumed 

to be pin-ended. It will be shown that this can produce a 

(18)
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(21)qN,k +

√

3qV ,k ≤ �aN,k

formulation of comparable computational complexity to the 

catenary and lumped mass formulations.

2.5.1  Equilibrium

Firstly, the end moments of all elements are fixed to be zero, 

and the corresponding optimization variables are therefore 

not required. The moment equilibrium constraints at each 

node are also removed. The equilibrium constraint, Eq. (12), 

then becomes:

Note that this is now identical to the equilibrium condition 

used in the lumped mass formulation. However, in this case 

the yield conditions outlined in the section below will give 

rise to a significantly larger value of a for any given value 

of q.

2.5.2  Yield

The yield constraints will now be derived, starting from the 

constraints developed in the previous section.

Moment yield As the end moments of the member are 

now zero, the maximum moment will equal M
sw

 , as defined 

in Fig. 6 and Eq. (15). This will be the maximum value 

of both the exact and approximate distributions shown in 

Fig. 6, so it is immaterial which of these is assumed.

As the bending moment in the member now depends 

only on self-weight, it will not change between load-cases. 

In other words, the load-case specific variables a
M,k

 can be 

replaced with a single value a
M

 , which can be defined from 

Eqs. (16) and (17) to be:

Axial and shear yield The shear force in the member is 

caused by the self-weight alone once the end moments have 

been removed. Therefore the maximum absolute value of 

the shear force ( qV ,k ) will be invariant between load-cases, 

and can be replaced with a single value qV , which is defined 

as |
�gla

2
cos �| . Note also that this implies that the worst case 

points for shear and normal will always coincide in the pin 

jointed case, rather than this simply being assumed, as in the 

rigid jointed derivation.

The maximum axial force, qN,k may still vary between 

load-cases, and is still defined by the expression 

|
�gla

2
sin �| + |qk| . Combining these expressions using the 

linearised Von Mises constraint, Eq. (21), gives:
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Equality may be assumed as this is the only constraint on 

a
N,k

 , and thus the constraint can be simplified to give:

where ȳ = y
B
− y

A
.

Combined yield constraint The moment and axial/shear 

yield constraints are combined using the constraint that 

a
M
+ a

N,k
≤ a . From Eqs. (23) and (24) the following can 

be obtained:

This may be rearranged to give a form which is compara-

ble with the yield condition for the classical lumped mass 

formulation:

Comparing this with Eqs. (1c) and (1d), the additional terms 

concerning |ȳ| and |x̄| in Eq. (27) can be interpreted to repre-

sent reductions in the effective limiting stress of the member, 

caused by the need to carry its own self-weight. If the values 

of |ȳ| and |x̄| are sufficiently large, the term in the bracket 

will become zero or even negative, which implies that such 

elements are not feasible, and should therefore be excluded 

from the ground structure. This is discussed in more detail 

in Sect. 3.1.2.

3  Comparison of formulations

Next, the performance of the formulations described in 

Sect.  2 are compared. In Sect.  3.1 individual elements 

are considered, using examples with real-world values 

(Sect. 3.1.1), and also observing differences in predicted 

limiting span (Sect. 3.1.2). In Sect. 3.2, the different formu-

lations are used to solve a simple textbook-style problem, 

with results compared in terms of optimal form, volume, 

and numerical convergence characteristics.

3.1  Comparison of individual elements

3.1.1  Single element problem

Consider the problem setup shown in Fig. 8, with mate-

rial assumed to have a stress limit, � , of 500 MPa and unit 

weight, �g , of 80 kN m −3 . The volumes of material required 

(24)�qk� + ��gla

2
sin �� +

√
3��gla

2
cos �� ≤ aN,k

(25)�qk� +
𝜌g

2
�ȳ�a +

√
3
𝜌g

2
�x̄�a = 𝜎aN,k

(26)
𝜌g�x̄�l

4d
a +

𝜌g

2
�ȳ�a +

√
3
𝜌g

2
�x̄�a + �qk� ≤ 𝜎a

(27)�qk� ≤
�
𝜎 −

𝜌g

2
�ȳ� −

√
3
𝜌g

2
�x̄� − 𝜌g�x̄�l

4d

�
a

to support the applied load using the different formulations 

are shown in Fig. 9.

Firstly, the classical lumped formulation requires an ele-

ment with cross-sectional area a = 0.012 m
2 , equivalent to 

a solid circular cross-section of radius 62 mm. Note that 

this result does not depend on the value of the material unit 

weight, and indeed the same result would be obtained if self-

weight was neglected entirely.

A catenary element for this example would have a maxi-

mum dip (or rise, if the force was reversed so as to be com-

pressive) of 1.80 m. At midspan, where the element is hori-

zontal, the cross-sectional area will be precisely equal to 

that of the lumped formulation, i.e. 0.012 m 2 ; this increases 

slightly to a maximum of 0.120034 m 2 at the end points. The 

total volume of the element is 3.600691 m 3 , a mere 0.02% 

increase in overall volume compared to the lumped case; 

Fig. 8  Single element example: problem setup

Fig. 9  Single element example: total structural volumes using the 

different formulations, with the influence of the approximations 

described in Sect. 2 indicated
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however the material is now optimally distributed over a 

much larger structural depth.

Considering the pinned beam formulation, from Eq. (23) 

it can be found that 0.012
l

d
a = a

M
 , showing that the propor-

tion of the cross section used to carry the bending stresses 

induced by the self-weight is dependent on the bending 

depth d, or, more conventionally, on the beam span:depth 

ratio 
l

d
 . For example, a value of 20 for the beam span:depth 

ratio (as in Fig. 9) would result in 24% of the cross-section 

being used to carry bending.

From Eq. (27) the required overall area (in m 2 ) of the 

beam element can be found to be a =
6

479.22−6
l

d

 , which again 

will depend on the span:depth ratio. Even when the beam is 

very deep ( 
l

d
→ 0 ) the required area will be 0.01252  m2, a 

4.4% increase over that required by the lumped formulation; 

this increase accounts for the need to carry the shear forces 

imposed by the self-weight loading. For a span:depth ratio 

of 20 the required area a will be 0.0167  m2. The use of the 

linear approximation to the Von Mises’ criterion can be cal-

culated to cause an increase in volume of 4.2% when the 

beam is very deep, or 5.7% when 
l

d
= 20.

As shown in Fig. 9, the required material in the a
N

 sec-

tion (i.e. the ‘web’, carrying axial and shear forces) does 

not depend on the situation at the ends of the member, and 

is therefore the same for both pin-ended and rigid jointed 

beams. The assumption that maximum shear and normal 

stresses are co-incident is found to be true in both these 

cases, as the element is horizontal and thus has a constant 

normal force (similarly, this assumption is also true for all 

vertical elements, and the aforementioned case of elements 

with end moments of zero).

For the rigid-jointed beam formulation, the optimal 

moment distribution (using the approximated distribution 

in Fig. 6) occurs when the moment at the fixed support, m
2
 , 

is equal in magnitude to the moment at the quarter point. 

Therefore, the moment to be resisted will be 0.75M
sw

 . This 

results in an element with total area a = 0.01583 m2 if the 

span:dip ratio is 20, giving a total volume of 4.7486  m3.

If the exact, parabolic, distribution of the bending 

moment is instead assumed, then the minimum moment to 

be resisted will be obtained when m
2
 is equal to 0.684M

sw
 , 

leading to a total member area a = 0.01525 m2 for a beam 

with span:dip of 20. This implies an error of 3.8% caused 

by the approximated moment distribution employed in this 

paper. Note that this example demonstrates a case that is 

particularly challenging for this approximation; the self-

weight moment is large, and the end moments are highly 

asymmetrical. Of course, if a more precise approximation 

is required then the moment distribution may be discretized 

using a larger number of line segments.

The most significant assumption (in terms of impact 

on the volume) within the beam formulations is that the 

elements should be prismatic, i.e. that a, a
M,k

 and a
N,k

 are 

constant along the bar. This may be quantified by comparing 

the single element solution above with the result obtained 

when many rigid-jointed beam elements are used, arranged 

along the centre-line of the beam. For this case, the single 

element (i.e. prismatic) solution has a volume 16.7% greater 

than the result using 100,000 elements. Reasonable approxi-

mations are possible, however, with more modest resolu-

tions; using 10 elements increases the volume by just 3.2%.

3.1.2  Element volumes and limiting spans

It was noted in Fairclough et al. (2018) that catenary ele-

ments have a maximum horizontal span of 
��

�g
 , although they 

have no limit in the vertical direction; this limit is unchanged 

by the multiple load-case extension described here. Con-

versely, both the weightless and lumped mass approaches 

may permit elements of unrestricted length—assuming 

appropriate boundary conditions. The electronic supplemen-

tary material (ESM) contains plots of the limiting spans for 

all the formulations considered here, alongside the relative 

volumes of shorter elements.

This indicates that the beam formulations are much more 

heavily influenced by self-weight. The maximum horizontal 

span for a beam element, even when the structural depth is 

large, is 
2
√

3

�

�g
 , which is just 37% of the span possible using 

the same material in catenary form. The beam elements are 

also restricted in their vertical height. Even at much shorter 

spans, the use of beam elements implies greater impact from 

self-weight, with effects noticeable at a span roughly a fifth 

of the equivalent with catenary elements.

Note that in the layout optimization formulation, indi-

vidual potential elements that lie outside their respective 

limits should be eliminated from the ground structure. For 

these ‘impossible elements’, the functions outlined in Sect. 2 

may be undefined or complex-valued, or may give coefficient 

values that would lead to infeasible problems.

3.2  Comparison of resulting structures

In this section, each of the formulations developed in Sect. 2 

is in turn used to solve the same problem, allowing differ-

ences in the resulting structures to be identified.

3.2.1  Problem description

The problem considered involves a uniformly distributed 

load of magnitude � applied between a pair of pinned sup-

ports, as shown in Fig. 10. The material to be used has the 

same limiting stress, � , in both tension and compression 

(limiting Von Mises stress in the beam-based formula-

tions), with unit weight �g . Initially, only a single load-case 
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is considered. To discretize the load, the Type-III loading 

defined by Darwich et al. (2010) is used.

Similar problems have been considered analytically, 

albeit without consideration of self-weight (Hemp 1974) 

and also with different loading distributions (Chan 1975), 

variations in permitted limiting tensile and compressive 

stresses (Pichugin et  al. 2012) or with variable height 

loading (Darwich et al. 2010; Tyas et al. 2011). A version 

involving multiple load-cases was considered by Sokół and 

Rozvany (2013), where each of nine equally spaced point 

loads was applied separately. In all of these cases, the design 

domain has generally been taken to be the half plane above 

the supports, though to keep the problem size manageable 

in the numerical studies the domain height has been limited 

to half the span, and the horizontal extent of the problem to 

between the two supports. Symmetry boundary conditions of 

the type used by Fairclough and Gilbert (2020) are employed 

so that only half of the domain needs to be explicitly mod-

elled, when loading is symmetric; these behave identically 

to standard symmetry boundary conditions (i.e. roller/pin 

supports).

3.2.2  Influence of nodal discretization

In the first case considered the span, L, between supports is 

taken as 0.4
�

�g
 ; for a steel material with limiting stress 200 

MPa and unit weight 80 kN/m3 , this equates to a span of 1 

km. Figure 11 shows the normalized volumes for the solu-

tions obtained using each formulation, at various nodal reso-

lutions; Fig.  12 shows the resulting structures for the 

n
x
= 100 case. Here n

x
 is defined as the number of nodal 

divisions across the full span. The spacing of nodes is the 

same in the horizontal and vertical direction, and thus the 

m o d e l l e d  h a l f - s p a n  c o n t a i n s  a  g r i d  o f 

(0.5n
x
+ 1) × (0.5n

x
+ 1) nodes. All pairs of nodes have the 

potential to be connected using the adaptive member adding 

method, and thus the largest n
x
= 160 problems permit over 

330 million potential members. For the beam formulations, 

the element depth, d, was chosen to be 
L

1000
.

To extrapolate a volume for infinitely many divisions, 

the approach of Darwich et al. (2010) was employed. The 

extrapolated volumes, V
∞

 , are given in Table 1 and shown as 

dashed lines in Fig. 11. The value of V
∞

 obtained here with 

the weightless formulation is just 0.01% away from the value 

obtained by Pichugin et al. (2012) (who used higher nodal 

resolutions in the y direction and also higher values of n
x
).

The forms in Fig.  12a–c all resemble the numerical 

result of Pichugin et al. (2012, Fig. 2)—a modified version 

of Hemp’s arch (Hemp 1974) with a horizontal tie bar in 

the centre. However, the lumped and catenary approaches 

Fig. 10  Single span example: problem definition

Fig. 11  Single span example: convergence of different self-weight models. Solid lines show fit line, dashed lines show values of V
∞

 . Left: com-

parison of results for all models. Right: detail of region containing lumped and catenary model results
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(Fig. 12b, c), substantially increase the heights of the struc-

tures (see 
L

H
 values in Table 1).

With the beam formulations (Fig. 12d, e), the centre of 

the arch does not directly support any hangers. At this point 

the thickest elements form a straight load path, whilst sur-

rounding thinner members form a framework to more effi-

ciently carry the self-weight. The beam formulations also 

display significantly increased resolution-dependence, which 

is unsurprising since the bending induced by self-weight is 

proportional to element length squared.

3.2.3  Influence of span

The effect of varying the span length L is now investigated. 

Figure 13 shows the corresponding volumes with n
x
= 100 

over a range of spans up to L = 1.6
�

�g
 (around 4 km with 200 

MPa steel). The volumes in Fig. 13 have been scaled to 

highlight the changes in volume caused by scale effects, such 

that the weightless solutions form a straight horizontal line. 

The time required to solve these problems is discussed in 

Appendix B; notably, the pinned beams require only around 

a quarter of the time to solve compared to the equivalent 

problem with rigid joints.

In general, the increase in span leads to a taller structure. 

For example Fig. 14b shows the resulting structure using the 

catenary formulation at L = 1.6
�

�g
 (c.f. Fig. 12c). A similar 

pattern was observed using the beam formulation, although 

the height of those structures became restricted by the per-

mitted domain height. In the beam solutions, there is also a 

preference towards moving material towards the supports, 

extending the triangular regions evident in Fig. 12d–e. There 

Table 1  Single span example: extrapolated volumes and span:dip 

ratios, 
L

H
 , for the solutions obtained

Formulation V
∞

L

H
 , n

x
= 160

Weightless 3.1516
�L

2

�

160

54
≈ 2.9630

Lumped mass 4.0641
�L

2

�

160

59
≈ 2.7119

Catenary 4.0640
�L

2

�

160

58
≈ 2.7586

Rigid jointed beam 4.0698
�L

2

�

160

64
= 2.5000

Pinned beam 4.1889
�L

2

�

160

67
≈ 2.3881

Fig. 12  Single span example ( L = 0.4
�

�g
 ): resulting optimized layouts 

using each model of self-weight, a weightless; b lumped mass; c cate-

nary; d rigid jointed beam; e pinned beam

Fig. 13  Single span example: effect of varying span on optimized 

volume
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is a suggestion that a similar effect may be occurring in the 

catenary solution (Fig. 14b), although due to the increased 

efficiency of the catenary approach (see Sect. 3.1.2) the 

effect is less pronounced.

The difference between modelling the problem by exploit-

ing the symmetry plane and by modelling the whole domain 

was also tested. For the weightless formulation and the three 

new approaches proposed here, no significant difference in 

terms of the form or volume of the structure was observed, 

although problems utilizing the symmetry plane required 

only around one third of the CPU time to solve.

However, when using the lumped mass method, the 

results obtained when modelling the whole plane dem-

onstrated a key weakness of the method—its propensity 

to generate unrealistic solutions involving very long ele-

ments. This is evident in the solution shown in Fig. 14a, 

which contains very long unsupported elements along 

the top of the structure. Using these elements allows the 

optimized form to transmit the force along the top of the 

structure without incurring any additional self-weight load 

in the critical mid-span regions. Figure 13 shows that the 

volumes of the catenary and lumped mass approaches are 

very similar until the point at which these unrealistic ele-

ments emerge. In other cases, the lumped mass formula-

tion may over-estimate the volume of material required. 

In the present example this is particularly notable in the 

near-vertical hangers; these should vary in area along their 

length due to the changing load from self-weight, yet the 

lumped mass formulation can only model them with con-

stant cross-section. This actually causes the lumped mass 

solution to have a slightly ( ≤ 0.3% ) higher volume than the 

catenary solution at shorter spans.

4  Combined approaches

The self-weight modelling approaches described in Sect. 2 

are compatible with each other, making it possible to 

construct problems that simultaneously involve multiple 

approaches. The corresponding general formulation is given 

in Appendix A. This section considers the case where each 

pair of nodes is connected by multiple potential members 

of different types.

The major motivation behind adopting a combined 

approach stems from the behaviour of the catenary ele-

ments as their axial force is altered. The catenary approach 

described in Sect. 2.3 relies on assumptions that may not be 

conservative when multiple load-cases are present. Namely, 

the ‘lumping’ of the unused portions of the cross section to 

the end points. The practical result of this is to ignore the 

bending stresses that would be generated by this material. 

The implications of this assumption vary in severity depend-

ing on the application involved. In this section, this will be 

explored with reference to a number of variations on the 

single element problem shown in Fig. 8.

As the problematic catenary elements are by definition 

not fully stressed, they will be analysed as an elastic mate-

rial. Initially, the problem is set up exactly as shown in 

Fig. 8, and the resulting catenary element is approximated 

using 100 straight beam elements in the GSA structural 

analysis package (Oasys 2021) using a solid circular cross 

section of the required area. The horizontal force, marked 

as f in Fig. 8, is then reduced and the structure is again ana-

lysed. The structure itself, and therefore the loading from 

gravity, remains unchanged throughout.

Initially a linear-elastic model is used to analyse the struc-

ture; this results in very large bending stresses, even for very 

small variations in the applied load. For the realistic values 

considered in Fig. 8, reducing the applied force to just 90% 

of the design value increases the stress to 6270 MPa, more 

than 12 times the prescribed design strength of in this case 

500 MPa. This value is particularly large due to the slender-

ness of the element, which does not provide a large structural 

depth (recall that the radius of the element is approximately 

62 mm) to generate the required bending resistance.

To further investigate this, the same problem has been 

investigated with values of the horizontal force f multi-

plied by 100 and 10,000, leading to catenaries with radii 

of approximately 620 mm and 6200 mm, respectively. 

These thicker catenaries do reduce the problem, yet they 

still require stresses above the design level; at 90% loading 

these problems have peak stress of 1030 MPa and 508 MPa, 

respectively.

However, this issue can be better understood with the help 

of a large deformation analysis. The GSrelax solver in GSA 

(Oasys 2021) is here used for this purpose, with the problem 

Fig. 14  Single span example ( L = 1.6
�

�g
 ): resulting layouts using dif-

ferent models of self-weight, a lumped mass; b catenary
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otherwise set up as previously described. The resulting peak 

stresses in each case are shown in Fig. 15. It can be seen 

that for all the magnitudes of design load, the stress in the 

element reduces as the axial force is initially reduced from 

its design value.

For the original case, which was chosen to be representa-

tive of the values for a stay in a cable stayed bridge, the 

stress very closely matches the values expected for a weight-

less member until very low values of utilization are involved. 

Even once they diverge, the catenary still has stresses well 

below the design stress limit. The larger catenaries do show 

larger than prescribed stresses when the applied load is very 

low, principally caused by bending action.

The case r = 6e
5 implies a catenary with radius approxi-

mately 620 mm, similar to the radius of the main cables 

proposed for the Strait of Messina suspension bridge, which 

have a radius of 637 mm (Walker et al. 2011). Structural 

members of this size and larger would very rarely be realized 

as a solid cross-section. For example, the proposed Messina 

cables are constructed from 354 smaller strands resulting in 

19% void within the circular section. Assuming the whole 

section still acts compositely, this would lead to an increased 

bending resistance for the given cross-sectional area, relative 

to that assumed here.

However, if this analysis is repeated but now with a 

compressive force, a very different picture emerges. The 

stress values obtained using the linear elastic model are 

unchanged, but the large deformation analysis does not suc-

cessfully converge. Physically, this is the result of the shal-

low arches involved being very susceptible to snap-through 

effects, leading to a large change in the shape of the element, 

eliminating its resistance.

This study serves to show that the catenary elements are 

most suitable for modelling cable type elements with small 

cross sections and tensile forces. Thus in the examples pre-

sented in Sect. 5 catenary elements are generally permitted 

to carry tensile forces only. Beam elements are instead used 

to carry the compressive forces. This is simply achieved by 

removing the variables corresponding to the compressive 

catenary form from the problem. Thus the ground structures 

used resemble that shown in Fig. 16. Note that the beam 

elements are still permitted to carry tensile forces, but as 

the catenary elements are more efficient they will usually 

be preferred.

To make use of the adaptive ‘member adding’ solu-

tion method in this combined approach, the initial ground 

structure consists of adjacent connectivity members in both 

the beam and catenary models. During the member add-

ing phase, each material model is checked separately, and 

members of the appropriate type are added where required.

5  Examples

This section presents results for a number of simplified 

real-world problems. Firstly in Sect. 5.1, the single-span 

example originally considered in Sect. 3.2 is revisited, now 

using the combined approach described in Sect. 4 and also 

considering multiple load-cases. Various bridge type design 

problems comprising multiple spans are then considered in 

Sects. 5.2 and 5.3. Finally, in Sect. 5.4, the simple modifica-

tions required to use the formulations from Sects. 2.3 and 

2.5 in three dimensions are described, then demonstrated via 

application to a stadium roof-like example problem.

5.1  Single span example revisited

The scenario from Sect. 3.2 is considered for spans L = 0.4
�

�g
 

and L = 1.6
�

�g
 , using both pinned beam and rigid jointed 

beam models—combined with catenary elements in both 

cases. The limiting tensile stress of the catenary elements 

and the maximum von Mises stress for the beam elements 

Fig. 15  Single element example: elastic analysis results for catenary 

elements when the applied load f is reduced below the design load r 

Fig. 16  Example ground structure with tensile catenary (blue) and 

straight beam elements (red) present (c.f. Fig. 1c)
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both have the same value � , though the catenary elements 

are not permitted to carry compressive forces.

In addition to the single load-case problem described 

above, a multiple load-case problem is also considered. 

Specifically, an additional load-case in which only one half 

of the domain is loaded (to the same magnitude, � , as the 

uniform case) is considered; the mirror image of this load-

case is considered implicitly.

The volumes for each case are shown in Fig. 17, which 

also shows what proportion of the resulting structure is com-

posed of beam elements and catenary elements. It can be 

seen that the multiple load-case solutions employ a larger 

proportion of the more versatile beam elements than the cor-

responding single load-case solutions. For longer spans, a 

greater proportion of the volume is consumed by beam ele-

ments; this is likely due to the high sensitivity to self-weight 

of the beam formulation (as discussed in Sect. 3.1.2).

In general, the increase in volume between the single 

and multiple load-case problems is relatively small; how-

ever the optimal forms differ noticeably, as shown in Fig. 18. 

The overall form of all of the single load-case solutions is 

similar to the results shown in Fig. 12, comprising a thick 

arch region with hangers spaced to avoid a triangular region 

around midspan.

The multiple load-case results in Fig. 18 show a more 

complex form, although an outer arch of beam elements is 

still evident. Secondary structure results in a steeper arch 

at the supports than for the corresponding single load-

case problems. Beam elements are also used below the 

arch region when multiple load-cases are present, trian-

gulating much of the structure. This is reminiscent of the 

multi-layered laminates that have been observed in mul-

tiple load-case problems without self-weight (Sokół and 

Rozvany 2013).

Fig. 17  Single span example: volumes of optimized structures when 

both tensile catenaries and beam elements are allowed throughout 

the domain, with relative contributions from the beam members and 

catenary elements shown. Volumes obtained when using only a single 

element type are also indicated for comparative purposes
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Fig. 18  Single span example ( L = 0.4
�

�g
 ): results obtained when both catenary and beam elements are permitted throughout the domain for the 

scenarios indicated. Red/brown lines indicate beam elements and blue lines indicate catenary elements
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5.2  Three span example

A three span bridge problem is shown in Fig. 19. If the 

supports at the outer anchorages are assumed to provide 

restraint only in the horizontal direction, and the pylon sup-

ports provide restraint only in the vertical direction, then 

this problem becomes essentially identical to a section of a 

bridge with an infinite number of spans, as considered e.g. 

by Pichugin et al. (2015), Beghini and Baker (2015), Fair-

clough et al. (2018). In particular, Fairclough et al. (2018, 

Fig. 9) obtained solutions for this problem using catenary 

elements, though only for single-load case problems. In 

addition to the optimized form and a simplified version 

thereof, results for size and geometry optimized suspension 

and cable-stayed layouts were also given.

Here, a three span version of this problem is considered. 

To aid comparison, initially the catenary formulation is 

used in isolation; Fig. 20 shows the designs generated. The 

domain has been discretised using 60 nodes horizontally 

across the whole domain, matching the resolution used by 

Fairclough et al. (2018), and the material properties were 

also chosen to provide results for the case when �
T
= 3�

C
 , 

as considered previously. This case better represents the real-

world situation, where the limiting stress in tensile cable 

members (made of drawn steel wire) is usually much higher 

than for compressive members (made of hot rolled steel).

The result for a case involving a single load case and 

boundary conditions corresponding to the infinite span 

bridge is first used to establish a benchmark value, V
0
 . The 

support at the anchorage is now altered to also provide verti-

cal restraint; this reduces the optimal volume to 0.997V
0
 , i.e. 

just a 0.3% reduction. If horizontal support is also added at 

the base of the pylon, the volume reduces to 0.993V
0
 . From 

this it is evident that, when a single uniform load-case is pre-

sent, the difference in support conditions between an infinite 

bridge and this three span bridge is very small.

These small reductions in volume are generated through 

variations in the forms of the optimized structures, where 

the cables in the side span are at a slightly shallower angle 

Fig. 19  Three span problem ( L = 0.8
�T

�g
 ): a problem definition, high-

lighting load-cases; b boundary conditions chosen to match the infi-

nite bridge case (horizontal only supports at anchorage, vertical only 

at pylon)—load-case 1 only; c fixed pin supports at both pylon and 

anchorage—load-case 1 only; d as c but all load-cases considered

Fig. 20  Three span example: results using the catenary formulation, 

compared with selected combined beam and catenary solutions and 

infinite span bridge solutions from Fairclough et al. (2018)
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than the main span; see Fig. 19b and c. Such an alteration 

would not be possible with the more restricted cable-stayed 

and suspension forms presented in Fairclough et al. (2018, 

Fig. 9), so these results would not be altered by the change 

in boundary conditions. Figure 20 shows computed optimal 

volumes for rationalized structures from Fairclough et al. 

(2018) alongside results for the three span case modelled 

using catenary elements.

Figure 20 also shows the optimal volumes obtained for 

the same problem when multiple load-cases are involved; the 

cases are as shown in Fig. 19. Such pattern load cases could 

not be supported by the typical forms of suspension and cable 

stayed forms without requiring either bending resistance at 

the joints, or consideration of large-deformation effects.

From Fig. 20, it can be seen that the volume of material 

required to construct the optimal structure for the multiple 

load-case problem is still lower than the volume of mate-

rial required to construct a suspension or cable stayed form 

when just a single uniform load-case is involved. As the 

single load-case problem provides a lower bound on the pos-

sible volume when multiple load-cases are involved, it can 

be concluded that cable stayed and suspension bridge forms 

use respectively at least 13% and 34% more material than 

is necessary.

This problem has also been solved using the combined 

catenary and pinned beam approach described in Sect. 4. 

Stresses in the beam elements are limited to �
C
 whilst the 

catenary elements can now carry only tensile stresses, up to 

�
T
 where �

T
= 3�

C
 . The beam element depth is set to 

L

1000
.

As in the example presented in Sect. 3.2.2, the beam ele-

ment models are very sensitive to the chosen nodal resolu-

tion. Halving the nodal spacing (from 60 to 120 nodes across 

the domain), reduces the volume by 17%, whilst the same 

change in the catenary only models causes a reduction of just 

2%. The volumes of the solutions with 120 nodes across the 

domain are included in Fig. 20.

The form of the optimal structure to carry the multiple 

load-case problem uses arch type forms close to the anchor-

age, which may be impractical from a constructibility per-

spective. However, as there is only a single pin support avail-

able, there is only a limited range of possible forms in that 

area. To address this, the next example will make use of a 

back-span, i.e. a line along which support is available at any 

point.

5.3  Two span example

The example shown in Fig. 21a shows a problem consisting 

of a bridge with two spans of equal length L. In addition to a 

central pylon support, pinned supports may be located any-

where within a backspan of length 
L

2
 beyond each end of the 

deck. The first load-case is a uniformly distributed load of 

magnitude � across both spans, whilst the multiple load-case 

problem also has a case where the load (still of magnitude 

� ) is applied to only one span (the mirror case is applied 

implicitly). The layout optimization problem is solved using 

a Cartesian grid comprising 102 divisions along the base of 

the domain.

The problem is solved using the combined catenary and 

beam formulations, with the performance of both pinned 

and rigid beam approaches evaluated. The limiting tensile 

stress of the catenary elements, �
T
 , has again been set to 

three times the limiting stress of the beam elements, to 

Fig. 21  Two span example (pinned beam and catenary elements): a 

problem definition; b solution for L =
0.1

15

�T

�g
≈ 50 m; c solution for 

L =
4

15

�T

�g
≈ 2 km; d solution for L =

8

15

�T

�g
≈ 4 km

Fig. 22  Two span example: optimized volumes, with the (geometry 

optimized) solutions shown in Fig. 21 indicated by crosses
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approximately reflect real-world conditions, and the beam 

element depth is set to 
L

1000
 . Figure 22 shows the optimal 

volumes for each approach for a range of spans and for both 

the rigid and pinned joint formulations. It can be seen that 

the rigid and pinned joint models show close agreement in 

terms of optimal volume, with the pinned beam result lying 

within 3% of the rigid jointed beam result. As the pinned 

beam formulation required approximately half the computa-

tional time to solve, this is likely to be appealing in practice.

Figure 21 shows the structures obtained when using the 

pinned beam model. These have been rationalized using the 

geometry optimization procedure of He and Gilbert (2015), 

which increased clarity somewhat and had a small ( ≤ 0.7% ) 

effect on the volumes, as shown in Fig. 22. The results 

obtained using the rigid jointed approach were qualitatively 

similar to the pin jointed results, although the transition 

between different forms occurred at slightly higher spans.

At the shortest spans, the unequal loading is supported by 

a double arch form comprising primarily of beam elements, 

with the presence of upper and lower arches giving addi-

tional bending strength (Fig. 21b). As the spans lengthen, 

the arch form becomes inefficient, as is evident from Fig. 22, 

which shows an initially relatively steep increase in volume 

with span when multiple load-cases are involved. This is 

likely because a large proportion of the material forming the 

structure is initially located around midspan, and this must 

be carried an increasingly long distance to the supports.

The arch form is then replaced by the form shown in 

Fig. 21c; this structure is similar to the single load-case 

solution to the infinite span problem, consisting of regions 

of compressive members radiating out from the supports, 

and tensile members connecting these to the loaded deck. 

To deal with the multiple load cases, additional tie cables 

connect the tops of each of the pylon regions. As the span 

increases further (Fig. 21d), it becomes preferable to connect 

directly to the base of the outer pylons.

Based on the results shown in Fig. 21, a simplified design 

for a multiple span bridge has been proposed, as shown in 

Fig. 23. This is similar to the simplified split-pylon designs 

proposed by Fairclough et al. (2018), though now with the 

addition of a tie cable between the tops of adjacent pylons to 

carry the bending induced when adjacent spans are loaded 

unequally. Geometry optimization has been used to refine 

the nodal positions of the simplified form, and the prob-

lem has been extended to the third dimension by assuming 

two parallel structures with bracing between the pylon ele-

ments, following typical real-world practice for suspension 

and cable-stayed bridges.

Figure 21 shows only a portion from the centre of the 

bridge; as demonstrated in this section and in Sect. 5.2, the 

boundary conditions at the anchorages can significantly 

influence the optimal form, making it difficult to propose a 

general form for these regions.

Fig. 23  Concept bridge for crossing requiring multiple very long spans, based on the results described in Sect. 5.3
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5.4  Three‑dimensional example

The catenary and pinned beam examples can be extended to 

three dimensions by simply performing all element calcula-

tions in a local element-specific co-ordinate system in the 

plane containing the vector along the element and the grav-

ity vector. The coefficients for the equilibrium constraints 

should then be projected back to the global co-ordinate sys-

tem.1 It will be necessary to have three force equilibrium 

constraints per node, rather than the two required for planar 

problems.

Fig. 24  Three-dimensional stadium roof example: plan view of prob-

lem, with darker grey shaded region denoting the independent (mod-

elled) design domain

Fig. 25  Three-dimensional stadium roof example: optimized volumes 

for domains of different radius, with the (geometry optimized) solu-

tions shown in Fig. 26 denoted by crosses

Fig. 26  Three-dimensional stadium roof example: optimal forms for 

a R = 0.001
�T

�g
 ; b R = 0.08

�T

�g
 ; c R = 0.16

�T

�g

1 Note that for vertical elements, there is not a unique plane contain-

ing the element and the gravity vector. However in this case, for both 

pinned beam and catenary elements, the horizontal components in the equilibrium constraints are zero, and only the (well-defined) vertical 

direction is important.

Footnote 1 (continued)
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Note that the rigid jointed beam problem presents a 

greater challenge in its extension to three-dimensional prob-

lems; torsional loading must be considered, as must minor 

axes of bending; furthermore the orientation of the element 

about its axis must be decided upon. Further consideration 

of these elements is therefore beyond the scope of this paper.

A three-dimensional problem involving an annular design 

domain, such as may be present for the design of a stadium 

roof, will now be considered. The specification is shown on 

plan in Fig. 24, and the domain extends vertically 0.3R. The 

independent domain region is discretized using a grid of 140 

nodes, placed at grid points located at 0.1R spacings on the 

symmetry planes, and at the mid- and quarter-points of a 

line connecting corresponding points. The limiting stress in 

the catenaries �
T
 is taken as twice the permitted von Mises 

stress of the beams, and the depth of the beam elements is 

set as 0.02R.

It is of interest to study the influence of the span (varied 

by changing the radius R) on the optimal designs generated 

and the corresponding structural volume. The optimized vol-

umes are shown in Fig. 25 and the corresponding forms are 

shown in Fig. 26. It is evident that the form obtained changes 

markedly as the span is increased. At the shortest spans, the 

solution includes a compression ring towards the centre of 

the design domain, with half-arches carrying load back to 

the supports. As the span increases, the compression ring 

moves towards the outside of the domain. This increases 

the length of the ring, and hence its volume, but reduces the 

distance that the weight of the ring must be transmitted to 

the supports. At the longest spans, the compression ring lies 

at the outer edge of the domain, with a cable net structure of 

catenary elements supporting the loads.

6  Concluding remarks

Layout optimization provides a powerful means of identify-

ing materially efficient structural forms. To model problems 

involving self-weight and multiple load-cases using mate-

rials capable of deforming plastically, three new formula-

tions have been presented herein; two formulations make 

use of beam elements and a third uses catenary elements, 

extending a previously proposed formulation to enable mul-

tiple load-cases to be handled. These formulations improve 

the accuracy of the solutions by removing the significant 

non-conservative errors introduced when using the tradi-

tional lumped mass modelling approach.

The primary drawback of the catenary formulation is the 

potential for second-order issues to arise, particularly when 

elements are loaded in compression. Conversely, the behav-

iour of long flexible tensile members, such as cables, has 

been shown to be adequately modelled using this approach.

The beam formulations provide greater versatility, 

although, due to the use of some conservative approxima-

tions, they also require the use of higher resolutions to obtain 

acceptable results. A combined approach has therefore been 

proposed that involves the use of catenary elements to model 

tensile members and beam elements to model compressive 

members. The efficacy of this approach has been demon-

strated via application to a number of test problems. It is 

shown that the optimal form for a given problem can vary 

dramatically as the scale of the problem is varied, due to the 

differing influence of self-weight effects.

For the cases considered, the rigid and pinned beam 

formulations were found to give similar results, with the 

rigid jointed formulation providing only slight reductions 

in structural volume. Thus, due to the lower computational 

requirements associated with the pinned beam formulation, 

this is likely to be preferable in many situations.

In conclusion, a combined approach has been shown to be 

effective at identifying materially efficient structural forms 

for long-span structural design problems, when self-weight 

effects are significant. For bridge type problems, split-pylon 

forms were found to be efficient, with multiple load-cases 

carried through the use of additional tie cables. Although 

direct comparisons can be challenging, the indications are 

that significant material savings can be achieved compared 

to traditional cable-stayed and suspension bridge forms 

incorporating vertical pylons.

Appendix 1: full combined formulation

The list of optimization variables associated with the formu-

lations described in the paper are outlined in Table 2. The 

full formulation for a problem that takes advantage of all 

three self-weight modelling approaches described is shown 

in Table 3, though generally not all of these would be used 

simultaneously.
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Table 2  Optimization variables for a problem containing c catenary elements, d pinned beam elements and e rigid-jointed beam elements

Note that the indexing for each element type is independent (i.e. catenary 1 is not necessarily related to pinned beam 1 or to rigid-jointed beam 

1)

Variable Description

Per catenary

� =

⎡
⎢
⎢
⎢
⎢
⎣

r
+

1

r
−

1

r
+

2

⋮

r
−

c

⎤
⎥
⎥
⎥
⎥
⎦

Notional (at point M) design load for catenary elements in tension ( + ) or compression ( 
−

 ). If ten-

sion/compression is not permitted for an element then relevant variable can be removed or set to 0. 

Implicitly non-negative from Eq. (10).

�k =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

p+

1,k

p−

1,k

p+

2,k

⋮

p−

c,k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

p±

i,k
= r±

i
− q±

i,k
 , i.e. the optimization variables represent the variation in force between the current load-

case, k, compared to the maximum load for the element i. Non-negative, see Eq. (10).

Per rigid-jointed beam

�
r
=

⎡
⎢
⎢
⎢
⎣

a
1

a
2

⋮

a
d

⎤
⎥
⎥
⎥
⎦

Total cross-section area for each rigid-jointed beam element. Implicitly non-negative due to Eq. (13).

�
N,k =

⎡
⎢
⎢
⎢
⎣

a
N,k,1

a
N,k,2

⋮

a
N,k,d

⎤
⎥
⎥
⎥
⎦

Area of rigid-jointed beam cross-sections carrying axial and shear loading (i.e. the web). Implicitly 

non-negative due to Eq. (21).

�
M,k =

⎡
⎢
⎢
⎢
⎣

a
M,k,1

a
M,k,2

⋮

a
M,k,d

⎤
⎥
⎥
⎥
⎦

Area of rigid-jointed beam cross-sections carrying moment loading (i.e. flanges). Implicitly non-

negative due to Eq. (14).

�
r,k =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

qk,1

m
A,k,1

m
B,k,1

qk,2

⋮

m
B,k,d

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Axial force (at mid-point) and end moments for rigid beam elements in load-case k. �
r,k

∈ ℝ , the sign 

gives the direction of the action (tension/compression or clockwise/anti-clockwise).

�N,k =

⎡
⎢
⎢
⎢
⎣

qN,k,1

qN,k,2

⋮

qN,k,d

⎤
⎥
⎥
⎥
⎦

Maximum absolute value of normal force in each rigid-jointed beam element. Implicitly non-negative 

from Eq. (18).

�V ,k =

⎡
⎢
⎢
⎢
⎣

qV ,k,1

qV ,k,2

⋮

qV ,k,d

⎤
⎥
⎥
⎥
⎦

Maximum absolute value of shear force in each rigid-jointed beam element. Implicitly non-negative 

from Eq. (19).

Per pinned beam

�
p
=

⎡
⎢
⎢
⎢
⎣

a
1

a
2

⋮

a
e

⎤
⎥
⎥
⎥
⎦

Total cross-section area for each pin-jointed beam element. Implicitly non-negative due to (27).

�
p,k =

⎡
⎢
⎢
⎢
⎣

qk,1

qk,2

⋮

qk,e

⎤
⎥
⎥
⎥
⎦

Axial load at midpoint for each pin-jointed beam element. Positive/negative values represent tension/

compression forces respectively.
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Appendix 2: implementation

Table 4 shows the total (wall clock) times required to solve 

the single span problem considered in Sect. 3.2.3 and the 

single load-case problems considered in Sect. 5.1. These 

times were obtained using a laptop with an Intel i7-6700HQ 

CPU and the linear programming problems were solved 

using MOSEK 9.1 (ApS 2020).

Note that quoted run times are given as ranges, obtained by 

solving each problem for a number of different spans. This is 

because the time required to obtain the solution to any given 

problem is somewhat variable, and hence presenting a range 

is more representative. Also, when implementing the formula-

tions memory usage has been prioritized over computational 

time. For this reason details of potential elements were not 

stored between iterations when using the adaptive member 

adding procedure. However, this has a disproportionate effect 

on the catenary approach, as the calculations required to obtain 

the coefficients are more complex in this case. Furthermore, 

the adaptive member adding solution process was performed 

in a single thread, whereas benefits could be gained using mul-

tiple cores. As an example, the checks required at each itera-

tion in the member adding procedure could be performed in 

parallel, which would likely significantly speed up the solution 

process when catenaries are involved.

Table 3  Full formulation for problem containing all three element types

Note that any particular element type may be empty. Where constraints are given ∀k , they are imposed separately in each load-case k. Where 

constraints are expressed ∀i , they are imposed separately for each rigid-jointed beam element i. The optimization variables are detailed in 

Table 2

Formulation Description Further details

min
V = �

⊤

c
� + �

⊤

r
�r + �

⊤

p
�p

Total volume �
c
 such that �⊤

c
� sums Eq. (11) over catenaries.

�
p
 , �

r
 contain element lengths for pinned and rigid 

beams respectively, as for Eq. (1a)

subject to

⎛⎜⎜⎝
�
�c �r �p

� ⎡⎢⎢⎣

�
k

�r,k
�p,k

⎤⎥⎥⎦
+
�
�c �r �p

� ⎡⎢⎢⎣

�

�r
�p

⎤⎥⎥⎦
= �

k

⎞⎟⎟⎠∀k

Equilibrium �
c
�

k
+ �

c
� assembled using Eq. (9).

�
r
�
r,k

+ �
r
�
r
 assembled using Eq. (12).

�p�p,k
+ �p�p assembled using Eq. (22).

�
k
 contains external forces/moments. Constraints 

for supported d.o.f. removed.

See Eq. (10).(

�
k
≥ �

)

∀k
Catenary yield

(

�
k
≤ �

)

∀k
Force bound Catenary forces cannot reverse, see Eq. (10).

(

�
N,k

+ �
M,k

≤ �
r

)

∀k
Area sum See Eq. (13).

⎛⎜⎜⎜⎝

⎡⎢⎢⎢⎣

1 0

−1 0

0 − 1

0 1

⎤⎥⎥⎥⎦

�
m

A,k,i

m
B,k,i

�
≤

�d

2

⎡⎢⎢⎢⎣

1

1

1

1

⎤⎥⎥⎥⎦
a

M,k,i

⎞⎟⎟⎟⎠
∀i,k

Moment yield (ends) See Eq. (14).

⎛⎜⎜⎜⎝

⎡⎢⎢⎢⎣

−0.25 0.75

−0.75 0.25

0.25 − 0.75

0.75 − 0.25

⎤⎥⎥⎥⎦

�
mA,k,i

mB,k,i

�
+

𝜌gx̄i li

8

⎡⎢⎢⎢⎣

1

1

−1

−1

⎤⎥⎥⎥⎦
a ≤

𝜎d

2

⎡⎢⎢⎢⎣

1

1

1

1

⎤⎥⎥⎥⎦
aM,k,i

⎞⎟⎟⎟⎠
∀i,k

Moment yield (quarters) See Eqs. (16) and (17).

⎛
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎣

1

1

−1

−1

⎤
⎥
⎥
⎥
⎦

qk,i +
�gli

2
sin �i

⎡
⎢
⎢
⎢
⎣

1

−1

1

−1

⎤
⎥
⎥
⎥
⎦

a ≤

⎡
⎢
⎢
⎢
⎣

1

1

1

1

⎤
⎥
⎥
⎥
⎦

qN,k,i

⎞
⎟
⎟
⎟
⎠
∀i,k

Max axial See Eq. (18).

⎛⎜⎜⎜⎝
1

li

⎡⎢⎢⎢⎣

1 1

1 1

−1 − 1

−1 − 1

⎤⎥⎥⎥⎦

�
mA,k,i

mA,k,i

�
+

�gli

2
cos �i

⎡⎢⎢⎢⎣

1

−1

1

−1

⎤⎥⎥⎥⎦
≤

⎡⎢⎢⎢⎣

1

1

1

1

⎤⎥⎥⎥⎦
qV ,k,i

⎞⎟⎟⎟⎠
∀i,k

Max shear See Eq. (19).

�

�
N,k +

√

3�
V ,k ≤ ��

N,k

�

∀k

Von Mises' yield See Eq. (21).

(

�p,k
≤ ��p

)

∀k
(

−�p,k
≤ ��p

)

∀k

Pinned yield � is a diagonal matrix such that these imply Eq. 

(27).
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