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Abstract

We develop a new method that combines a decision tree with a wavelet transform
to forecast time-series data with spatial spillover effects. The method can not only
improve prediction but also give good interpretability of the time series mechanism.
As a feature exploration method, the wavelet transform represents information at
different resolution levels, which may improve the performance of decision trees.
The method is applied to simulated data, air pollution and COVID time series data
sets. In the simulation, Haar, LA8, D4 and D6 wavelets are compared, with the
Haar wavelet having the best performance. In the air pollution application, by
using wavelet-transform based decision trees, the temporal effect of air quality index
including autoregressive and seasonal effects can be described as well as the spatial
correlation effect. To describe the spillover spatial effect in contiguous regions, a
spatial weight is constructed to improve the modeling performance. The results show
that air quality index has autoregressive, seasonal and spatial spillover effects. The
wavelet-transformed variables have a better forecasting performance and enhanced
interpretability than the original variables. For the COVID time series of cumulative
cases, spatial weighted variables are not selected which shows the lock-down policies
are truly effective.

Keywords: CART, MODWT, COVID, air pollution, time series, spatial analysis

1Xin Zhao. Email: mmxinzhao@hotmail.com

Preprint submitted to Elsevier September 23, 2021



1. Introduction

Due to heavy usage of fossil fuels such as oil and coal, urban industry has rapidly
developed, but at the cost of increasingly serious environmental problems, especially
air pollution. According to the ‘2018 World Air Quality Report’ (AirVisual, 2018),
nine out of ten people worldwide are now breathing unsafe polluted air. China ranks
12th out of 73 countries in the world in terms of the estimated average PM2.5 concen-
tration with a value of 41.2 µg/m3. PM2.5 has become one of the main contibutors
to air pollution in China, leading to unhealthy air quality or even hazardous air,
especially smog.

An Air Quality Index (AQI) is a generalized comprehensive way to describe air
quality, based on the level of six atmospheric pollutants: sulfur dioxide (SO2), nitro-
gen dioxide (NO2), suspended particulates (PM10, PM2.5), carbon monoxide (CO),
and ozone (O3) measured at monitoring stations throughout each city (Gurjar et al.,
2008; Gupta et al., 2006). AQI has been in use since 2012 and is improved from the
previous metric API (Air Pollution Index), which was based only on sulfur dioxide
(SO2), nitrogen dioxide (NO2), and suspended particulate (PM10). However, PM2.5,
the main constituent of smog, is not included in API. Each of the six metrics in AQI
is standardized because of the unit difference before calculating the AQI. The rules
for standardization can be found from the United States Environmental Protection
Agency (EPA, 2020). AQI can represent the most serious atmospheric pollutant in
one region, such as PM2.5 in China. Daily or monthly AQI is averaged from hourly
AQI.

AQI is divided into six ranges, representing six levels of air quality. A higher AQI
means more serious pollution. Generally, an AQI under 100 is good or moderate,
while an AQI higher than 100 means unhealthy or even hazardous conditions. For
detail, please refer to the AQI Basics (AirNow, 2020).

If AQI could accurately be forecast ahead by, say, one month, then government,
businesses, and people would have enough time to prepare some response measures
in case of serious pollution. During days with low AQI, enterprises could also carry
out more strict waste management. The method developed for forecasting AQI is
also applied to COVID-19 data as a second application.

2. Literature review

As an index measuring the air quality, AQI has been forecast with deterministic,
statistical, and machine learning methods (Ma et al., 2019). Deterministic meth-
ods (Sivakumar et al., 2007; Finardi et al., 2008; Hoshyaripour et al., 2016) require
expensive computation and specific domain knowledge for parameter identification.
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Such parameter determined models may not adjust to the quick change of air qual-
ity distribution. Due to the difficulty in justifying assumptions such as linearity and
problems with multicollinearity, simple statistical methods like linear models become
less appropriate, requiring more sophisticated modelling strategies. One of the popu-
lar machine learning methods is neural networks (Septiawan and Endah, 2018; Patni
and Sharma, 2019), which have high prediction accuracy, along with its improved
variants like convolution recurrent neural networks (Zhao and Zettsu, 2019) and long
short-term memory neural network (Dua et al., 2019). Other machine learning meth-
ods include support vector machines (Leong et al., 2019), random forests (Rubal and
Kumar, 2018; Kaminska, 2018; Li et al., 2019) and so on. However, in addition
to requiring high prediction accuracy, it is preferred that methods also have good
interpretability.

Air quality has some typical features that other time series may not have, which
should be taken into consideration when forecasting. One is that air pollution has
spatial spillover effects (Chen et al., 2019). Pollution from one region with bad
air quality is apt to diffuse and migrate into neighbouring regions, influence them
and lead to lower air quality in those regions. Li et al. (2018) takes account of the
spatial influence when using neural networks for forecasting by proposing a novel
spatio-temporal-aware sparse denoising autoencoding neural network architecture.
Spillover effects have also been considered by other authors such as Guyu et al.
(2019) and Wang and Song (2018). One typical method in economics to include
spatial effects is to construct a spatial weight matrix to represent the mutual influence
of geographically contiguous spaces (You and Lv, 2018), which will be used in our
proposed method.

Another feature is that air pollution is likely to have pronounced autocorrelation
since current air quality is influenced by its previous state. One novel model of
accommodating this is the spatiotemporal convolutional short-term neural network
(Wen et al., 2019; Song et al., 2019), which considers both spatial and temporal
effects. Methods including autocorrelation effects like ARIMA are also considered
by (Emetere, 2018). Such models can include long term autocorrelation effects, but
at the cost of more parameters. To explore the autocorrelation of air pollution,
we propose the wavelet transform method (Percival and Walden, 2000), which can
decompose the original time series into different time series on multiple resolution
levels. Long term effect of air pollution can be included in decomposed time series
on low resolution levels while short term effects are included in high resolution levels,
as we describe in Section 4.

Air quality also has seasonal patterns (Kim et al., 2017; Du et al., 2018). This is
especially true in northern China, where heating is powered by electricity and mineral
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fuel in winter. Air pollution from the heating companies has a negative impact on
air quality. There are also other reasons like climate change, and automobile exhaust
emissions. For example, there are generally windy days during the spring in northern
China, which will help disperse the suspended particulates (PM2.5, PM10), resulting
in relatively good AQI.

There are many supervised learning methods designed for time series analysis,
like support vector machine (Jaramillo et al., 2017), neural network (Sahoo et al.,
2019) and decision trees (Li et al., 2020). Instead of using “black box” models in
this paper, a decision tree model is used for AQI prediction due to its good inter-
pretability. To incorporate the effects of autocorrelation and seasonality, the wavelet
transform is applied to the original time series including the spatial weighted matrix.
Wavelet transformed time series can represent information via the decomposition into
different resolution levels, which will help increase the accuracy of decision tree based
modeling. Wavelet transform-based decision trees have been applied to panel data by
Zhao et al. (2018), who have shown that wavelet transformed variables can be better
than original variables for classification. This paper will also explore whether or not
wavelet transformed variables are still better than original variables for forecasting
using regression methods, as Zhao et al. (2021) found in the context of forecasting
streaming data.

We introduce our basic model in Section 3, and apply it to simulated time series
experiments in Section 4 before analysing our AQI time series in Section 5 and
COVID data in Section 6. Some concluding comments appear in Section 7. All
calculations were done using R (R Core Team, 2018); ‘waveslim’ (Whitcher, 2019)
was used for wavelet decompositions and ‘rpart’ (Therneau et al., 2014) for CART
as the decision tree method.

3. Model description

3.1. Decision tree

The decision tree we use is the classification and regression tree (CART; Breiman
et al., 1984). Regression trees are similar to classification trees, except that the
response variable is numerical rather than categorical as for classification trees. In
a typical binary split regression tree, the input attribute space is recursively parti-
tioned by a sequence of binary splits leading to terminal nodes. At each terminal
node, the predicted response value is the mean of the data in that node. Compared
to a classification tree, the main difference in constructing the tree is the impurity
criterion. For regression trees, we use mean squared error, which measures the dif-
ference between the data and the predicted value. Thus a regression tree is formed
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by iteratively splitting nodes so as to maximize the decrease of mean squared error
at each step.

Any variable which is used to split nodes may appear in the tree many times,
either as a primary or a surrogate variable (to replace the primary variable when it is
missing). An overall score to measure variable importance is the sum of the goodness
of split measures for each split for which it was the primary variable, plus goodness
multiplied by the adjusted agreement for all splits for which it was a surrogate. These
are scaled to sum to 100 and the rounded values are shown, omitting any variable
whose proportion is less than 1%, as detailed in Therneau et al. (2014).

This approach gives a tree which can be used to describe the observed data,
which is not necessarily optimal for making predictions on new data. A bigger, more
complex, tree means better accuracy in fitting the training data but not necessarily
improvement in predicting test data outcomes, so we need to prune the tree to make
it robust to the test data. A tree with a fixed size has a corresponding complexity
parameter α which measures the balance between tree depth and accuracy. In other
words, for a data set, when the α value is given as a stopping criteria, the tree is
decided. For a larger tree, each value of α can be used to determine the amount
of pruning. So the objective is to find the best α value (or say the best tree size)
which decides a tree that has the best prediction ability in test data. Typically, α is
selected by k-fold cross validation.

3.2. Wavelet transform

Sometimes the predictive data have nearly the same range and mean but different
frequencies like sine functions with different periods. Unfortunately, decision trees
can not easily classify or do regression on such data as there is no obvious split point
to separate them. Additionally, for time series data, there might be dependence
between successive observations; growing trees which treat each time point as an
independent observation may ignore this information. Wavelet analysis can deal with
these problems by picking out patterns in short term fluctuations in data which can
be exploited for prediction when consecutive observations lack independence or when
key information is encoded as frequencies in the data. Using a wavelet transform
to discover signal information at different resolution levels is like using a camera to
enjoy landscape pictures at different scales. A camera lens can take broad landscape
pictures as well as zoom in to capture microscopic detail that is not easily seen by
the human eye.

The wavelet transform method we choose is the maximal overlap discrete wavelet
transform (MODWT; see, for example, Percival and Walden, 2000), which is a non-
decimated wavelet transform. Unlike some other wavelet transforms, the MODWT
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is not constrained to data whose sample size is a power of 2. The wavelet transform
describes the data in terms of a collection of basis functions, all constructed from a
mother wavelet and scaling function. One such wavelet basis is constructed from the
Haar wavelet, which is easy to understand and simple to interpret.

−1.0 0.0 0.5 1.0 1.5 2.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

t

φ(
t)

(a)

−1.0 0.0 0.5 1.0 1.5 2.0

−1
.0

−0
.5

0
.0

0
.5

1
.0

t

ψ
(t
)

(b)

Figure 1: The Haar scaling function (a) and mother wavelet (b).

As shown in Figure 1(a), the Haar scaling function is defined as

φ (t) =

{

1 t ∈ [0, 1)
0 else.

(1)

Using dilation and translation, the scaling function at resolution level j and location
k is

φj,k (t) = 2j/2φ
(

2jt− k
)

.

Note that φj,k (t) is compactly supported on Ij,k = [2−jk, 2−j (k + 1)), where j =
0, 1, 2, . . . , J (J = ⌊log2 n⌋ ) and k = 0, 1, 2, . . . n− 1, and that

φ
(

2jt− k
)

=

{

1 t ∈ Ij,k
0 else.

When j = 0, the scaling coefficients are actually the original time series. Thus, when
j is small, wavelets are highly localized at a fine scale resolution level, representing
brief transient effects. Conversely, when j is large, wavelets represent lower frequency
activity at coarser scale resolution levels (Aykroyd et al., 2016). Here the factor of
2j/2 ensures energy preservation, defined by

energy =
1

2

2π
∫

0

|f(x)|2dx (2)
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so that the energy in the data set will be preserved and that is why wavelets are
orthogonal and have inverse transforms; for more detail, see Graps (1995). Then,
the scaling coefficients sj,k can be calculated as

sj,k = <x (t) , φj,k> =

∫

R

x (t)φj,k (t) dt = 2j/2
∫

Ij,k

x (t) dt.

As shown in Figure 1(b), the Haar mother wavelet function ψ (t) is defined as

ψ (t) =







1 t ∈ [0, 0.5)
−1 t ∈ [0.5, 1)
0 else,

and the wavelet function at resolution level j and location k is ψj,k (t) = 2j/2ψ (2jt− k).
The wavelet coefficients dj,k are defined as dj,k = <x (t) , ψj,k>, but in practice
can be calculated as dj,k = sj−1,k − sj−1,k−1. The scaling coefficients vector sj =
(sj,0, sj,1, . . . , sj,n−1) and wavelet coefficient vector dj = (dj,0, dj,1, . . . , dj,n−1) be-
come new variables which can be used for classification and regression. We refer to
them as scale variables (or scale information) and detail variables (or detail informa-
tion) respectively in the following sections.

The Haar wavelet is the simplest member of the family of Daubechies orthogonal
wavelets, which also includes the D4 and D6 wavelets with filter lengths of 4 and
6 respectively, as well as LA8 which is the Daubechies least asymmetric wavelet
of length 8. Simulation is conducted in Section 4 to compare the performance of
different wavelet bases under different settings. The relatively best wavelet is applied
in the real data application Sections 5 and 6.

The implementation of the MODWT in the R package waveslim (Whitcher, 2019)
ignores the energy preservation factor 2j/2, which will not affect the results when us-
ing classification or regression trees. Since coarse-scale wavelets span large data inter-
vals, methods are required for dealing with boundary conditions. Typical boundary
correction methods are to assume periodicity of the data or to reflect data at the
boundaries. In this paper, reflection is chosen, as the time series is not periodic.
After reflection, the time series of length n, becomes one of length 2n, so the first n
wavelet coefficients of the transform are used as the wavelet-transformed variables.
The maximum level of the wavelet transform depends on the length of the test data,
nt and should not exceed J = ⌊log2 nt⌋.

4. Simulation

In order to establish when wavelet-transformed decision trees can pick out useful
information, we conduct a simulation study under different seasonal effect levels
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and for a range of forecast horizons. The air quality data we wish to forecast has
autoregressive (AR) properties and therefore our simulation study is based on data
generated from AR-based models. It is easy to understand that the current air quality
is highly correlated with the previous values and there is some seasonal property as
well, so we also include seasonal effects in the simulation study. The AR time series
generated follow

yrawt = a1 · y
raw
t−1 + a2 · y

raw
t−2 + a3 · y

raw
t−3 + · · ·+ a12 · y

raw
t−12 + ǫt, (3)

where ǫt ∼ N(0, 1), [a1, . . . , a12] = [0, 0, 0.1, 0.8, 0, 0, 0, 0, 0,−0.1, 0.1,−0.5], and t =
1, 2, . . . , T . In the model for yrawt , the AR parameters were chosen to ensure a sta-
tionary time series and both short and long time lag effects are included. To make
the simulated time series yrawt more similar to air quality data, we also add a sea-
sonal effect. Supposing a time series that is collected daily, and has a sine-shaped
seasonality around the year, we use the seasonal effect function

yseasont = α sin(t′ · 2π/365), t′ = t mod 365, t = 1, 2, . . . T ;

then yseasont is added to yrawt to obtain yt. An example realization is shown in Figure
2.

In the context of our spatial scenario, after generating yt we also generate a
time series ySWt that has some correlation with yt, representing the influence from
neighboring areas. We assume

ySWt ∼ N (yt, τ
2), (4)

where τ controls the strength of the relationship between y and ySW ; lower τ ,
resulting in ySWt being more correlated to yt. We now describe the process of creating
wavelet-derived predictive variables from the observed data. We show the operation
on yt for illustration; in practice, the same operation will be conducted on ySWt as
well.

Let A = [y1, y2, . . . , yT ]
T , then without a wavelet transform, a schematic matrix

representation of our prediction is

Alag =











y1 y2 · · · yk.lag
y2 y3 · · · yk.lag+1
...

...
. . .

...
yT−k.lag−p yT−k.lag−p+1 · · · yT−p











−→ Y =











yk.lag+p

yk.lag+p+1
...
yT











. (5)

where Alag is our raw explanatory variable without wavelet transform and Y is our
response variable. One thing to note is, in the model training process, the data are
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Figure 2: Generation of time series simulation data. Only 800 observations are shown for illustra-
tion. (a) is the raw time series without seasonal effect. (b) is the seasonal effect with α = 3. (c) is
the time series with seasonal effect added.
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trained in batches, so some lines instead of one line of A will be trained. But actually
we are not using many lines of the matrix Alag at one time to predict each future yt,
but using each line to predict each time point. The matrix just represents a batch of
data. By giving data yt for t = 1, 2, . . . T , our predictions are implicitly of the form

ŷ(t+p) = f(yt, yt−1, . . . , yt−k.lag),

which means y will be predicted p steps ahead, by using observed y values from the
current time t back to the previous k.lag values.

We obtain wavelet transformed data of each column i in Alag using the MODWT
for levels j = 1, 2, . . . , J . There are J + 1 scale variables s0, s1, . . . sJ and J detail
variables d1, d2, . . . , dJ , making a total of 2J+1 variables. These variables are stacked
side-by-side to obtain a (T − k.lag− p)× (2J + 1) matrix W lag.i for column i:

W lag.i =











W d1
i · · · W dJ

i W s0
i · · · W sJ

i

W d1
i+1 · · · W dJ

i+1 W s0
i+1 · · · W sJ

i+1
...

. . .
...

...
. . .

...

W d1
T−k.lag−p+i−1 · · · W dJ

T−k.lag−p+i−1 W s0
T−k.lag−p+i−1 · · · W sJ

T−k.lag−p+i−1











.

The final wavelet transformed variable can be expressed asW lag =
[

W lag.1,W lag.2, · · · ,W k.lag
]

.
In the same way, we can also get (W SW )lag for ASW .

We have now finished constructing the explanatory variables asW lag and (W SW )lag.
With the response variable Y = A(k.lag+p:T ), the prediction function can be repre-
sented as

Y = f{W lag, (W SW )lag, k.lag, p}

with the requirement k.lag + p+ 1 ≤ T .
The accuracy of the results is measured by R-squared, RMSE and MAE. Suppose

yt∈S is the data set for measurement with number of observations as m. Then we
have

R2 = 1−
SSres

SStot

,

where SSres =
∑

t∈S(yt − ŷt)
2 and SStot =

∑

t∈S(yt − ȳ)2, in which ŷt is the fitted
value of yt and ȳ is the mean of data set yt∈S. RMSE is the root mean squared error:

RMSE =

√

1

m

∑

t∈S

(yt − ŷt)2, (6)

and MAE is the mean absolute error:

1

m

∑

t∈S

|yt − ŷt| . (7)
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Table 1: Values used in the simulations for parameters p, τ , α and k.lag

parameter values

p 1, 5, 10, 15, 20

τ 1, 3, 5

α 1, 3, 5

k.lag 1, 5, 10, 15, 20

By generating 2000 observations from Equation 3, we use 80% of the data for training
and the rest for testing. The parameters chosen have the options specified in Table 1.

When p = 1, other parameters will run through all their possible values. Under
each different parameter settings, for example the setting (p = 1, τ = 1, α = 1 and
k.lag = 1), we conduct the simulation 50 times, with the results shown in Figure 3.
When k.lag increases, the longer the lag, the more information is used in the regres-
sion, which leads to a better performance with higher R-squared, lower RMSE and
MAE. When p increases, the model will predict an observation with wider forecast
horizon. From Figure 3, the trend is generally decreasing in R-squared, and increas-
ing in RMSE and MAE, which means the model is decreasing in performance when
the forecast horizon is wider. When p has the values 5, 10 or 15, the performance
tends to remain unchanged. The reason is that the simulated data are based on AR
process with lags 3, 4, 10, 11 and 12, p with values 5, 10 or 15 are nearby so result
in better performance. When the seasonal effect level α increases, the data have
more obvious pattern, which results in better performance. If J = 0, the data are
not wavelet transformed, leading to markedly worse performance than when wavelet
transformed data are used. Even with only two resolution levels of wavelet transfor-
mation, there is a marked increase in performance. But when J continues to increase,
except Haar wavelet, D4, D6 and LA8 all decrease in performance which might due
to the overfitting phenomenon with higher vanishing moments. The parameter τ
has little influence on the forecast performance, but it has influence on the variables
selected as shown in Figure 4. Overall, Haar wavelet shows the best performance
relatively, with higher R-squared, lower RMSE and MAE. The rest the simulation
and real data analysis choose Haar wavelet in the wavelet transform.

For interpretation, it is helpful to assess which predictor variables are the most
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Figure 3: Forecast accuracies with 95% confidence interval under different time lag length k.lag,
forecast horizon p, seasonal effects α, wavelet resolution level J and spatial influence parameter τ
using simulated data. Four wavelet basis applied are D4, D6, La8 and Haar.
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useful ones in the forecasting process. In Figure 4, we average the importance score
for the predictor variables across all the trials under the wavelet transform resolution
level J = 8 (maximum allowance). D4, D6 and LA8 are also tried but result with
bad performance.

Figure 4: Variables selected by the model under different time lag length k.lag, forecast horizon
p, seasonal effects α and spatial parameter τ using Haar-wavelet transformed simulated data. The
number in each cell is the averaged variable importance score.

When the forecast horizon p changes from 1 to 20, the wavelet transformed vari-
ables on coarse resolution level become more important while those on fine resolution
levels become less important. For example, the importance of s8 increases from 5
to 51 and that of d7 changes from 18 to 429, but for s0 and d1, their importance
scores decrease from 275 and 72 to 51 and 37 respectively. When p = 20, d7 has
a high importance score, which means the data information of past 128 observa-
tions plays a more signficant role than others. As the time series data contains a
seasonal effect following a sine function with a period of 365 observations, this is
represented at resolution level 7 since 128 is closer to the middle of 365 than 26 = 64
or 28 = 256. For the information provided by the scale variables, models choose
more recent scale variables like s1 to s4 instead of long scale information. For spatial
weighted information SW and lag information, they change little when p changes.

When the spatial parameter τ changes, the scale and detail information changes
little. As the spatial variable is simulated by using the original variable, there is no
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extra information added. The τ of the noise added to the spatial variables influences
whether the spatial information will be selected by the model or not. That leads to
the result that the importance score of SW decreases when τ increases.

When the seasonal effect α increases, the sine trend of the time series becomes
obvious. The importance score of most variables has a sharp increase, especially when
α increases from 3 to 5, including the spatial information SW , the scale information,
lag information and part of the detail information. As α increases, the model tends
to choose relatively more coarse scale variables like s2 and s1. This is because, with
a higher seasonal effect level, the sine pattern becomes the main trend in the data
compared to the AR pattern and relatively more coarse scale variables can weaken
the AR pattern but also can keep the sine trend.

When the permitted lag length k.lag increases, the importance of scale and detail
information of low resolution level weakens and most of that on high resolution
level performs similar as that when k.lag is small. This is because scale and detail
information on low resolution level share similar information with lag information, so
their importance weakens as the permitted lag length increases. The variable which
retains its importance is d7, which has the detail information of 128 observations.
For the lag information in use, lag1 and lag2, as well as the largest four lag variables,
like lag17 to lag20 when k.lag = 20, are more frequently selected by the model in
terms of importance. This is consistent with that the model takes s0 to s4 more
frequently as important variables.

These simulations have shown that forecasts based on wavelet transformed vari-
ables can be better than those using the original variables under different conditions.
The wavelet-transform based decision trees have a better interpretability than when
using only the original variables. We now apply our wavelet-based forecasting to real
data.

5. Application to air pollution data

The AQI dataset collected comes from the China Air Quality Online Monitoring
and Analysis Platform (https://www.aqistudy.cn/) which summaries information
from the data centre of the Ministry of Environmental Protection of the People’s
Republic of China (http://www.mep.gov.cn/). Since the data are shown in maps,
which are not available for downloading directly, we collect the data manually. We
obtained daily data of 31 provinces in China (except Hong Kong, Macao and Taiwan)
from 13th May 2014 to 14th December 2019, making a total of 2021 observations,
except some missing data. The data can be described as

A = [A.,1, A.,2, . . . , A.,T ]
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where A.,t = [y1,t, y2,t, . . . , yN,t]
T , for t = 1, 2, . . . , T and n = 1, 2, . . . , N with T =

2021 and N = 31.
Since air pollution has spatial spillover effects, one province’s AQI can be in-

fluenced by that of neighbouring provinces. We incorporate these spatial spillover
effects as a separate variable in our forecast models. For detail of spatial regression
analysis, see Ward and Gleditsch (2018). There are many ways to construct a spa-
tial weight matrix. In this section, it is assumed that only geographically contiguous
provinces share spatial influence. In this scenario, we have an adjacency matrix, B,
with elements

Bi,j =

{

1 if provinces i and j are neighbours (i, j ∈ {1, 2, . . . , N})
0 otherwise including i = j.

Then, a standardized matrix, B(s) is constructed by making the sum of each row
equal to 1. So the elements of the standardized adjacency matrix are

B
(s)
i,j = Bi,j/

∑

k

Bi,k, i, j ∈ 1, . . . , N

So, we define variables to capture spatial spillover effect as

(ASW
.,t )T = AT

.,tB
(s),

which measures the spillover effect from all the neighbouring provinces to the current
province and the combined spatial weighted variable matrix is

ASW = [ASW
.,1 , ASW

.,2 , · · · , ASW
.,T ].

In order to detect whether wavelet transformed variables have a better perfor-
mance in forecasting, we apply MODWT to both An,. and ASW

n,. for each separate
province, n at level j. (Since the time length T is 2021 and the training data is
set as 80% of the whole data, considering the data cost in function, we choose the
maximum resolution level J as 9 and hence j = 1, 2, . . . , 9.) The wavelet transformed
data MODWT(An, ·) for province n are denoted as the T × (2J + 1) matrix

Wn, · =











W d1
n,1 · · · W dJ

n,1 | W s0
n,1 · · · W sJ

n,1

W d1
n,2 · · · W dJ

n,2 | W s0
n,2 · · · W sJ

n,2
...

. . .
... |

...
. . .

...

W d1
n,T · · · W dJ

n,T | W s0
n,T · · · W sJ

n,T











.
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Here, s0 is also included as it is actually the original variable. The wavelet trans-
formed data are then

W = [W T
1, ·,W

T
2, ·, · · · ,W

T
N, ·]

T .

Similarly, we get the wavelet transformed dataW SW corresponding to spatial spillover
effects variable ASW .

Taking the original data An,. as an example, with time lag i included, it becomes

Alag.i
n,. = [yn,i+1, yn,(i+2), · · · , yn,(T−k.lag+i−p)]

T ,

where p is the forecast horizon and An,. with time lag becomes

Alag
n,. = [Alag.0

n,. , A
lag.1
n,. , · · · , A

k.lag
n,. ].

We set the maximum time lag as 20 (lag.max) and other values can be also consid-
ered. After combination, we have Alag. In the same way, we can also get W lag and
(W SW )lag.

We have now finished constructing the explanatory variables asW lag and (W SW )lag.
The response variable is

Y = [A1,(k.lag+p+1:T ), A2,(k.lag+p+1:T ), · · · , AN,(k.lag+p+1:T )]
T .

The function can be constructed as

Y = f{W lag, (W SW )lag, k.lag, p}

with the requirement k.lag + p+ 1 ≤ T
Figure 5 shows how the model performance changes according to different com-

binations of J , k.lag and p. In the first column, under different k.lag and J settings,
both R-squared (training) and R-squared(test) decrease as the forecast horizon p in-
creases while RMSE and MAE increases. This result is the same as expected since a
larger p means a longer AQI will be predicted which will have a relatively worse per-
formance. This is also true in general when J changes except some points. A larger
J means longer AQI information is processed for forecasting. But when it comes
to k.lag, the results show a different trend. The performance metrics changes little
when k.lag changes. The reason is J means as long as 2J observations of AQI are
included in the modeling, however, k.lag only means k.lag observations are included.
When J = 0, the data are the original data without being wavelet transformed. The
original data have worse performance than the wavelet transformed data measured
by the R-squared (training), but not obviously worse in R-squared (test), RMSE and
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Figure 5: AQI prediction accuracy results with respect to different J , k.lag and p.
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Table 2: Important variables chosen by the decision tree. The importance measurement is combined
by the importance of variable as first split variable and surrogate variable.

important variables lag scale information detail information

AQI lag20 s0 − s5 d1 d2 d9

lag19 s0 − s5 d9

lag18 s2 − s5 d9

lag17 s2 − s5 d9

lag16 s2 − s5 d9

lag15 s4 − s5 d9

lag14 − lag10 s4 –

AQIW lag15 − lag20 – d9

information with “–” means no such information is selected as important variables by the tree.
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MAE especially when p is small like 3. This is because with a small p, recent data
will be sufficient to provide the forecasting information.

When we set J = 9, k.lag = 20 and p ranges from 1 to 20, the important variables
selected by the model are shown in Table 2.

The results in Table 2 show that when long lag information is permitted, scale
information with a period no longer than two months is more preferred, like s5, which
means data with a lag of 32 days is selected. For detail information, the resolution
level of 9 is chosen which means information as long as 512 days is better than
others. Since long lag information is selected instead of short lag information which
means the future AQI is more likely to be influenced by its information of weeks or
months instead of recent days. The spatial weighted AQI variables are also chosen
as important variables, which confirms the assumption air pollution has spatial spill
over effect and one province’s AQI will be influenced by its conjugate provinces’ AQI.

6. Application to COVID-19 data

COVID-19, caused by coronavirus SARS-Cov-2, is a novel pneumonia firstly no-
ticed in December 2019 as some hospitals in Wuhan diagnosed several cases of un-
explained pneumonia. It shares similar properties with the AQI data such as spatial
effect (Guliyev, 2020) and time autocorrelation effect (Liu et al., 2021).

As an infectious disease caused by the most recently discovered coronavirus,
COVID-19 spreads across the world. Since there is no effective treatment therapy,
the disease gets quite strong spatial transmission ability, which causes terrible result.
But with the effective and strict government control policies, the disease is limited
to some extent. Similar to the AQI data analysis, the spatial effect is also included
in the COVID-19 data analysis to test whether the government policies play a role
in disease control or not.

As there is no instant medical method to confirm the infection, there is a time
gap between the test and confirmation, which boosts the spread of the disease. The
number of confirmed cases today autocorrelate with its previous number. Also similar
to the AQI data, the autocorrelation effect is included in the analysis.

The data of cumulative confirmed cases in 31 provinces and cities in Main-
land China during 16th of January 2020 to 1st February 2020 are collected from
http://2019ncov.chinacdc.cn/2019-nCoV/ and analyzed with the proposed method.
As the disease has complex unseen changing patterns which are hard for any forecast-
ing method to learn and predict, test accuracy is lower than the training accuracy as
shown in Figure 6. As the forecast length p increases, the model shows little change
in performance, which means forecasting with small interval gap can be effective.
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With the k.lag increases, both R-squared (training) and R-squared(test) increases a
little bit. When wavelet transform level J increases, the model has small increase in
R-squared (training) but show little difference on other metrics.

Figure 6: COVID prediction accuracy results with respect to different J , k.lag and p.

The variables selected in the importance list include lag0 and lag1, both with
d1 and s0 − s2 as detail and scale information. Compared to the AQI data, the
variable importance list does not include the spatial weighted variables, which may
be patially due to the lock-down policies in China during that period being effective
in preventing mutual influence.

7. Conclusion

In conclusion, we built a model by using original or wavelet transformed variables
in forecasting spatio-temporal data and compared the performance of the original
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variables with wavelet transformed variables. Wavelet transformed data can pick out
scale information and detail information of the original variables, which result in a
generally better accuracy measured by R-squared (both training and test), RMSE
and MAE. Interpretation via considering which variables are used in the tree is also
obtained. In simulation, the performance of Haar, LA8, D4 and D6 wavelets are
compared, and Haar wavelet shows the best performance in most cases.

Specifically, MODWT based CART can detect true lag information and has much
better performance when only short lag information is permitted (k.lag is small).
When the forecast horizon increases, performance of MODWT based forecasting
decays more slowly in performance than that of original-data forecasting. In the real
data analysis, MODWT based CART also performs better in the air pollution data
of China. This also shows air pollution time series has autocorrelation effect. There
is a spillover effect of the air pollution from neighbouring provinces as the spatial
weighted variable is selected by the model in the variable importance list.

For the air pollution analysis, we find that long lag effects seem to exist, for
example d9 is selected in the important variables list, which contains information
of 512 days in length confirming the intuitive explanation that long lag effects exist
which partly explains the annual seasonal effect.

For the COVID analysis, spatial weighted variables are not selected by the model
in the importance list. The conjugate areas have little influence to each other mutu-
ally during the lock-down period.

Further research can be conducted in the context of streaming data analysis with
spatial and seasonal effects included in the time series. For the wavelet method, we
used the Daubechies families of compactly-supported wavelets (Daubechies, 1992) in
the simulation section, a further direction would be to consider when different basis
functions are preferred. Other alternative wavelet transforms such as the Haar-
Fisz wavelet transform (Fryzlewicz and Nason, 2004) can also be considered if the
distribution of the time series is partly accessible.
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